
z/OS

TSO/E
Programming Services

SA22-7789-03

���

z/OS

TSO/E
Programming Services

SA22-7789-03

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 557.

Fourth Edition, September 2002

This edition applies to Version 1 Release 4of z/OS (5694-A01), and Version 1 Release 4 of z/OS.e (5655–G52), and
to all subsequent releases and modifications until otherwise indicated in new editions.

This is a maintenance revision of SA22-7789-02.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . ix

Tables . xiii

About this book . xvii
Who should use this book . xvii
How this book is organized . xvii
How to use this book . xix
Where to find more information xix

Summary of changes . xxi

Chapter 1. Introduction . 1
Programming Using TSO/E . 1
Overview of TSO/E Programming Services 4
Coding the Macro Instructions . 8

Chapter 2. Considerations for Using TSO/E Services. 11
Determining the Version and Release of TSO/E Installed 11
Programming Considerations for MVS/ESA SP 11
Interfacing with the TSO/E Service Routines 16

Chapter 3. Using the TSO/E Environment Service IKJTSOEV 21
Overview of the TSO/E Environment Service 21
When You Should Use the TSO/E Environment Service 22
Function of the TSO/E Environment Service 22
Summary of TSO/E Services Available Under IKJTSOEV 25
Syntax and Parameter Descriptions 26
Invoking the TSO/E Environment Service 27
Return and Reason Codes from the TSO/E Environment Service 28
Examples Using the TSO/E Environment Service 30

Chapter 4. Invoking TSO/E Service Routines with CALLTSSR 39
When to Use the CALLTSSR Macro Instruction 39
Syntax and Operands . 39
Example Using TSO/E Service Routines with CALLTSSR 40

Chapter 5. Verifying Subcommand Names with IKJSCAN 41
Functions Performed by the Command Scan Service Routine. 41
Syntax Requirements for Command and Subcommand Names 42
Invoking the Command Scan Service Routine (IKJSCAN) 43
Output from the Command Scan Service Routine 45
Return Codes from the Command Scan Service Routine 46
Example Using the Command Scan Service Routine 46

Chapter 6. Verifying Command and Subcommand Operands with Parse 51
Overview of the Parse Service Routine (IKJPARS) 52
Character Types Accepted by the Parse Service Routine 53
Services Provided by the Parse Service Routine 56
What You Need to do to Use the Parse Service Routine. 60
Defining Command Operand Syntax 61
Using the Parse Macro Instructions to Define Command Syntax 76
Using Validity Checking Routines 112

© Copyright IBM Corp. 1988, 2002 iii

Using Verify Exit Routines . 114
Passing Control to the Parse Service Routine 117
Checking Return Codes from the Parse Service Routine 118
Examining the PDL Returned by the Parse Service Routine 120
Examples Using the Parse Service Routine 144

Chapter 7. Using the Terminal Control Macro Instructions 159
Functions of the Terminal Control Macro Instructions 159
GTDEVSIZ — Get Device Size 160
GTSIZE — Get Terminal Line Size 160
GTTERM — Get Terminal Attributes. 161
RTAUTOPT — Restart Automatic Line Numbering or Character Prompting 164
SPAUTOPT — Stop Automatic Line Numbering or Character Prompting . . . 165
STAUTOCP — Start Automatic Character Prompting 166
STAUTOLN — Start Automatic Line Numbering 167
STFSMODE — Set Full-Screen Mode 168
STLINENO — Set Line Number 170
STSIZE — Set Terminal Line Size 171
STTMPMD — Set Terminal Display Manager Options 172
TCLEARQ — Clear Buffers . 173
STATTN — Set Attention Simulation 175
STBREAK — Set Break . 176
STCC — Specify Terminal Control Characters 178
STCLEAR — Set Display Clear Character String 180
STCOM — Set Inter-Terminal Communication 180
STTIMEOU — Set Time Out Feature 181
STTRAN — Set Character Translation 182

Chapter 8. Using BSAM or QSAM for Terminal I/O 185
Overview of the BSAM and QSAM Macro Instructions 185
The SAM Terminal Routines 186
Record Formats, Buffering Techniques, and Processing Modes. 188
Specifying Terminal Line Size 188
End-of-File (EOF) for Input Processing. 188
Modifying DD Statements for Batch or TSO/E Processing. 188

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 191
Functions of the I/O Service Routines 191
Passing Control to the I/O Service Routines. 192
Using the I/O Service Routine Macro Instructions 195

Chapter 10. Using the TGET/TPUT/TPG Macro Instructions for Terminal
I/O . 285

Overview of the TGET, TPUT and TPG Macro Instructions 285
Using the TPUT Macro Instruction to Write a Line to the Terminal 285
Return Codes from TPUT . 291
Using the TPG Macro Instruction to Write a Line Causing Immediate Response 291
Using the TGET Macro Instruction to Get a Line from the Terminal 293
Parameter Formats for TGET, TPUT, and TPG. 296
Examples Using the TGET and TPUT Macro Instructions 300

Chapter 11. Using the TSO/E Message Handling Routine IKJEFF02 . . . 305
Overview of Message Handling 305
TSO/E Message Issuer Routine (IKJEFF02). 305
Return Codes from the TSO/E Message Issuer Routine 314
Example Using IKJTSMSG . 315

iv z/OS V1R4.0 TSO/E Programming Services

Chapter 12. Using the STAX Service Routine to Handle Attention
Interrupts . 317

The STAX Macro Instruction 317
Return Codes from the STAX Service Routine 322
Example Using the STAX Macro Instruction 324

Chapter 13. Using the CLIST Attention Facility. 325
Overview of the CLIST Attention Facility 325
Invoking the CLIST Attention Facility 326
Returning from the CLIST Attention Facility 327

Chapter 14. Obtaining a List of Data Set Names 329
Operation of ICQGCL00 . 329
Invoking ICQGCL00 . 330
Output Table Variables . 331
Return Codes from ICQGCL00 331
Example Using ICQGCL00 . 331

Chapter 15. Using the Space Management CLIST ICQSPC00 335
Functions of ICQSPC00 . 335
Applications . 335
Considerations for Using ICQSPC00 336
Invoking ICQSPC00 . 336
Return and Reason Codes from ICQSPC00. 340
Examples Using ICQSPC00 343

Chapter 16. Using IKJADTAB to Change Alternative Library Environments 345
Functions of IKJADTAB . 345
Passing Control to IKJADTAB 345
Output from IKJADTAB . 348
Example Using IKJADTAB . 351

Chapter 17. Using the Dynamic Allocation Interface Routine DAIR 355
Functions of the Dynamic Allocation Interface Routine 355
Passing Control to DAIR . 355
Return Codes from DAIR. 376
Reason Codes from Dynamic Allocation 377

Chapter 18. Using IKJEHCIR to Retrieve System Catalog Information 379
Functions of the Catalog Information Routine 379
Passing Control to the Catalog Information Routine 379
Output from the Catalog Information Routine 381
Return Codes from IKJEHCIR 382
Return Codes from LOCATE 383

Chapter 19. Constructing a Fully-Qualified Data Set Name with IKJEHDEF 385
Functions of the Default Service Routine 385
Passing Control to the Default Service Routine 385
Output from the Default Service Routine 388
Return Codes from IKJEHDEF 388

Chapter 20. Using the DAIRFAIL Routine IKJEFF18 391
Functions of DAIRFAIL . 391
Passing Control to DAIRFAIL 391
Return Codes from DAIRFAIL 393

Contents v

Chapter 21. Analyzing Error Conditions with GNRLFAIL/VSAMFAIL . . . 395
Functions of GNRLFAIL/VSAMFAIL 395
Passing Control to GNRLFAIL/VSAMFAIL 395
Return Codes from GNRLFAIL/VSAMFAIL 397

Chapter 22. Using the Table Look-up Service IKJTBLS 399
Functions of IKJTBLS . 399
Passing Control to IKJTBLS 399
The IKJTBLS Parameter List 400
Return Codes from IKJTBLS 401
Example Using IKJTBLS . 401

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 405
Overview of the TSO/E Service Facility 405
Using the Command/Program Invocation Platform 408
TSO/E Service Facility Initialization Routine IKJEFTSI 410
TSO/E Service Facility Routine IKJEFTSR 413
TSO/E Service Facility Termination Routine IKJEFTST 422
Application Program Interface to IKJEFTSR 425
Examples of Invoking the TSO/E Service Facility 427

Chapter 24. Using the Variable Access Routine IKJCT441 459
Functions Provided by IKJCT441. 459
Passing Control to IKJCT441 461
Updating or Creating a Variable Value (TSVEUPDT). 464
Returning the Value of a Variable (TSVERETR) - Create 465
Returning the Value of a Variable (TSVNOIMP) - No Create 467
Returning all Active Variables and their Values (TSVELOC) 468
Examples Using IKJCT441 . 470

Chapter 25. Accessing the Information Center Facility Names Directory 483
Operation of ICQCAL00 . 483
Applications . 485
Invoking ICQCAL00. 485
Input Table Variables . 486
Return Codes from ICQCAL00 489
Example Using ICQCAL00 . 491

Chapter 26. Using the Printer Support CLISTs 497
Overview of Using the Printer Support CLISTs 497
Printer Selection CLIST, ICQCPC00. 499
Print CLIST, ICQCPC10 . 517
Print CLIST, ICQCPC15 . 521
Examples Using Printer CLISTs 526

Chapter 27. Invoking an Information Center Facility Application 531
Operation of ICQAMLI0 . 531
Invoking ICQAMLI0 . 531
Output Table Variables . 533
Return Codes from ICQAMLI0 533
Reason Codes from ICQAMLI0 533
Example Using ICQAMLI0 . 534

Chapter 28. Using the GETMSG Service 535
Functions of GETMSG . 535
Considerations for Using GETMSG 535

vi z/OS V1R4.0 TSO/E Programming Services

Invoking GETMSG . 536
GETMSG Parameters . 537
Output from GETMSG. 538
Return Codes from GETMSG 539
Displaying the Retrieved Message 539
Example Using GETMSG . 539

Chapter 29. Using the Unauthorized Resource Processor Service
IKJURPS . 541

Overview of the TSO/E Unauthorized Resource Processor Service 541
Passing Control to IKJURPS 543
Receiving Control in an Unauthorized Resource Processor 548
Installing Resource Processors 551
Sample IKJURPS Invocation and Unauthorized Resource Processor 552

Appendix A. Limits for TSO/E Service Routines 553

Appendix B. Accessibility . 555
Using assistive technologies 555
Keyboard navigation of the user interface. 555

Notices . 557
Programming Interface Information 559
Trademarks. 559

Bibliography . 561
TSO/E Publications . 561
Related Publications . 561

Index . 563

Contents vii

viii z/OS V1R4.0 TSO/E Programming Services

Figures

1. Interface Between the TMP and a Command Processor 17
2. Control Block Interface Between the TSO/E Environment Service and a Calling Program 18
3. Call Syntax for the IKJTSOEV Routine . 26
4. Sample COBOL Routine . 31
5. REXX Exec ’TEST1’ Executed by COBOL . 34
6. Output From the Invocation of ’TEST1’ . 34
7. Sample Assembler Routine . 35
8. Execution JCL for the COBOL Program . 37
9. Execution JCL for the Assembler Program . 38

10. The CALLTSSR Macro Instruction . 39
11. Format of the Command Buffer . 41
12. The Parameter List Structure Passed to Command Scan 44
13. An Example Using the Command Scan Service Routine 47
14. An Example of a Command Processor Using the Parse service routine 53
15. Example of 24-Bit Indirect Addressing . 65
16. Example of 31-Bit Indirect Addressing . 65
17. An Indirect Address with Mixed Indirection Symbols 66
18. An Address Expression with 24-Bit Indirect Addressing 67
19. An Address Expression with Mixed Indirection Symbols 68
20. The IKJPARM Macro Instruction . 78
21. The IKJPOSIT Macro Instruction . 79
22. The IKJTERM Macro Instruction . 84
23. The IKJOPER Macro Instruction . 88
24. The IKJRSVWD Macro Instruction . 92
25. The IKJIDENT Macro Instruction . 94
26. The IKJKEYWD Macro Instruction . 99
27. The IKJNAME Macro Instruction (when used with the IKJKEYWD Macro Instruction) 101
28. The IKJNAME Macro Instruction (when used with the IKJRSVWD Macro Instruction) 101
29. The IKJSUBF Macro Instruction . 103
30. The IKJUNFLD Macro Instruction . 104
31. The IKJENDP Macro Instruction . 106
32. The IKJRLSA Macro Instruction . 107
33. Example 1 - Using Parse Macros to Describe Command Operand Syntax 108
34. Example 2 - Using Parse Macros to Describe Command Operand Syntax 109
35. Example 3 - Using Parse Macros to Describe Command Operand Syntax 110
36. Example 4 - Using Parse Macros to Describe Command Operand Syntax 111
37. Example 5 - Using Parse Macros to Describe Command Operand Syntax 112
38. Control Flow between Command Processor and the Parse Service Routine. 120
39. Series of PDEs Created for Mixed Sequence of Indirection Symbols 129
40. A PDL Showing PDEs that Describe a List . 138
41. A PDL Showing PDEs Describing a Range . 139
42. A PDL Showing PDEs that Describe LIST and RANGE Options 140
43. PDL - LIST and RANGE Acceptable, Single Operand Entered 141
44. PDL - LIST and RANGE Acceptable, Single Range Entered 141
45. PDL - LIST and RANGE Acceptable, LIST Entered 142
46. PDL - LIST and RANGE Acceptable, List of Ranges Entered 143
47. Example 1 - Using Parse Macros to Describe Command Operand Syntax 144
48. Example 1 - The PRDSECT DSECT Created by Parse 144
49. Example 1 - The PRDSECT DSECT and the PDL 145
50. Example 2 - Using Parse Macros to Describe Command Operand Syntax 147
51. Example 2 - The IKJPARMD DSECT Created by Parse 147
52. Example 2 - The IKJPARMD DSECT and the PDL 149
53. Example 3 - Using Parse Macros to Describe Command Operand Syntax 150

© Copyright IBM Corp. 1988, 2002 ix

54. Example 3 - The PARSEAT DSECT Created by Parse 150
55. Example 3 - The PARSEAT DSECT and the PDL 152
56. Example 4 - Using Parse Macros to Describe Command Operand Syntax 153
57. Example 4 - The PARSELST DSECT . 153
58. Example 4 - The PARSELST DSECT and the PDL 155
59. Example 5 - Using Parse Macros to Describe Command Operand Syntax 156
60. Example 5 - The PARSEWHN DSECT . 156
61. Example 5 - The PARSEWHN DSECT and PDL 158
62. The GTDEVSIZ Macro Instruction . 160
63. The GTSIZE Macro Instruction . 161
64. The GTTERM Macro Instruction . 163
65. The RTAUTOPT Macro Instruction . 164
66. The SPAUTOPT Macro Instruction . 165
67. The STAUTOCP Macro Instruction . 166
68. The STAUTOLN Macro Instruction . 167
69. The STFSMODE Macro Instruction. 168
70. The STLINENO Macro Instruction . 170
71. The STSIZE Macro Instruction . 172
72. The STTMPMD Macro Instruction . 173
73. The TCLEARQ Macro Instruction . 174
74. The STATTN Macro Instruction . 175
75. The STBREAK Macro Instruction . 177
76. The STCC Macro Instruction . 178
77. The STCLEAR Macro Instruction . 180
78. The STCOM Macro Instruction . 180
79. The STTIMEOU Macro Instruction . 182
80. The STTRAN Macro Instruction . 183
81. The List Form of the STACK Macro Instruction 197
82. The Execute Form of the STACK Macro Instruction. 202
83. STACK Control Blocks: No In-Storage List . 213
84. STACK Control Blocks: In-Storage List Specified 214
85. Example of STACK Specifying the Terminal as the Input Source 215
86. Example of STACK Specifying an In-storage List as the Input Source 216
87. Example of STACK Creating a New TSO/E I/O Environment 218
88. The List Form of the GETLINE Macro Instruction 219
89. The Execute Form of the GETLINE Macro Instruction 222
90. Format of the GETLINE Input Buffer . 228
91. GETLINE Control Blocks - Input Line Returned 230
92. Example Showing Two Executions of GETLINE 231
93. The List Form of the PUTLINE Macro Instruction 233
94. The Execute Form of the PUTLINE Macro Instruction 237
95. PUTLINE Single Line Data Format . 243
96. PUTLINE Multiline Data Format . 244
97. Example Showing PUTLINE Single Line Data Processing 246
98. Example Showing PUTLINE Multiline Data Processing 247
99. Control Block Structures for PUTLINE Messages 249

100. Example of PUTLINE Text Insertion - Before the Primary Segment 251
101. Example Showing PUTLINE Text Insertion . 256
102. Example Showing PUTLINE Second-Level Informational Chaining 257
103. The List Form of the PUTGET Macro Instruction. 260
104. The Execute Form of the PUTGET Macro Instruction 265
105. Control Block Structures for PUTGET Output Messages 275
106. Format of the PUTGET Input Buffer . 279
107. PUTGET Control Block Structure - Input Line Returned 281
108. Example of PUTGET Issuing a Multilevel PROMPT Message 282
109. The Standard, Register, List, and Execute Forms of the TPUT Macro Instruction 286

x z/OS V1R4.0 TSO/E Programming Services

110. The Standard, List, and Execute Forms of the TPG Macro Instruction 292
111. The Standard, Register, List, and Execute Forms of the TGET Macro Instruction 294
112. TPUT Parameter Registers . 296
113. TGET Parameter Registers . 297
114. Parameter List Expansion for the Execute Form of TPUT 298
115. Parameter List Expansion for the List Form of TPUT 299
116. Parameter List Expansion for the Execute Form of TPG 299
117. Parameter List Expansion for the List Form of TPG. 300
118. Parameter List Expansion for the Standard, List, and Execute Forms of TGET. 300
119. Example 1: TPUT and TGET Macro Instructions Using the Default Values 301
120. Example 2: TPUT Macro Instruction with Buffer Address and Buffer Length in Registers 302
121. Example 3: TGET Macro Instruction Register Format 303
122. Translated Text Buffer Format. 311
123. The IKJTSMSG Macro Instruction . 314
124. An Example Using the IKJTSMSG Macro Instruction 315
125. Forms of the STAX Macro Instruction . 318
126. Using Registers in the STAX Macro Instruction 322
127. Example Using the STAX Macro Instruction . 324
128. Flow of Control Between a Caller and the CLIST Attention Facility 325
129. Using ICQGCL00 to Return a List of Data Set Names. 329
130. A Sample Application Using ICQGCL00 . 332
131. Sample Application Input Panel Definition (PANEL1) 333
132. Sample Application Output Panel Definition (PANEL2). 333
133. Default Panel for Space Management Allocation (ICQSPE00) 338
134. Default Panel for Space Management When a Data Set Does Not Exist (ICQSPE01) 338
135. Example 1: The SPACE MANAGER CLIST. 343
136. Example 2: The SPACE ENLARGER CLIST . 344
137. Parameter List Structure for IKJADTAB . 346
138. A Sample Program Using IKJADTAB . 352
139. Parameter List Structure for IKJTBLS . 400
140. A Sample Program Using IKJTBLS. 402
141. Invoking Authorized Functions with the TSO/E Service Facility 407
142. Interaction of the TSO/E Service Facility Routines 409
143. Parameter List for IKJEFTSI . 411
144. Parameter List for IKJEFTSR . 415
145. Parameter List for IKJEFTST . 423
146. Format of the Parameter List Written in PL/I . 426
147. Format of the Parameter List Written in COBOL 426
148. Format of the Parameter List Written in FORTRAN 427
149. Format of the Parameter List Written in PASCAL 427
150. Assembler Language Program Demonstrating the Use of IKJEFTSI 428
151. Assembler Language Program Demonstrating the Use of IKJEFTSR to Invoke a Command 428
152. Assembler Language Program Demonstrating the Use of IKJEFTST 431
153. Assembler Language Program Demonstrating the Use of IKJEFTSI, IKJEFTSR, and IKJEFTST

to Invoke a Command . 432
154. FORTRAN Program Demonstrating the Use of TSOLNK to Invoke a Command (FORTRAN G1) 436
155. FORTRAN Program Demonstrating the Use of TSOLNK to Invoke a Command (VS FORTRAN) 438
156. COBOL Program Demonstrating the Use of TSOLNK to Invoke a Command 440
157. Assembler Program Demonstrating the Use of IKJEFTSR to Invoke a Program 444
158. PL/I Program Demonstrating the Use of TSOLNK to Invoke a Program 445
159. PASCAL Program Demonstrating the Use of TSOLNK to Invoke a Program. 447
160. COBOL Program Demonstrating the Use of TSOLNK to Invoke a Program 449
161. PL/I Program Demonstrating the Use of TSOLNK to Invoke a CLIST 452
162. MYCLIST called by PL/I program, TSOCALL . 454
163. PASCAL Program Demonstrating the Use of TSOLNK to Invoke a CLIST 454
164. Assembler Language Program Demonstrating the Use of IKJEFTSR to Invoke a REXX Exec 456

Figures xi

165. Obtaining the Address of IKJCT441 . 461
166. Parameter List Structure for IKJCT441 . 462
167. Example – Chain of Two Elements to IKJCT441 464
168. Example 1: Update or Create a Variable Value 470
169. Example 2: Return a Variable Value . 472
170. Example 3: Return Variable Value Only . 474
171. Example 4: Return all Active Variables and their Values 476
172. Example 5: Update or Create a List of Variables 478
173. Using ICQCAL00 to Access the Names Directory 483
174. Default Panel for Listing Names - Panel ICQCAE40 484
175. Default Panel for Viewing Groups - Panel ICQCAE41 488
176. A Sample Application Using ICQCAL00 — the PHONE CLIST. 491
177. PHONE CLIST Input Panel Definition (JRT1) . 493
178. PHONE CLIST Output Panel Definition (JRT2) 494
179. PHONE CLIST List Panel Definition (JRT3) . 495
180. Overview of Printer Support Processing . 498
181. Printer List Panel . 500
182. Font List Panel . 501
183. Entering Variables as Parameters on the Print Function Panel. 505
184. Example 1: The Printer List CLIST . 527
185. The Print Function CLIST . 529
186. A Sample Application Using ICQAMLI0 . 534
187. Parameter List Structure for GETMSG Service Parameters 537
188. Invoking GETMSG from an Assembler Language Program 540
189. How Unauthorized Resource Processing Fits Into a TSO/E Address Space 542
190. Parameter List for IKJURPS . 544
191. Parameter List Passed To An Unauthorized Resource Processor. 551

xii z/OS V1R4.0 TSO/E Programming Services

Tables

1. Summary of TSO/E Services . 4
2. Interface Considerations for TSO/E Service Routines 13
3. MVS Interface Rules for Using Macro Instructions. 14
4. The Command Processor Parameter List (CPPL) 18
5. Summary of TSO/E Service Availability Under IKJTSOEV 26
6. Return Codes for TSO/E Environment Initialization 28
7. Reason Codes for REXX Initialization Failure . 29
8. Reason Codes for TSO/E Environment Initialization Failure 29
9. Character Types Recognized by the Parse Service Routine 42

10. The Command Scan Parameter List. 44
11. The Command Scan Output Area. 45
12. Return from Command Scan - CSOA and Command Buffer Settings 46
13. Character Types Recognized by the Parse Service Routine 53
14. Delimiter-Dependent Operands . 62
15. The Parse Macro Instructions . 76
16. The Parameter Control Entry Built by IKJPARM 78
17. The Parameter Control Entry Built by IKJPOSIT 82
18. The Parameter Control Entry Built by IKJTERM 86
19. The Parameter Control Entry Built by IKJOPER 90
20. The Parameter Control Entry Built by IKJRSVWD 93
21. The Parameter Control Entry Built by IKJIDENT 97
22. The Parameter Control Entry Built by IKJKEYWD 100
23. The Parameter Control Entry Built by IKJNAME 102
24. The Parameter Control Entry Built by IKJSUBF 103
25. The Parameter Control Entry Built by IKJUNFLD 105
26. The Parameter Control Entry Built by IKJENDP 107
27. Format of the Validity Check Parameter List . 113
28. Return Codes from a Validity Checking Routine 113
29. The Verify Exit Parameter List . 114
30. The Parse Parameter Element . 115
31. Return Codes from a Verify Exit Routine . 117
32. The Parse Parameter List . 118
33. Return Codes from the Parse Service Routine 118
34. Return Codes from GTDEVSIZ . 160
35. Return Codes from GTSIZE . 161
36. Parameter List Expansion for the List Form of GTTERM 163
37. Return Codes from GTTERM . 164
38. Return Codes from RTAUTOPT . 164
39. Return Codes from SPAUTOPT . 165
40. Return Codes from STAUTOCP . 166
41. Return Codes from STAUTOLN . 168
42. Return Codes from STFSMODE. 170
43. Return Codes from STLINENO . 171
44. Return Codes from STSIZE . 172
45. Return Codes from STTMPMD . 173
46. Return Codes from TCLEARQ . 174
47. Return Codes from STATTN . 176
48. Return Codes from STBREAK . 177
49. Return Codes From STCC . 179
50. Return Codes from STCLEAR . 180
51. Return Codes from STCOM . 181
52. Return Codes from STTIMEOU . 182
53. Return Codes from STTRAN . 183

© Copyright IBM Corp. 1988, 2002 xiii

54. BSAM and QSAM Macro Functions Under TSO/E 185
55. The TSO/E I/O Service Routines . 191
56. The Input/Output Parameter List. 194
57. The STACK Parameter Block . 209
58. The List Source Descriptor . 211
59. Return Codes from the STACK Service Routine 211
60. The GETLINE Parameter Block . 227
61. Return Codes from the GETLINE Service Routine 229
62. The PUTLINE Parameter Block . 241
63. The Output Line Descriptor (OLD) . 248
64. PUTLINE Functions and Message Types . 250
65. Return Codes from the PUTLINE Service Routine 255
66. The PUTGET Parameter Block . 270
67. The Output Line Descriptor (OLD) . 273
68. Return Codes from the PUTGET Service Routine 279
69. Return Codes from TPUT . 291
70. Return Codes from TPG . 293
71. Return Codes from TGET . 295
72. Option Flags Contained in Register 1 . 297
73. Standard Format of Input Parameter List . 307
74. Extended Format of Input Parameter List . 311
75. Return Codes from the TSO/E Message Issuer Routine 314
76. The Attention Exit Parameter List . 319
77. Return Codes from the STAX Service Routine 323
78. The CLIST Attention Facility Parameter List (IKJCAFPL) 326
79. Return Codes from the CLIST Attention Facility 327
80. ICQGCL00 Return Codes . 331
81. ICQSPC00 Return and Reason Codes . 340
82. ICQSPC00 Reason Codes . 340
83. The Parameters for IKJADTAB . 347
84. Return Codes from IKJADTAB . 349
85. The DAIR Parameter List (DAPL) . 356
86. DAIR Entry Codes and Their Functions . 356
87. DAIR Parameter Block for Entry Code X'00' . 357
88. DAIR Parameter Block for Entry Code X'04' . 358
89. DAIR Parameter Block for Entry Code X'08' . 360
90. DAIR Parameter Block for Entry Code X'0C' . 363
91. DAIR Parameter Block for Entry Code X'10' . 363
92. DAIR Parameter Block for Entry Code X'14' . 364
93. DAIR Parameter Block for Entry Code X'18' . 364
94. DAIR Parameter Block for Entry Code X'1C' . 366
95. DAIR Parameter Block for Entry Code X'24' . 367
96. DAIR Parameter Block for Entry Code X'28' . 370
97. DAIR Parameter Block for Entry Code X'2C' . 371
98. DAIR Parameter Block for Entry Code X'30' . 372
99. DAIR Parameter Block for Entry Code X'34' . 374

100. DAIR Attribute Control Block (DAIRACB) . 375
101. Return Codes from DAIR . 376
102. Reason Codes from Dynamic Allocation . 377
103. The Catalog Information Routine Parameter List 380
104. The Data Returned for each Entry Code. 381
105. Format 1 User Work Area for CIRPARM . 382
106. Format 2 User Work Area for CIRPARM . 382
107. Volume Information Format . 382
108. Return Codes from IKJEHCIR . 382
109. Return Codes from LOCATE to IKJEHCIR . 383

xiv z/OS V1R4.0 TSO/E Programming Services

110. The Default Parameter List . 386
111. The Default Parameter Block . 386
112. The Default Service Routine Entry Codes . 387
113. Return Codes from IKJEHDEF . 388
114. The Parameter List (DFDSECTD DSECT) . 392
115. The Parameter List (DFDSECT2 DSECT) . 392
116. Return Codes from DAIRFAIL . 393
117. Diagnostic Information Returned by GNRLFAIL/VSAMFAIL (GFDSECTD DSECT) 395
118. Return Codes from GNRLFAIL/VSAMFAIL . 397
119. Return Codes from IKJTBLS . 401
120. Return Codes from IKJEFTSI . 412
121. Return Codes from IKJEFTSR . 419
122. Reason Codes from IKJEFTSR (When Return Code is Decimal 20) 420
123. Return Codes from IKJEFTST . 424
124. The Parameters for IKJCT441 . 463
125. Return Codes from IKJCT441 (Entry Code TSVEUPDT) 465
126. Return Codes from IKJCT441 (Entry Code TSVERETR) 466
127. Return Codes from IKJCT441 (Entry Code TSVNOIMP) 467
128. Return Codes from IKJCT441 (Entry Code TSVELOC) 469
129. Search Variables and Their Contents . 486
130. ICQCAL00 Return Codes . 489
131. Return Codes from ICQCPC00 . 503
132. Printer Definition Variables - Table . 506
133. Font Definition Variables - Table . 516
134. Return Codes from ICQCPC10 . 520
135. Return Codes from ICQCPC15 . 525
136. ICQAMLI0 Return Codes . 533
137. ICQAMLI0 Reason Codes . 533
138. Parameters for GETMSG . 537
139. Flags for GETMSG . 538
140. The Console Message Control Block . 538
141. Return Codes from GETMSG. 539
142. Return Codes from IKJURPS . 547
143. Limits . 553

Tables xv

xvi z/OS V1R4.0 TSO/E Programming Services

About this book

This document supports z/OS (5694–A01) and z/OS.e (5655–G52).

This book describes the services that TSO/E provides for use in writing system and
application programs.

Who should use this book
This book is intended for:

v Application programmers who design and write programs that run under TSO/E.

v System programmers who must modify TSO/E to suit the needs of their
installation.

The reader must be familiar with MVS programming conventions, the assembler
language, and the structure of TSO/E.

Before using this book, read z/OS TSO/E Programming Guide which describes how
to write a command processor and how to compile, assemble, execute and test a
program in the TSO/E environment.

How this book is organized
The chapters of this book and their purposes are as follows:

v Chapter 1, “Introduction” on page 1 gives an overview of the services provided by
TSO/E and discusses the types of programs that can be written using TSO/E.

v Chapter 2, “Considerations for Using TSO/E Services” on page 11 describes how
to determine the version and release of TSO/E installed on your system, and
explains programming considerations for MVS and the interface to the TSO/E
service routines.

v Chapter 3, “Using the TSO/E Environment Service IKJTSOEV” on page 21
describes how to use the TSO/E environment service to establish a TSO/E
environment outside of the TSO/E TMP and Service Routines.

v Chapter 4, “Invoking TSO/E Service Routines with CALLTSSR” on page 39
describes how to use the CALLTSSR macro instruction to invoke certain TSO/E
service routines.

v Chapter 5, “Verifying Subcommand Names with IKJSCAN” on page 41 describes
how to validate command and subcommand names.

v Chapter 6, “Verifying Command and Subcommand Operands with Parse” on
page 51 describes how to validate command and subcommand operands.

v Chapter 7, “Using the Terminal Control Macro Instructions” on page 159
describes how to control terminal functions and attributes.

v Chapter 8, “Using BSAM or QSAM for Terminal I/O” on page 185 describes how
to use the basic sequential and queued sequential access methods in programs
that operate under TSO/E.

v Chapter 9, “Using the TSO/E I/O Service Routines for Terminal I/O” on page 191
describes how to use the STACK, GETLINE, PUTLINE and PUTGET service
routines in a command processor.

v Chapter 10, “Using the TGET/TPUT/TPG Macro Instructions for Terminal I/O” on
page 285 describes how to use the TGET/TPUT/TPG macro instructions in a
program to perform terminal I/O.

© Copyright IBM Corp. 1988, 2002 xvii

|

v Chapter 11, “Using the TSO/E Message Handling Routine IKJEFF02” on
page 305 describes how to use IKJEFF02 in a command processor to issue
messages.

v Chapter 12, “Using the STAX Service Routine to Handle Attention Interrupts” on
page 317 describes how to use the STAX service routine in a program to process
attention interruptions.

v Chapter 13, “Using the CLIST Attention Facility” on page 325 describes how to
use the CLIST attention facility to process a CLIST’s attention exit.

v Chapter 14, “Obtaining a List of Data Set Names” on page 329 describes how a
program can use ICQGCL00 to obtain a list of data set names that match
specified criteria.

v Chapter 15, “Using the Space Management CLIST ICQSPC00” on page 335
describes how a program can use ICQSPC00 to ensure that data sets have
adequate free space.

v Chapter 16, “Using IKJADTAB to Change Alternative Library Environments” on
page 345 describes how to use IKJADTAB to create and remove alternative
library environments and to modify alternative library definitions.

v Chapter 17, “Using the Dynamic Allocation Interface Routine DAIR” on page 355
describes how to use DAIR in a command processor to allocate, free,
concatenate and deconcatenate data sets during program execution.

v Chapter 18, “Using IKJEHCIR to Retrieve System Catalog Information” on
page 379 describes how to use IKJEHCIR to retrieve information from the system
catalog.

v Chapter 19, “Constructing a Fully-Qualified Data Set Name with IKJEHDEF” on
page 385 describes how a command processor can use IKJEHDEF to construct
a fully-qualified data set name.

v Chapter 20, “Using the DAIRFAIL Routine IKJEFF18” on page 391 describes how
to use the DAIRFAIL routine to analyze return codes from dynamic allocation
(SVC 99) or DAIR.

v Chapter 21, “Analyzing Error Conditions with GNRLFAIL/VSAMFAIL” on page 395
describes how to use the GNRLFAIL/VSAMFAIL routine to analyze error
conditions and issue appropriate error messages.

v Chapter 22, “Using the Table Look-up Service IKJTBLS” on page 399 describes
how to use the table look-up service to search the lists of authorized commands
and programs and commands not supported in the background.

v Chapter 23, “Using the TSO/E Service Facility IKJEFTSR” on page 405 describes
how an unauthorized program can use the TSO/E service facility to invoke other
programs, commands, REXX execs and CLISTs, regardless of whether the
invoked function is authorized.

v Chapter 24, “Using the Variable Access Routine IKJCT441” on page 459
describes how a program can use IKJCT441 to examine and manipulate CLIST
and REXX variables.

v Chapter 25, “Accessing the Information Center Facility Names Directory” on
page 483 describes how to use TSO/E program ICQCAL00 to access the
Information Center Facility names directory.

v Chapter 26, “Using the Printer Support CLISTs” on page 497 describes how to
use the printer support CLISTs to select printers and print data sets on selected
printers.

v Chapter 27, “Invoking an Information Center Facility Application” on page 531
describes how to use the application invocation function to invoke an application
that is integrated into the Information Center Facility.

xviii z/OS V1R4.0 TSO/E Programming Services

v Chapter 28, “Using the GETMSG Service” on page 535 describes how to use the
GETMSG service to retrieve system messages issued during a console session.

v Chapter 29, “Using the Unauthorized Resource Processor Service IKJURPS” on
page 541 describes how applications that execute in a TSO/E environment can
get control within the TSO/E terminal monitor program (TMP).

v Appendix A, “Limits for TSO/E Service Routines” on page 553 describes the limits
imposed by TSO/E services.

How to use this book
If you have never used this book, read Chapter 1, “Introduction” on page 1 to
become familiar with the programming services that TSO/E provides. Then read the
chapter that discusses the service you want to use.

Where to find more information
Please see z/OS Information Roadmap for an overview of the documentation
associated with z/OS, including the documentation available for z/OS TSO/E.

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

About this book xix

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

6. Access the licensed book by selecting the appropriate element.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most of the
z/OS, z/VM, and VSE messages you encounter, as well as system abends and
some codes. Using LookAt to find information is faster than a conventional search
because in most cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site so you can access LookAt from a PalmPilot (Palm VIIx suggested).

To use LookAt on the Internet to find a message explanation, go to the LookAt Web
site and simply enter the message identifier (for example, $HASP701 or $HASP*). You
can select a specific release to narrow your search.

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the LookAt Web site. To obtain the code from the
LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

2. Click News.

3. Scroll to Download LookAt Code for TSO/E and z/VM.

4. Click the ftp link, which will take you to a list of operating systems. Click the
appropriate operating system. Then click the appropriate release.

5. Open the lookat.me file and follow its detailed instructions.

After you have LookAt installed, you can access a message explanation from a
TSO/E command line by entering: lookat message-id. LookAt will display the
message explanation for the message requested.

Note: Some messages have information in more than one document. For example,
IEC192I can be found in z/OS MVS System Messages, Vol 7 (IEB-IEE) and
also in z/OS MVS Routing and Descriptor Codes. For such messages,
LookAt displays a list of documents in which the message appears. You can
then click the message identifier under each document title to view
information about the message.

xx z/OS V1R4.0 TSO/E Programming Services

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Summary of changes

Summary of changes
for SA22-7789-03
z/OS Version 1 Release 4

This book contains information previously presented in z/OS TSO/E Programming
Services, SA22-7789-02, which supports z/OS Version 1 Release 3.

New information

Information is added to indicate this document supports z/OS.e.

Changed information

Update the Chapter 5, “Verifying Subcommand Names with IKJSCAN” on page 41
and the group of paragraphs titled ″UID2PSWD″

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this book—for example, headings that use uppercase for the first
letter of initial words only, and procedures that have a different look and format. The
changes are ongoing improvements to the consistency and retrievability of
information in our books.

Summary of changes
for SA22-7789-02
z/OS Version 1 Release 3

This book contains information previously presented in z/OS TSO/E Programming
Services, SA22-7789-01, which supports z/OS Version 1 Release 2.

New information

An appendix with z/OS product accessibility information has been added.

Changed information

Most references to the specific broadcast data set, SYS1.BRODCAST, were
replaced by the generic phrase “the broadcast data set” throughout the book.

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this book—for example, headings that use uppercase for the first
letter of initial words only, and procedures that have a different look and format. The
changes are ongoing improvements to the consistency and retrievability of
information in our books.

© Copyright IBM Corp. 1988, 2002 xxi

Summary of changes
for SA22-7789-01
z/OS Version 1 Release 2

This book contains information previously presented in z/OS TSO/E Programming
Services, SA22-7789-00, which supports z/OS Version 1 Release 1.

New information

v Information has been added in support of APARs OW11470 and OW16574 which
provided the Format 2 Catalog Output Area. See Chapter 18, “Using IKJEHCIR
to Retrieve System Catalog Information” on page 379.

v Information has been added to support APARs OW47767 and OW48644. See
the TERMID operand description on page 162.

This book contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

xxii z/OS V1R4.0 TSO/E Programming Services

Chapter 1. Introduction

Programming Using TSO/E . 1
Writing CLISTs . 1
Writing REXX Execs . 2
Writing Servers . 3
Writing Command Processors 3

Overview of TSO/E Programming Services 4
Invoking TSO/E Service Routines 5
Establishing a TSO/E Environment Outside of the TSO/E TMP and Service

Routines . 5
Checking the Syntax of Subcommand Names 5
Checking the Syntax of Command and Subcommand Operands 5
Communicating with the Terminal User 5
Handling Attention Interruptions 6
Processing Data Sets . 6
Analyzing Return Codes . 7
Searching System Lists . 7
Invoking Commands, CLISTs, REXX Execs and Programs 7
Accessing CLIST and REXX Variables. 7
Retrieving Information from the Names Directory 8
Displaying Printers for Selection by the User 8
Invoking an Information Center Facility Application 8
Retrieving System Messages Issued during a Console Session 8

Coding the Macro Instructions . 8

TSO/E provides programming services that you can use in system or application
programs. These services consist of programs, macros, and CLISTs.

TSO/E services support a wide range of functions that are useful in writing system
programs as well as application programs that exploit the full-screen capabilities of
TSO/E.

CLISTs, REXX execs, servers and command processors are specific types of
programs that you can write to run in the TSO/E environment. The following topic,
“Programming Using TSO/E”, gives an overview of these types of programs, and
refers you to the appropriate book in the TSO/E library for more information.

“Overview of TSO/E Programming Services” on page 4 describes the TSO/E
services documented in this book.

Programming Using TSO/E
You can write programs to run in the TSO/E environment and use the services
provided by TSO/E. Specific types of programs that run under TSO/E are CLISTs,
REXX execs, servers and command processors. These types of programs are
discussed in the following topics.

Writing CLISTs
The CLIST language is a high-level interpretive language that enables you to work
more efficiently with TSO/E. You can write programs, called CLISTs (or command
procedures), that perform given tasks or groups of tasks. CLISTs can handle any
number of tasks, from issuing multiple TSO/E commands to invoking programs
written in other languages.

© Copyright IBM Corp. 1988, 2002 1

Because the CLIST language is an interpretive language, CLISTs are easy to test
and do not require you to compile or link-edit them. To test a CLIST, you simply
execute it, correct any errors, and re-execute it.

The CLIST language supports a range of programming functions including:

v CLIST statements that allow you to write structured programs, perform I/O, define
and modify variables, and handle errors and attention interruptions.

v Arithmetic and logical operators for processing numeric data.

v String-handling functions for processing character data.

CLISTs can perform a range of tasks. For example,

v CLISTs can perform routine tasks, such as allocating data sets that are required
for particular programs.

v The CLIST language enables you to write structured applications by using
subprocedures within a CLIST, invoking other CLISTs, defining common data for
subprocedures and CLISTs, and passing parameters between CLISTs or
subprocedures.

CLISTs allow you to easily write interactive applications by issuing commands of
the Interactive System Productivity Facility (ISPF) to display full-screen panels.

v CLISTs can provide interfaces, which are easy to use, to applications written in
other languages. CLISTs can prompt terminal users for information on the tasks
they request, set up the environment needed for the application, and then issue
the commands needed to invoke the application program.

For information on creating, executing, and testing CLISTs, see z/OS TSO/E
CLISTs.

Writing REXX Execs
Restructured extended executor (REXX) is a high-level interpretive language that
enables you to write programs in a clear and structured way. You can write
programs in the REXX language, called execs, that perform given tasks or groups
of tasks.

REXX execs have many characteristics that are similar to CLISTs. For example,
using either the REXX or CLIST language, you can:

v Perform numerous tasks, including issuing multiple TSO/E commands and
invoking programs written in other languages.

v Write structured programs, perform I/O and process arithmetic and character
data.

v Write interactive applications by issuing commands of ISPF to display full-screen
panels.

v Provide easy-to-use interfaces to applications written in other languages. Execs
can prompt the terminal user for information on the tasks the user requests, set
up the environment needed for the application, and then issue the commands
needed to invoke the application program.

However, a significant difference between execs and CLISTs is that you can
execute CLISTs only in a TSO/E environment. REXX execs do not require a TSO/E
environment, and can execute in any MVS address space. In addition, you can use
the Systems Application Architecture (SAA) Procedures Language to write execs
that are system independent. The SAA Procedures Language, which is a subset of
the REXX language, enables you to write execs to run in multiple host
environments.

Programming Using TSO/E

2 z/OS V1R4.0 TSO/E Programming Services

TSO/E Release 3 extended the REXX language to provide host environments that
support the common programming interface (CPI) and LU 6.2-based APPC/MVS
callable services. Using these host environments, you can write a REXX exec to act
as an APPC/MVS transaction program or communicate with other APPC/MVS
transaction programs. Because these transaction programs can be used across
different machines, greater system connectivity is possible.

For information on writing and executing execs, see z/OS TSO/E User’s Guide and
z/OS TSO/E REXX Reference.

Writing Servers
The TSO/E Enhanced Connectivity Facility provides a standard way for application
programs to share services. With this facility, programs on properly-configured IBM
Personal Computers (PCs) can obtain services from programs on IBM host
computers running MVS. The PC programs issue service requests and the host
programs issue service replies, which the TSO/E Enhanced Connectivity Facility
passes between the systems.

The PC programs that issue service requests are called requesters, and the host
programs that issue replies are called servers. Servers can give PC requesters
access to host computer data, commands and resources such as printers and
storage. You can write servers to receive service requests, process the requests,
and return replies to the requester.

For information on how to write, install, test and debug a server program, see z/OS
TSO/E Guide to SRPI.

Writing Command Processors
TSO/E provides commands that you can use to perform a wide variety of tasks. For
example, you can use TSO/E commands to define and maintain data sets, and
write and test programs.

You can write command processors to replace or add to this set of commands. By
writing your own command processors, your installation can add to or modify
TSO/E to better suit the needs of its users.

A command processor is a program that receives control when a user at a terminal
enters a command name. It is given control by the terminal monitor program (TMP),
a program that provides an interface between terminal users and command
processors, and has access to many system services.

The main difference between command processors and other programs is that
when a command processor is invoked, it is passed a command processor
parameter list (CPPL) that gives the program access to information about the caller
and to system services.

Command processors must be able to communicate with the user at the terminal,
as well as respond to abnormal terminations and attention interruptions. Command
processors can recognize subcommand names entered by the terminal user and
then load and pass control to the appropriate subcommand processor.

You can use many of the services documented in this book to write a command
processor. For guidelines on how to write a command processor, what TSO/E
services to use, and how to test and install the command processor, see z/OS
TSO/E Programming Guide.

Programming Using TSO/E

Chapter 1. Introduction 3

Overview of TSO/E Programming Services
TSO/E provides various services that your programs can use to perform the tasks
described below. Table 1 summarizes the TSO/E services that are described in this
book. In addition to these services, TSO/E also provides REXX programming and
customization services you can use for REXX processing. These REXX services
are explained in z/OS TSO/E REXX Reference.

Table 1. Summary of TSO/E Services

Task Service Reference

Establishing a TSO/E environment
outside of the TSO/E TMP and
Service Routines

TSO/E environment service Chapter 3

Invoking TSO/E service routines CALLTSSR macro instruction Chapter 4

Checking the syntax of
subcommand names

Command scan service routine Chapter 5

Checking the syntax of command
and subcommand operands

Parse service routine Chapter 6

Controlling terminal functions and
attributes

Terminal control macro instructions Chapter 7

Processing terminal I/O BSAM and QSAM Chapter 8

TSO/E I/O service routines Chapter 9

TGET/TPUT/TPG macros Chapter 10

TSO/E Message Handling Routine Chapter 11

Handling attention interruptions STAX service routine Chapter 12

CLIST attention facility Chapter 13

Obtaining a list of data set names ICQGCL00 Chapter 14

Ensuring that data sets contain
enough space

Space management Chapter 15

Changing alternative library
environments

Alternative library interface routine Chapter 16

Allocating, concatenating and
freeing data sets

Dynamic allocation interface routine Chapter 17

Retrieving information from the
system catalog

Catalog information routine Chapter 18

Constructing a fully-qualified data
set name

Default service routine Chapter 19

Analyzing return codes DAIRFAIL Chapter 20

GNRLFAIL/VSAMFAIL Chapter 21

Searching lists of authorized
commands and programs as well
as commands not supported in the
background

Table look-up service Chapter 22

Invoking commands, CLISTs,
REXX execs and programs

TSO/E service facility Chapter 23

Accessing CLIST and REXX
variables

Variable access routine Chapter 24

Retrieving information from the
names directory

ICQCAL00 Chapter 25

Overview of TSO/E Programming Services

4 z/OS V1R4.0 TSO/E Programming Services

Table 1. Summary of TSO/E Services (continued)

Task Service Reference

Displaying printers Printer support CLISTs Chapter 26

Invoking Information Center Facility
applications

Application invocation function Chapter 27

Retrieving system messages
issued during a console session

GETMSG service Chapter 28

Using the Unauthorized Resource
Processor

IKJURPS service Chapter 29

Invoking TSO/E Service Routines
To pass control to certain TSO/E service routines, use the CALLTSSR macro
instruction. See Chapter 4, “Invoking TSO/E Service Routines with CALLTSSR” on
page 39.

Establishing a TSO/E Environment Outside of the TSO/E TMP and
Service Routines

You can establish a TSO/E environment outside of the TSO/E TMP and Service
Routines using the TSO/E environment service (IKJTSOEV). See Chapter 3, “Using
the TSO/E Environment Service IKJTSOEV” on page 21.

Checking the Syntax of Subcommand Names
Use the command scan service routine in your command processors to validate a
subcommand name. See Chapter 5, “Verifying Subcommand Names with IKJSCAN”
on page 41.

Checking the Syntax of Command and Subcommand Operands
Use the parse service routine to validate command or subcommand operands. See
Chapter 6, “Verifying Command and Subcommand Operands with Parse” on
page 51.

Communicating with the Terminal User
TSO/E provides several services to aid you in communicating with the terminal
user.

Controlling Terminal Functions and Attributes
Use the terminal control macro instructions to control terminal functions and
attributes, such as full-screen mode and terminal line size. See Chapter 7, “Using
the Terminal Control Macro Instructions” on page 159 for a description of each of
these macro macro instructions.

Processing Terminal I/O
TSO/E offers several services for use in processing terminal I/O and issuing
messages.

v Your programs can use the basic sequential access method (BSAM) and the
queued sequential access method (QSAM) to provide terminal I/O support. See
Chapter 8, “Using BSAM or QSAM for Terminal I/O” on page 185.

v You can use the TSO/E I/O service routines (STACK, GETLINE, PUTLINE and
PUTGET) in a command processor to control the source of input, and write a line
of output or obtain a line of input from the terminal. The I/O service routines can

Overview of TSO/E Programming Services

Chapter 1. Introduction 5

be used to issue messages to the terminal user. See Chapter 9, “Using the
TSO/E I/O Service Routines for Terminal I/O” on page 191.

v You can use the TGET/TPUT/TPG macro instructions to process terminal I/O in
any programs you write that run under TSO/E. See Chapter 10, “Using the
TGET/TPUT/TPG Macro Instructions for Terminal I/O” on page 285.

v Your command processors can use the TSO/E message issuer routine
(IKJEFF02) to issue messages to the terminal. See Chapter 11, “Using the
TSO/E Message Handling Routine IKJEFF02” on page 305.

Handling Attention Interruptions
Use the STAX service routine in a program to cause the system to recognize and
schedule an attention exit that receives control when an attention interruption
occurs. See Chapter 12, “Using the STAX Service Routine to Handle Attention
Interrupts” on page 317.

Use the CLIST attention facility in a program that processes a CLIST with a CLIST
attention exit. This facility allows a program to process the CLIST’s attention exit
when an attention interruption occurs. See Chapter 13, “Using the CLIST Attention
Facility” on page 325.

Processing Data Sets
TSO/E provides several services that your programs can use to process data sets.

Obtaining a List of Data Set Names
Use the TSO/E program (ICQGCL00) to obtain a list of data set names that match
specified criteria. See Chapter 14, “Obtaining a List of Data Set Names” on
page 329.

Ensuring that Data Sets Contain Sufficient Space
Use the space management CLIST (ICQSPC00) in your programs to ensure that a
specified data set has adequate free space for additional data. See Chapter 15,
“Using the Space Management CLIST ICQSPC00” on page 335.

Allocating, Concatenating and Freeing Data Sets
TSO/E provides the dynamic allocation interface routine (DAIR) to allocate, free,
concatenate and deconcatenate data sets during program execution. However,
because of the reduced function and additional system overhead associated with
DAIR, your programs should access dynamic allocation directly. This book
documents DAIR to provide compatibility for existing programs that use it. For a
complete discussion of dynamic allocation, see z/OS MVS Programming: Authorized
Assembler Services Guide. DAIR is discussed in Chapter 17, “Using the Dynamic
Allocation Interface Routine DAIR” on page 355.

Retrieving Information from the System Catalog
Use the catalog information routine (IKJEHCIR) to retrieve information from the
system catalog, such as data set name, index name, control volume address or
volume ID. See Chapter 18, “Using IKJEHCIR to Retrieve System Catalog
Information” on page 379.

Constructing a Fully-Qualified Data Set Name
Use the default service routine (IKJEHDEF) in your command processor to
construct a fully-qualified data set name when a partially-qualified data set name is
entered by a terminal user. See Chapter 19, “Constructing a Fully-Qualified Data
Set Name with IKJEHDEF” on page 385.

Overview of TSO/E Programming Services

6 z/OS V1R4.0 TSO/E Programming Services

Changing Alternative Library Environments
Use the alternative library interface routine (IKJADTAB) in an application program to
create and remove alternative library environments and to modify alternative library
definitions for CLIST and REXX libraries. See Chapter 16, “Using IKJADTAB to
Change Alternative Library Environments” on page 345.

Analyzing Return Codes
Use the DAIRFAIL routine (IKJEFF18) to analyze return codes from dynamic
allocation or DAIR and issue appropriate error messages. See Chapter 20, “Using
the DAIRFAIL Routine IKJEFF18” on page 391.

Use the GNRLFAIL/VSAMFAIL routine (IKJEFF19) to analyze VSAM macro
instruction failures, subsystem request failures, parse service routine or PUTLINE
failures, and ABEND codes, and issue an appropriate error message. See
Chapter 21, “Analyzing Error Conditions with GNRLFAIL/VSAMFAIL” on page 395.

Searching System Lists
Use the table look-up service (IKJTBLS) to determine if the name of a command or
program is present in one of the following lists:

v Names of authorized command processors that the terminal monitor program
executes.

v Names of authorized programs that the CALL command executes.

v Names of authorized programs that can be invoked by the TSO/E service facility
(IKJEFTSR).

v Names of commands not supported in the background.

See Chapter 22, “Using the Table Look-up Service IKJTBLS” on page 399.

Invoking Commands, CLISTs, REXX Execs and Programs
Use the TSO/E service facility routine, IKJEFTSR, to invoke programs, commands,
CLISTs, and REXX execs. The TSO/E service facility allows an unauthorized
program to invoke functions that are authorized. Use the TSO/E service facility
initialization routine (IKJEFTSI) to create a command invocation platform
environment for certain unauthorized commands. TSO/E Release 3 offered
extended platform support, in which you can invoke authorized commands and
authorized and unauthorized programs on a command/program invocation platform.
Use the TSO/E service facility termination routine, IKJEFTST, to clean up resources
allocated to the command or command/program invocation platform environment.
See Chapter 23, “Using the TSO/E Service Facility IKJEFTSR” on page 405.

Accessing CLIST and REXX Variables
Use the variable access routine (IKJCT441) in your programs to update, create, and
return the values of CLIST and REXX variables when running in a TSO/E
environment. TSO/E also provides the REXX variable access routine (IRXEXCOM)
that lets unauthorized programs and commands access REXX variables from a
REXX language processor environment running in any MVS address space. For
more information about using IKJCT441, see Chapter 24, “Using the Variable
Access Routine IKJCT441” on page 459. For more information about using
IRXEXCOM, see z/OS TSO/E REXX Reference.

Overview of TSO/E Programming Services

Chapter 1. Introduction 7

Retrieving Information from the Names Directory
Use the TSO/E program (ICQCAL00) to search the Information Center Facility’s
name directory and retrieve information such as phone numbers, user IDs and
addresses for specified names. See Chapter 25, “Accessing the Information Center
Facility Names Directory” on page 483.

Displaying Printers for Selection by the User
Use the TSO/E printer support CLISTs to display lists of printers for users to select
and to print data sets on selected printers. See Chapter 26, “Using the Printer
Support CLISTs” on page 497.

Invoking an Information Center Facility Application
Use the application invocation function, ICQAMLI0, to invoke an application that is
defined to the Information Center Facility. See Chapter 27, “Invoking an Information
Center Facility Application” on page 531.

Retrieving System Messages Issued during a Console Session
Use the GETMSG service to retrieve solicited messages (responses to system
commands) and unsolicited messages issued during a console session. See
Chapter 28, “Using the GETMSG Service” on page 535.

Coding the Macro Instructions
The following paragraphs describe the notation used to define the macro syntax in
this publication.

1. The set of symbols listed below are used to define macro instructions, but
should never be written in the actual macro instruction:
hyphen -
underscore _
braces { }
brackets []
ellipsis . . .

The special uses of these symbols are explained in paragraphs 4-8.

2. Uppercase letters and words, numbers, and the set of symbols listed below
should be written in macro instructions exactly as shown in the definition:
apostrophe ’
asterisk *
comma ,
equal sign =
parentheses ()
period .

3. Lowercase letters, words, and symbols appearing in a macro instruction
definition represent variables for which specific information should be substituted
in the actual macro instruction.

Example: If name appears in a macro instruction definition, a specific value (for
example, ALPHA) should be substituted for the variable in the actual macro
instruction.

4. Hyphens join lowercase letters, words, and symbols to form a single variable.

Example: If member-name appears in a macro instruction definition, a specific
value (for example, BETA) should be substituted for the variable in the actual
macro instruction.

Overview of TSO/E Programming Services

8 z/OS V1R4.0 TSO/E Programming Services

5. An underscore indicates a default option. If an underscored alternative is
selected, it need not be written in the actual macro instruction.

Example: The representation
A {A}
B or {B}
C {C}

indicates that either A or B or C should be selected; however, if B is selected, it
need not be written because it is the default option.

6. Braces group related items, such as alternatives.

Example: The representation
{A}

ALPHA=({B},D)
{C}

indicates that a choice should be made among the items enclosed within the
braces. If A is selected, the result is ALPHA=(A,D). If B is selected, the result
can be either ALPHA=(,D) or ALPHA=(B,D).

7. Brackets also group related items; however, everything within the brackets is
optional and may be omitted.

Example: The representation
[A]

ALPHA=([B],D)
[C]

indicates that a choice can be made among the items enclosed within the
brackets or that the items within the brackets can be omitted. If B is selected,
the result is: ALPHA=(B,D). If no choice is made, the result is: ALPHA=(,D).

8. An ellipsis indicates that the preceding item or group of items can be repeated
more than once in succession.

Example: The representation
ALPHA[,BETA]...

indicates that ALPHA can appear alone or can be followed by ,BETA any
number of times in succession.

Note: To designate register 0 and register 1 on a macro invocation, use (0) and
(1), respectively. You cannot use a symbolic variable to designate these
registers.

Coding the Macro Instructions

Chapter 1. Introduction 9

Coding the Macro Instructions

10 z/OS V1R4.0 TSO/E Programming Services

Chapter 2. Considerations for Using TSO/E Services

Determining the Version and Release of TSO/E Installed 11
Programming Considerations for MVS/ESA SP 11

General Interface Considerations 12
Interface Considerations for the TSO/E Service Routines 13
Summary of Macro Interfaces 14

Interfacing with the TSO/E Service Routines 16
The Command Processor Parameter List 16
Services that Access Data in the CPPL 19

This chapter discusses considerations for using the services documented in this
manual.

Determining the Version and Release of TSO/E Installed
Sometimes you need to know which version and release of TSO/E is installed to
determine if a particular function is present on your system. By knowing the version
and release of TSO/E, you can decide whether to use the available functions or
services in your application programs.

An indication of the version and release of TSO/E installed is stored in a field
(TSVTTSOL) in the TSO/E vector table (TSVT). The TSVT is a control block
pointed to by the communications vector table (CVT). TSVTTSOL is a four-byte
EBCDIC field that contains the TSO/E version and release information in the
following format:

Offset
Dec(Hex)

Number of
Bytes

Contents or Meaning

0(0) 1 Version level
1(1) 2 Release number
3(3) 1 Modification level

If you are using a CLIST application, the CLIST control variable &SYSTSOE
contains the TSO/E version and release information.

In a REXX exec, use the TSO/E SYSVAR external function with the variable
SYSTSOE to obtain the TSO/E version and release information.

Programming Considerations for MVS/ESA SP
This topic discusses considerations for MVS/ESA SP that you should be aware of
when writing a command processor or using the services documented in this book.
You should be familiar with the publications that describe comprehensive
programming considerations for MVS/ESA SP as well as with those that describe
the routines and macros discussed in this manual. Interfaces for service routines
and macro instructions mentioned in this topic are covered in more detail in the
chapters of this manual describing the individual service routines and macro
instructions.

© Copyright IBM Corp. 1988, 2002 11

General Interface Considerations
The interfaces described in this section reflect what is possible for programs to do
on an MVS/ESA SP system. When determining the attributes and linkage
conventions for a program, analyze the program’s individual interfaces and its
overall interactions with other programs. This topic provides general guidelines for
making these determinations.

You need to consider addressing modes, address space control (ASC) modes, and
program residency when determining linkage conventions. See “Interface
Considerations for the TSO/E Service Routines” on page 13 for brief descriptions of
those considerations for the service routines and macro instructions described in
this manual.

When making linkage decisions, you should consider:
v Who passes control to whom
v Whether return is desired
v AMODE and RMODE attributes
v Address space control mode attributes.

The following discussion provides a general description of ASC mode, AMODE and
RMODE attributes. For a detailed description of ASC mode considerations, see
z/OS MVS Programming: Extended Addressability Guide. For a detailed description
of 31-bit addressing, see z/OS MVS Programming: Assembler Services Guide.

AR Mode
Access register (AR) mode is the address space control (ASC) mode in which a
general register and the corresponding access register (AR) are used together to
locate an address in an address/data space. Specifically, the general register is
used as a base register for data reference and the corresponding AR contains a
value that identifies the address/data space that contains the data.

Primary Mode
Primary mode is the address space control (ASC) mode in which only a general
register is used to locate an address in an address space. In primary mode, the
contents of the access registers (ARs) are ignored.

AMODE=24, RMODE=24
Programs with these attributes must receive control in 24-bit addressing mode, and
are loaded below 16 MB in virtual storage.

If you do not assign AMODE and RMODE attributes to a program, the attributes
default to AMODE=24 and RMODE=24. Most IBM-supplied command processors
have these attributes and are loaded below 16 MB in virtual storage.

AMODE=ANY, RMODE=24
AMODE=ANY indicates that a program must receive control in the addressing mode
of the program that invoked it. Note that a program with the AMODE=ANY attribute
might have to switch addressing modes for certain processing. However, such a
program must switch back to the addressing mode in which it received control
before returning to the caller.

AMODE=ANY programs must be given the RMODE=24 attribute.

AMODE=ANY does not indicate whether the program should be passed input that
resides below 16 MB in virtual storage; the particular interfaces should be analyzed
to determine where input can reside. However, a program should meet certain

Programming Considerations for MVS/ESA SP

12 z/OS V1R4.0 TSO/E Programming Services

criteria to be assigned the AMODE=ANY attribute. For a description of the criteria,
see z/OS MVS Programming: Assembler Services Guide.

AMODE=31
AMODE=31 indicates that a program must receive control in 31-bit addressing
mode. Such a program can have the RMODE=24 or RMODE=ANY attribute,
depending on its residency requirements. Regardless of the program’s RMODE
attribute, the residency of its input depends on the program’s requirements. The
program might require that some of its input reside below 16 MB in virtual storage,
while other input might reside anywhere.

A program that runs exclusively in 31-bit addressing mode (AMODE=31) can do so
provided it complies with the restrictions for invoking, and being invoked by,
programs that run in 24-bit addressing mode (AMODE=24 or AMODE=ANY).

For more information on the AMODE=31 attribute, see z/OS MVS Programming:
Assembler Services Guide.

Interface Considerations for the TSO/E Service Routines
All TSO/E service routines documented in this book must receive control in primary
address space control mode. These service routines return control in primary mode.

User-written command processors can execute in either 24-bit or 31-bit addressing
mode provided they follow the restrictions involved in invoking programs that have
24-bit dependencies. When assigned the AMODE=31 attribute, they can be loaded
above 16 MB in virtual storage (RMODE=ANY), and passed input that resides
above 16 MB.

The command processor parameter list (CPPL), which contains certain addresses
required as input to the TSO/E service routines, resides below 16 MB in virtual
storage. Refer to “Interfacing with the TSO/E Service Routines” on page 16 for more
information on the CPPL.

Table 2 shows the interface considerations for the TSO/E service routines.

Table 2. Interface Considerations for TSO/E Service Routines

Service Routine Entry Point Name Interface Considerations

Catalog information routine
Default service routine

IKJEHCIR
IKJEHDEF

These routines can be invoked in either 24- or 31-bit
addressing mode, but all input passed to these
routines must reside below 16 MB in virtual storage.

These routines return control in the same addressing
mode in which they are invoked.

Dynamic allocation interface routine
DAIRFAIL
GNRLFAIL/VSAMFAIL
TSO/E service facility routine

IKJDAIR
IKJEFF18
IKJEFF19
IKJEFTSR

These service routines can be invoked in either 24-
or 31-bit addressing mode. When invoked in 31-bit
addressing mode, these routines can be passed input
that resides above 16 MB in virtual storage.

These routines return control in the same addressing
mode in which they are invoked.

Programming Considerations for MVS/ESA SP

Chapter 2. Considerations for Using TSO/E Services 13

Table 2. Interface Considerations for TSO/E Service Routines (continued)

Service Routine Entry Point Name Interface Considerations

TSO/E message issuer routine
GETLINE service routine
Parse service routine
PUTGET service routine
PUTLINE service routine
Command scan service routine
STACK service routine
Variable access routine
Table look-up service

IKJEFF02
IKJGETL
IKJPARS
IKJPTGT
IKJPUTL
IKJSCAN
IKJSTCK
IKJCT441
IKJTBLS

These service routines can be invoked in either 24-bit
or 31-bit addressing mode. They can accept input
above or below 16 MB in virtual storage.

These routines return control in the same addressing
mode in which they are invoked.

Alternative library interface routine
GETMSG service routine
TSO/E service facility routines

TSO/E environment service routine

IKJADTAB
GETMSG
IKJEFTSI
IKJEFTST
IKJTSOEV

These service routines must be invoked in 31-bit
addressing mode, and can accept input above or
below 16 MB in virtual storage.

These routines return control in 31-bit addressing
mode.

Invoking the TSO/E Service Routines
You can use either the LINK or the LOAD macro instructions to pass control to the
TSO/E service routines.

The LINK macro instruction loads the routine into storage based on the routine’s
RMODE attribute. The LINK macro instruction passes control to the routine in the
addressing mode specified or allowed by its AMODE attribute.

The LOAD macro instruction loads the routine into storage based on the routine’s
RMODE attribute. Because the LOAD macro instruction loads a program but does
not invoke it, you must do branches to the loaded routine. LOAD returns the
address of the loaded program where the high-order bit of this address reflects the
AMODE attribute of the loaded program. If the loaded program should not be
invoked in the current addressing mode, the BASSM or BSM instruction can be
used to set the appropriate addressing mode. If you use BASSM or BSM, you
should ensure that the invoked program can return successfully.

Summary of Macro Interfaces
Table 3 shows the MVS programming rules for using the macros described in this
manual.

In Table 3, a dash (-) indicates that the category does not apply to the macro
because the macro does not generate executable code. The addressing mode of
the program that accesses the data generated by the macro must agree with the
residence of the data.

Table 3. MVS Interface Rules for Using Macro Instructions

Macro (X) May Be Issued In (P) May Be Issued by a Program
(I) Input May Be

24-Bit Mode 31-Bit Mode Below 16MB Above 16MB

CALLTSSR X X P P

GETLINE X X I,P I,P

GTSIZE X X P P

GTTERM X P

IKJENDP - - P P

Programming Considerations for MVS/ESA SP

14 z/OS V1R4.0 TSO/E Programming Services

Table 3. MVS Interface Rules for Using Macro Instructions (continued)

Macro (X) May Be Issued In (P) May Be Issued by a Program
(I) Input May Be

24-Bit Mode 31-Bit Mode Below 16MB Above 16MB

IKJIDENT - - P P

IKJKEYWD - - P P

IKJNAME - - P P

IKJOPER - - P P

IKJPARM - - P P

IKJPOSIT - - P P

IKJRLSA X X P P

IKJRSVWD - - P P

IKJSUBF - - P P

IKJTERM - - P P

IKJUNFLD - - P P

IKJTSMSG - - P P

PUTGET X X I,P I,P

PUTLINE X X I,P I,P

RTAUTOPT X X P P

SPAUTOPT X X P P

STACK X X I,P I,P

STATTN X I,P

STAUTOCP X X P P

STAUTOLN X I,P

STAX X X I,P See Chapter 12

STBREAK X I,P

STCC X I,P

STCLEAR X I,P

STCOM X I,P

STFSMODE X I,P

STLINENO X I,P

STSIZE X I,P

STTIMEOU X I,P

STTMPMD X I,P

STTRAN X I,P

TCLEARQ X I,P

TGET X X I,P

TPG X X I,P

TPUT X X I,P

Programming Considerations for MVS/ESA SP

Chapter 2. Considerations for Using TSO/E Services 15

Table 3. MVS Interface Rules for Using Macro Instructions (continued)

Macro (X) May Be Issued In (P) May Be Issued by a Program
(I) Input May Be

24-Bit Mode 31-Bit Mode Below 16MB Above 16MB

Notes:

CALLTSSR
The CALLTSSR macro instruction can be issued in either 24-bit or 31-bit addressing mode. See Chapter 4,
“Invoking TSO/E Service Routines with CALLTSSR” on page 39 for more information on issuing the CALLTSSR
macro.

GETLINE, PUTGET, PUTLINE, STACK
The GETLINE, PUTGET, PUTLINE, and STACK macros can be issued in either 24-bit or 31-bit addressing
mode. These routines return control in the same addressing mode in which they are invoked. Input passed to
these routines can reside above or below 16 MB in virtual storage. However, if you use the STACK macro, the
list source descriptor (LSD) must reside below 16 MB.

IKJTSMSG
The IKJTSMSG macro can be issued by a program loaded below or above 16 MB in virtual storage. Refer to
Chapter 11, “Using the TSO/E Message Handling Routine IKJEFF02” on page 305 for a description of the
standard and extended formats of the input parameter list for IKJEFF02.

If the parse service routine is invoked in 31-bit addressing mode, the parse parameter list, mapped by IKJPPL,
can reside above 16 MB in virtual storage and the parse macro instructions can be issued by a program loaded
above 16 MB. See above for a list of the parse macros and their linkage requirements. The IKJRLSA parse
macro can be issued in either 24- or 31-bit addressing mode.

STAX
A program can issue the STAX macro in either 24- or 31-bit addressing mode. Refer to Chapter 12, “Using the
STAX Service Routine to Handle Attention Interrupts” on page 317 for specific restrictions.

TGET, TPUT, TPG
The TGET, TPUT, and TPG macros can be issued in either 24- or 31-bit addressing mode. All input passed to
them must reside below 16 MB in virtual storage.

Terminal Control Macros
With a few exceptions, terminal control macros must be issued in 24-bit addressing mode. The exceptions are
the GTSIZE, RTAUTOPT, SPAUTOPT, and STAUTOCP terminal control macros, which can be issued in 31-bit
addressing mode. See above for a list of the terminal control macros and their linkage requirements.

Interfacing with the TSO/E Service Routines
When you invoke the TSO/E service routines from a program running in a TSO/E
environment, your program must pass to the service certain addresses contained in
the command processor parameter list (CPPL).

The Command Processor Parameter List
The command processor parameter list (CPPL) is a 4-word parameter list. When
the TSO/E TMP attaches a command processor, it creates a CPPL in subpool 1
and passes the address of the CPPL to the command processor in register 1. The
TSO/E TMP shares subpool 78 with the command processor, but it does not share
subpool 0. In turn, the command processor or program must share subpool 78 with
any lower-level tasks.

Notes:

1. Programs that use the TSO/E environment service to establish a TSO/E
environment should share subpool 78 with any commands or programs that
they invoke.

Programming Considerations for MVS/ESA SP

16 z/OS V1R4.0 TSO/E Programming Services

2. The TSO/E environment service returns the address of a command processor
parameter list to programs that specify the CPPL address parameter.

3. A program running under the TSO/E TMP and Service Routines cannot invoke
the TSO/E environment service.

The interface between the TMP and an attached command processor is shown in
Figure 1.

The interface between the TSO/E environment service and a calling program is
shown in Figure 2 on page 18.

Terminal
Monitor
Program

Command
Processor

Register 1

CPPL

ATTACH

Figure 1. Interface Between the TMP and a Command Processor

Interfacing with the TSO/E Service Routines

Chapter 2. Considerations for Using TSO/E Services 17

You can use the IKJCPPL DSECT, which is provided in SYS1.MACLIB, to map the
fields in the CPPL. Use the address contained in register 1 as the starting address
for the DSECT, and then reference the symbolic field names within the IKJCPPL
DSECT to access the fields in the CPPL. The use of the DSECT is recommended
because it protects the command processor from any changes to the CPPL. Table 4
describes the contents of the CPPL.

Table 4. The Command Processor Parameter List (CPPL)

Number of
Bytes

Field Name Contents or Meaning

4 CPPLCBUF The address of the command buffer for the currently
attached command processor.

4 CPPLUPT The address of the user profile table (UPT). Use the
IKJUPT mapping macro, which is provided in
SYS1.MACLIB, to map the fields in the UPT.

4 CPPLPSCB The address of the protected step control block (PSCB).
Use the IKJPSCB mapping macro, which is provided in
SYS1.MACLIB, to map the fields in the PSCB.

4 CPPLECT The address of the environment control table (ECT). Use
the IKJECT mapping macro, which is provided in
SYS1.MACLIB, to map the fields in the ECT.

Application
Program

CALL

Register 1-Parameter List Address (optional)

TSO/E
Environment

Service

•

•

Parameter
List

CPPL

Parameter 5

Figure 2. Control Block Interface Between the TSO/E Environment Service and a Calling Program

Interfacing with the TSO/E Service Routines

18 z/OS V1R4.0 TSO/E Programming Services

Services that Access Data in the CPPL
When you invoke any of the following TSO/E service routines from your program,
you must pass certain addresses contained in the CPPL as input:
IKJDAIR Dynamic allocation interface routine
IKJEFF02 TSO/E message issuer routine
IKJEFF18 DAIRFAIL
IKJEFF19 GNRLFAIL/VSAMFAIL
IKJGETL GETLINE service routine
IKJEHDEF Default service routine
IKJPARS Parse service routine
IKJPTGT PUTGET service routine
IKJPUTL PUTLINE service routine
IKJSCAN Command scan service routine
IKJSTCK STACK service routine

Information concerning the input to the TSO/E service routines is discussed in more
detail in the chapters of this manual describing the individual service routines.

Interfacing with the TSO/E Service Routines

Chapter 2. Considerations for Using TSO/E Services 19

Interfacing with the TSO/E Service Routines

20 z/OS V1R4.0 TSO/E Programming Services

Chapter 3. Using the TSO/E Environment Service IKJTSOEV

Overview of the TSO/E Environment Service 21
When You Should Use the TSO/E Environment Service 22
Function of the TSO/E Environment Service 22

TSO/E Environment Initialization — Inside IKJTSOEV 23
Capabilities Available After Initialization 23
Job Step Termination . 24
Restrictions and Limitations on the Use of TSO/E Services 24

Summary of TSO/E Services Available Under IKJTSOEV 25
Syntax and Parameter Descriptions 26
Invoking the TSO/E Environment Service 27

Requirements and Restrictions for Invoking the TSO/E Environment Service 27
Return and Reason Codes from the TSO/E Environment Service 28
Examples Using the TSO/E Environment Service 30

COBOL . 30
Assembler . 34
JCL for COBOL and Assembler Program Invocation 37

This chapter describes how and when to use the TSO/E environment service, the
major benefits of using this service, its functions and limitations, and the
preconditions necessary to use it.

Overview of the TSO/E Environment Service
Chapter 2, “Considerations for Using TSO/E Services” on page 11 describes
considerations for invoking TSO/E service routines from a command processor
under the control of the TSO/E TMP and Service Routines. In some situations, you
may wish to invoke TSO/E services outside of the TSO/E TMP and Service
Routines. For example, in a VTAM application, you might wish to execute TSO/E
CLISTs or REXX execs without the overhead of establishing a TSO/E session for
each invocation. The TSO/E environment service (IKJTSOEV) builds and initializes
a TSO/E environment, which enables you to invoke common TSO/E programming
services outside of the TSO/E TMP and Service Routines.

The TSO/E environment service offers a number of performance benefits. First of
all, performance is improved because you do not execute the TSO/E TMP and
Service Routines. Instead, your application directly invokes TSO/E services and
facilities, allowing you to fine tune your application to meet the needs of your
installation. Also, you can take advantage of the benefits of APPC/MVS. For
example, you can establish a link from your personal computer or workstation to
TSO/E through your MVS application. For more information on writing APPC/MVS
application programs, see z/OS MVS Programming: Writing Transaction Programs
for APPC/MVS.

You can call the TSO/E environment service directly from an application program. It
then becomes an integral part of your application, allowing you to access TSO/E
services without logging on TSO/E. You can also invoke the service from a
high-level language program, aiding program development and maintenance.

© Copyright IBM Corp. 1988, 2002 21

When You Should Use the TSO/E Environment Service
The TSO/E environment service offers an efficient alternative to the TSO/E TMP
and Service Routines environment for MVS applications that use TSO/E services.
By taking advantage of its ease of use and performance benefits, you can modify or
create application interfaces to TSO/E that range from the invocation of a single
TSO/E command or CLIST to a more generic TSO/E command processor. You
should use the TSO/E environment service in MVS applications that require basic
TSO/E services without TSO/E TMP support.

v Developing TSO/E Applications Outside of the TMP:

Use the TSO/E environment service in developing applications that run outside of
the TSO/E TMP and Service Routines. For example, if you want your batch
program to use TSO/E dynamic allocation services, you can submit the program
as an MVS batch job outside of the TSO/E TMP and Service Routines and use
the TSO/E environment service to access dynamic allocation routines. You can
also use TSO/E services from interactive VTAM applications. Using TSO/E
services (for example, parsing and syntax checking), you can design an efficient
terminal monitor that is tailored to your specific application.

v Establishing a Common TSO/E Interface:

Use the TSO/E environment service to provide a common interface across
multiple applications. For example, after calling the TSO/E environment service,
you can use the TSO/E service facility to invoke TSO/E commands, CLISTs, or
REXX execs. As a result, you can develop functions that are shared across
applications.

v Accessing TSO/E Services From Other Environments:

Use the TSO/E environment service as a bridge to TSO/E from other application
platforms in your installation. For example, you can integrate TSO/E services into
your personal computer or workstation applications using an APPC/MVS
application as a front-end processor. The TSO/E environment service can be
invoked from standard transaction programs scheduled by the APPC/MVS
transaction scheduler. The TSO/E environment service can also be invoked from
multi-trans (multiple transaction) transaction programs; however, a number of
restrictions can apply. Refer to “Multi-trans Transaction Program Limitations” on
page 25 for an explanation of these restrictions.

The TSO/E environment service is not a replacement for the TSO/E TMP and
Service Routines environment. In situations where your application itself must run
under TSO/E, IKJTSOEV is not appropriate. For example, if your program uses
ISPF Dialog Manager display services, you should continue to use a standard
interactive TSO/E session. ISPF facilities such as these are also designed to make
TSO/E application development simple and efficient.

Function of the TSO/E Environment Service
The TSO/E environment service builds and initializes a TSO/E environment outside
of the TSO/E TMP and Service Routines. The TSO/E environment provides access
to common TSO/E programming services. This section discusses the function of the
TSO/E environment service and the particular services that are available.

The TSO/E environment service establishes a TSO/E environment in background
mode, where input is from an alternate input source, such as a data set. Unlike the
TSO/E TMP and Service Routines environment, which may attach a command
processor, you invoke the TSO/E environment service from your program, which

When You Should Use the TSO/E Environment Service

22 z/OS V1R4.0 TSO/E Programming Services

then acts like a command processor. Your program can then issue TSO/E services
and macros that use the TSO/E environment.

TSO/E Environment Initialization — Inside IKJTSOEV
The TSO/E environment is initialized to indicate that SYSTSIN is the current input
source and SYSTSPRT is the current output source. The TSO/E environment
service uses existing allocations for the SYSTSIN and SYSTSPRT files if you have
allocated them. Otherwise, it allocates them as DUMMY data sets. You must
allocate SYSTSPRT and SYSTSIN correctly and ensure that they are closed upon
entry to IKJTSOEV. During initialization, the TSO/E environment service opens
SYSTSIN and SYSTSPRT, but it does not read from the SYSTSIN file or process
any command input.

Notes:

1. The TSO/E environment service associates the TSO/E environment with the
highest jobstep task in the calling program’s address space.

2. The TSO/E environment service establishes a REXX language processor
environment that is associated with the task from which you invoked IKJTSOEV.

3. Any jobstep tasks that your application creates must use the same jobstep
control block (JSCB). If your program attaches a new jobstep task with a
different JSCB after the TSO/E environment is created, the new task cannot
invoke TSO/E services.

4. You may specify a user ID through the USER parameter of the JCL that you
use to start your application. In your application, the user ID is available in the
PSCBUSER field in the PSCB.

5. The TCB key (TCBPKF) of the task under which the caller of the TSO/E
environment service runs must match the TCB key of the highest non-system
jobstep task in the address space. If the keys do not match, return code 40
(decimal) is returned, along with an indication of the mismatched keys in
register 0.

Capabilities Available After Initialization
After successful execution of IKJTSOEV, SYSTSIN and SYSTSPRT are open for
processing. At this point, the calling program performs like a command processor
under the TSO/E TMP and Service Routines; parameter 5 contains the address of
the command processor parameter list (CPPL). Your program can issue TSO/E
service calls and macros that use the TSO/E environment.

For example, you can use the TSO/E environment service to process a TSO/E
CLIST or REXX exec through an input file. Use the GETLINE macro (see
Chapter 9, “Using the TSO/E I/O Service Routines for Terminal I/O” on page 191) to
read the command line from the current input source. Then you can parse the input
using the PARSE command (see Chapter 6, “Verifying Command and Subcommand
Operands with Parse” on page 51) and execute the parsed command through the
TSO/E service facility (IKJEFTSR). TSO/E writes the results of the invocation to the
current output file.

Some restrictions apply to the use of TSO/E services in the environment created by
IKJTSOEV (see “Requirements and Restrictions for Invoking the TSO/E
Environment Service” on page 27). For more information about TSO/E service
routines, see Chapter 2, “Considerations for Using TSO/E Services” on page 11.

Function of the TSO/E Environment Service

Chapter 3. Using the TSO/E Environment Service IKJTSOEV 23

Job Step Termination
When the jobstep task with which the TSO/E environment is associated terminates,
termination services releases the TSO/E environment automatically. This frees
resources that the TSO/E environment service acquired during initialization,
including TSO/E files and the REXX language processor environment (which is
freed automatically at the end of the task under which it was initialized).

Restrictions and Limitations on the Use of TSO/E Services
Some restrictions apply to the use of services in the TSO/E environment that
IKJTSOEV creates. These restrictions result from task structure and background
mode limitations inherent in the environment that the TSO/E environment service
establishes.

Task Structure Limitations
The TSO/E environment service creates a TSO/E environment with which an
application can efficiently use some TSO/E services outside of the TSO/E TMP and
Service Routines; it does not create the TSO/E task structure that is required by
some commands and programs. The commands and programs that require the
TSO/E task structure include foreground initiated background commands
(commands that control batch job activity), those that are run through the TSO/E
service facility in an authorized state, and those authorized during TSO/E system
generation using the AUTHCMD, AUTHPGM, and AUTHTSF statements in
SYS1.PARMLIB, member IKJTSOxx. For more information on foreground initiated
background commands, see z/OS TSO/E Command Reference. For more
information on authorizing programs using SYS1.PARMLIB, see z/OS TSO/E
Customization.

Further, it should be noted that the TSO/E environment service treats some control
blocks differently than the TSO/E TMP and Service Routines do. This leads to
restrictions on the use of MVS services that depend on the contents of these
control blocks. For example, the protected step control block PSCB is initialized
differently by the TSO/E environment service, which restricts the dynamic allocation
(SVC 99) of internal readers while the TSO/E environment service is active.
Nevertheless it is possible to overcome some of these limitations, the user should
keep in mind the intended use of the TSO/E environment service; see also
“Summary of TSO/E Services Available Under IKJTSOEV” on page 25.

TCB Key Limitations
The system establishes a TSO/E environment in the TCB key of the caller of
IKJTSOEV. Programs that use TSO/E services in that environment must be in the
same TCB key as the caller of IKJTSOEV.

Background Mode Limitations
IKJTSOEV sets up the TSO/E environment in background mode; command
invocation is identical to background processing under the TSO/E batch facility.
Therefore, batch facility conventions and restrictions for prompting and command
usage apply. The TSO/E environment established by IKJTSOEV will only use
default authority attributes for the protected step control block (PSCB) and the user
profile table (UPT). For more information on TSO/E background processing, see
z/OS TSO/E Command Reference, particularly, the PROFILE command.

Background mode does not support TSO/E services that perform full- screen
terminal I/O using the TPUT, TGET, and TPG macros. It does support supervisor
and inter-user communication among terminals using TPUT with the ASID,

Function of the TSO/E Environment Service

24 z/OS V1R4.0 TSO/E Programming Services

ASIDLOC, or USERIDL parameters. The ISPF Dialog Manager display facilities
cannot be used, because they perform full- screen terminal I/O at the user’s
terminal.

Multi-trans Transaction Program Limitations
The TSO/E environment service can be invoked from standard transaction
programs (TPs) scheduled by the APPC/MVS transaction scheduler. It can also be
invoked from multi-trans TPs; however, there are some cases in which certain
restrictions apply when the TSO/E environment service is invoked from multi-trans
TPs. When a multi-trans TP invokes the TSO/E environment service and processes
inbound work requests on behalf of only the generic user ID, no restrictions apply.
When a multi-trans TP processes multiple userids under a single TSO/E
environment, that is, a multi-trans TP invokes the TSO/E environment service from
the multi-trans TP shell and processes inbound work requests on behalf of multiple
user IDs, the following restrictions apply:

v TSO/E builds the TSO/E environment personalized to the generic user ID.

v TSO/E does not personalize the TSO/E environment for the other user IDs.

These restrictions have an affect on any program(s) that use fields associated with
user ID information in the following TSO/E control blocks: PSCB, UPT, ECT, and
ENVBLOCK. Programs, which use fields in those TSO/E control blocks associated
with the generic user ID and are invoked by multi-trans TPs processing inbound
work requests on behalf of multiple user IDs, might be subject to the above
restriction, and the functions of these programs might be affected. Some of the
TSO/E information and functions affected by these restrictions are described below:

v The PROFILE command settings associated with the generic user ID are initially
used for all user IDs. Subsequent invocations of the PROFILE command reset
the settings associated with the generic user ID and are used until they are reset.
Refer to z/OS TSO/E Command Reference for the details about the PROFILE
command settings.

v Attributes associated with the generic user ID’s user definition are used for all
user IDs. Some of these attributes are described below:

– The default job class, output class, and held class for the SUBMITted jobs
defined for the generic user ID are used for all user IDs.

– The generic user ID’s authorization to use the OPERATOR, ACCOUNT and
CONSOLE commands will be used for all user IDs. Refer to z/OS TSO/E
Administration for further information about “user definitions” and the details of
these TSO/E functions.

– The REXX environment settings associated with the generic user ID, for
example, the language set by SETLANG, are used by all user IDs. The
SYSUID variable is set to the generic user ID and the built-in function,
USERID, returns the generic user ID. Refer to z/OS TSO/E REXX Reference
for the details of these environment settings.

Summary of TSO/E Services Available Under IKJTSOEV
Table 5 on page 26 summarizes the availability of functions under the TSO/E
environment service.

Function of the TSO/E Environment Service

Chapter 3. Using the TSO/E Environment Service IKJTSOEV 25

Table 5. Summary of TSO/E Service Availability Under IKJTSOEV

Type of Service/Facility Name of Service/Facility Supported

Command Invocation IKJSCAN - Command Scan Service
IKJPARS - Parse Service
IKJTBLS - Table Look-up Service
IKJEFTSR - TSO/E service facility
(Non-authorized invocations only)

Yes
Yes
Yes
Yes

Data Set and File I/O IKJADTAB - Alternative Library Interface
DAIR - Dynamic Allocation Interface
DAIRFAIL - Dynamic Allocation Diagnostics
GNRLFAIL/VSAMFAIL - VSAM Diagnostics
STACK Macro - I/O stack handling PUTLINE,

GETLINE, and PUTGET macros

Yes
Yes
Yes
Yes
Yes
Yes

Foreground Initiated
Background Commands

SUBMIT, OUTPUT, CANCEL, STATUS, CONSOLE, and
ALLOCATE ALTFILE

No

TSO/E Pgm. Debugging TSO/E TEST Command No

Session Manager Facilities SMCOPY
All Other Session Manager Facilities

Yes
No

System Information IKJEHCIR - Catalog Information Routine
ICQGCL00 - Data Set List Routine
IKJEHDEF - Default Service Routine
ICQAML10 - Names Facility
IKJEFF02 - Message Handling Routine
IKJCT441 - Variable Access Routine

Yes
Yes
Yes
Yes
Yes
Yes

Terminal Attention STAX Service Routine
CLIST Attention Facility

Yes
Yes

Terminal I/O QSAM and BSAM Macros
TPUT, TGET, TPG - Full-screen I/O
TPUT - Supervisor and inter-user

communication

Yes
No
Yes

Syntax and Parameter Descriptions

IKJTSOEV supports five optional parameters. The parameters are positional and
follow standard parameter passing conventions (see z/Architecture Principles of
Operation). In assembler language, the high-order bit of the last specified parameter
must be set to 1 to indicate the end of the parameter list. If no parameters are
specified, register 1 should be set to 0.

parm1 A fullword which is reserved for future use.

parm2 A fullword integer. Upon return from IKJTSOEV, this parameter contains a
return code indicating the completion status of the call. For more
information on this parameter, see Table 6 on page 28.

parm3 A fullword integer. Upon return from IKJTSOEV, this parameter contains a
reason code that provides specific information about an unsuccessful
completion. For more information on this parameter, see Table 7 on page 29
and Table 8 on page 29.

CALL IKJTSOEV (parm1, parm2, parm3, parm4, parm5)

Figure 3. Call Syntax for the IKJTSOEV Routine

Summary of TSO/E Services Available Under IKJTSOEV

26 z/OS V1R4.0 TSO/E Programming Services

parm4 A fullword integer. Upon return from IKJTSOEV, this parameter contains a
code that further describes an error indicated in parameter 3. For more
information on this parameter, see Table 8 on page 29.

parm5 A fullword address. Upon return from IKJTSOEV, this parameter contains
the address of the command processor parameter list (CPPL). For more
information on the command processor parameter list, see “Interfacing with
the TSO/E Service Routines” on page 16.

Invoking the TSO/E Environment Service
This section describes how to invoke the TSO/E environment service from an
application program. Because IKJTSOEV is a callable routine, any high- or low-level
language application that runs under MVS can call it. Figure 3 on page 26 illustrates
the call syntax for the IKJTSOEV routine.

To invoke the TSO/E environment service, call IKJTSOEV from your program. For
high-level languages, you can use the alias TSOENV to limit the length of the
program name to 6 characters. See “Examples Using the TSO/E Environment
Service” on page 30 for sample COBOL and assembler programs.

To create a callable module, include IKJTSOEV in the link-edit of your calling
routine. The IKJTSOEV module contains the entry point IKJTSOEV.

Requirements and Restrictions for Invoking the TSO/E Environment
Service

In addition to the restrictions on the use of TSO/E services discussed in
“Restrictions and Limitations on the Use of TSO/E Services” on page 24 there are
additional guidelines, which you must follow in developing applications that call
IKJTSOEV. These guidelines are listed below.

Addressability Requirements
v The application cannot be executing in a cross-memory mode.

v The application can be in primary mode or access register mode. In access
register mode, the parameter addresses for IKJTSOEV must reference memory
locations in the primary address space. Setting the access list entry token (ALET)
to 0 ensures that address translation uses the primary segment table to resolve
the addresses within the primary address space.

v The application must invoke IKJTSOEV in 31-bit addressing mode.

Note: You must invoke TSO/E and MVS services in the appropriate addressing
mode. You can use the entry specifications for the service you are calling
to determine the required addressing mode.

See z/Architecture Principles of Operation for more information on addressing
modes.

Resource Allocation Requirements
v The application cannot be holding any MVS system locks higher than the LOCAL

lock when it invokes IKJTSOEV. When the TSO/E environment service detects
that the calling program is holding a lock, it ignores the request for initialization
and returns to the calling program with return code 32. See z/OS MVS
Diagnosis: Reference for information about MVS/ESA system locks.

v The user’s task must share subpool 78 with its jobstep task as well as any
lower-level subtasks.

Syntax and Parameter Descriptions

Chapter 3. Using the TSO/E Environment Service IKJTSOEV 27

v An application should not attempt to free any TSO/E control blocks or TSO/E
files. The job scheduler deallocates the TSO/E environment and its acquired
resources when it deallocates the address space that the TSO/E environment
resides in.

REXX ADDRESS TSO Support Requirements
v If you want REXX ADDRESS TSO support, you must ensure that no REXX

language processor environment exists in your address space when you invoke
IKJTSOEV. If you invoke IKJTSOEV from an address space that already contains
a REXX language processor environment and the REXX environment does not
include the ADDRESS TSO host command environment, the REXX language
processor environment will continue to be available without ADDRESS TSO
support.

Return and Reason Codes from the TSO/E Environment Service
IKJTSOEV uses the return code parameter to provide general information about the
completion status of TSO/E environment initialization. IKJTSOEV uses the reason
code parameter to indicate a specific condition that caused the return code
condition. Table 6 lists return codes from the initialization routines in IKJTSOEV.
Table 7 on page 29 and Table 8 on page 29 contain reason codes for the
unsuccessful initialization of the REXX and TSO/E environments, respectively. The
following table describes the return codes issued by the IKJTSOEV initialization
routines:

Table 6. Return Codes for TSO/E Environment Initialization

Return Code Description

0 TSO/E environment initialization successful. Parameter 5 contains the
address of the CPPL.

8 TSO/E environment initialized, but could not initialize a REXX language
processor environment. Parameter 5 contains the address of the CPPL.
Parameter 3 contains the IKJTSOEV reason code for the REXX
initialization failure. You can still use all of the TSO/E services listed in
Table 5 on page 26. REXX services may be limited or unavailable,
depending on whether a REXX language processor environment was
present in the calling program’s address space before the invocation of
the TSO/E environment service. For more information on REXX service
availability for this return code, see Table 7 on page 29.

16 The request for initialization was ignored because a TSO/E environment
is being initialized or has been initialized already at the request of
another task in the same address space as the calling program.

20 The request for initialization was ignored because the address space of
the calling program contains multiple job step control blocks (JSCB’s).
An application cannot use the TSO/E environment service if it attached
multiple job step tasks in its address space.

24 The request for initialization was ignored because the TSO/E
environment service was invoked from a TSO/E TMP and Service
Routines environment.

32 The request for initialization was ignored because the caller is in
cross-memory mode or holding a lock. See “Requirements and
Restrictions for Invoking the TSO/E Environment Service” on page 27 for
addressability and resource allocation requirements for the TSO/E
environment service.

Invoking the TSO/E Environment Service

28 z/OS V1R4.0 TSO/E Programming Services

Table 6. Return Codes for TSO/E Environment Initialization (continued)

Return Code Description

36 TSO/E environment initialization unsuccessful. The reason code
(parameter 3) indicates the specific cause of the failure. See Table 8 for
more information.

40 TSO/E environment initialization unsuccessful. The TCB key of the
caller’s TCB does not match the TCB key of the first non-system jobstep
TCB in the address space. Parameter 3 contains a reason code that is
formed as follows:
v Byte 0 is X'00'
v Byte 1 contains the TCB key (TCBPFK) of the caller’s TCB
v Byte 2 is X'00'
v Byte 3 contains the TCB key (TCBPFK) of the first non-system

jobstep TCB in the address space

If the return code is 8, parameter 3 contains the reason code for a failure to
initialize a REXX language processor environment. The reason codes are as
follows:

Table 7. Reason Codes for REXX Initialization Failure

Reason Code Description

40 A previous REXX language processor environment exists in the calling
programs’s address space. A language processor environment cannot
be initialized.

60 IKJTSOEV failed to load the REXX initialization routine (IRXINIT). Make
sure that REXX is properly installed and your JCL specifies enough
region space to load and execute the IRXINIT module.

80 IRXINIT failed. Parameter 4 contains the reason code from IRXINIT. For
more information on reason codes from IRXINIT, see z/OS TSO/E
REXX Reference.

If the return code is 36, parameter 3 contains the reason code for an unsuccessful
TSO/E environment initialization. Parameter 4 contains an MVS/ESA service routine
code or abend code corresponding to an error condition.

Table 8. Reason Codes for TSO/E Environment Initialization Failure

Reason Code Description

100 Request for virtual storage failed. Parameter 4 contains the return code
from GETMAIN. For information about GETMAIN return codes, see
z/OS MVS Programming: Authorized Assembler Services Reference
ENF-IXG.

200 Global serialization of the PARMLIB resource failed. Parameter 4
contains the return code from ENQ. For information about ENQ return
codes, see z/OS MVS Programming: Authorized Assembler Services
Reference ENF-IXG.

300 Dynamic allocation for SYSTSIN failed. Parameter 4 contains the error
reason code (S99ERROR) from SVC 99. For information about SVC 99
error reason codes, see z/OS MVS Programming: Authorized Assembler
Services Guide.

400 Dynamic allocation for SYSTSPRT failed. Parameter 4 contains the
error reason code (S99ERROR) from SVC 99. For information about
SVC 99 error reason codes, see z/OS MVS Programming: Authorized
Assembler Services Guide.

Return and Reason Codes from the TSO/E Environment Service

Chapter 3. Using the TSO/E Environment Service IKJTSOEV 29

Table 8. Reason Codes for TSO/E Environment Initialization Failure (continued)

Reason Code Description

500 TSO/E I/O stack creation failed. Parameter 4 contains the return code
from the STACK service routine. For information about STACK return
codes, see Chapter 12, “Using the STAX Service Routine to Handle
Attention Interrupts” on page 317.

600 An abend occurred in a macro or service called by the TSO/E
environment service. The TSO/E environment service returned control to
the calling program with the system completion (abend) code in
parameter 4. For information about MVS/ESA abend codes, see z/OS
MVS System Codes.

Examples Using the TSO/E Environment Service
The following examples illustrate how to create an application that uses IKJTSOEV.
Figure 4 on page 31 and Figure 7 on page 35 are COBOL and assembler coding
examples. Figure 8 on page 37 and Figure 9 on page 38 show JCL to execute the
COBOL and assembler programs, respectively.

COBOL
In Figure 4 on page 31, a COBOL program calls IKJTSOEV to establish a TSO/E
environment. The COBOL program then verifies that the environment has been
initialized successfully by checking the return code from the TSO/E environment
service. If an error occurs, program DISPLAY statements write error messages to
the SYSOUT file, and the program ends. After IKJTSOEV successfully creates a
TSO/E environment, the program invokes a TSO/E REXX exec named ’TEST1’
(Figure 5 on page 34) using the TSO/E service facility. TSO/E writes the output from
the REXX exec to the SYSTSPRT file. Finally, the program verifies successful
invocation of the REXX exec by checking the return code from the call to the
TSO/E service facility.

Return and Reason Codes from the TSO/E Environment Service

30 z/OS V1R4.0 TSO/E Programming Services

IDENTIFICATION DIVISION.
PROGRAM-ID. ENVCOBRX.

**
* THIS IS A SAMPLE COBOL PROGRAM TO DEMONSTRATE THE USE OF THE TSO/E
* ENVIRONMENT SERVICE. FIRST, THE PROGRAM CALLS IKJTSOEV TO ESTABLISH
* A TSO/E ENVIRONMENT. NEXT, THE PROGRAM CALLS THE TSO SERVICE FACILITY
* (IKJEFTSR) TO INVOKE A REXX EXEC CALLED ’TEST1’. AFTER THE REXX EXEC
* IS INVOKED, THE PROGRAM DISPLAYS THE RETURN, REASON, AND ABEND CODES
* FROM THE CALL TO THE TSO SERVICE FACILITY.
**

EJECT
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.

01 TSOEV-PARM1 PIC S9(9) VALUE +0 COMP-4.
01 TSOEV-RETURN-CODE PIC S9(9) VALUE +0 COMP-4.
01 TSOEV-REASON-CODE PIC S9(9) VALUE +0 COMP-4.
01 TSOEV-ABEND-CODE PIC S9(9) VALUE +0 COMP-4.
01 TSOEV-CPPL-ADDR PIC S9(9) VALUE +0 COMP-4.

01 TSF-PARM1 PIC S9(9) COMP-4.
01 TSF-PARM2 PIC X(80).
01 TSF-PARM3 PIC S9(9) VALUE +80 COMP-4.
01 TSF-PARM4 PIC S9(9) VALUE +0 COMP-4.
01 TSF-PARM5 PIC S9(9) VALUE +0 COMP-4.
01 TSF-PARM6 PIC S9(9) VALUE +0 COMP-4.

01 UNAUTH PIC S9(9) VALUE +0 COMP-4.
01 REQUEST-DUMP PIC S9(9) VALUE +256 COMP-4.
01 INVOKE-REXX PIC S9(9) VALUE +1 COMP-4.

Figure 4. Sample COBOL Routine (Part 1 of 3)

Examples Using the TSO/E Environment Service

Chapter 3. Using the TSO/E Environment Service IKJTSOEV 31

EJECT
PROCEDURE DIVISION.
MAIN PROGRAM.
**
* MAIN PROGRAM - INVOKE THE TSO/E ENVIRONMENT SERVICE TO INITIALIZE A TSO/E
* ENVIRONMENT.
*
* TSOEV-RETURN-CODE IS A FULLWORD THAT WILL CONTAIN THE RETURN CODE FROM
* THE TSO/E ENVIRONMENT SERVICE.
*
* TSOEV-REASON-CODE IS A FULLWORD THAT WILL CONTAIN THE REASON CODE FROM
* THE TSO/E ENVIRONMENT SERVICE.
*
* TSOEV-CPPL-ADDR IS A FULLWORD THAT WILL CONTAIN THE ADDRESS OF THE CPPL
* ON RETURN FROM THE TSO/E ENVIRONMENT SERVICE.
**

CALL ’IKJTSOEV’ USING TSOEV-PARM1
TSOEV-RETURN-CODE
TSOEV-REASON-CODE
TSOEV-ABEND-CODE
TSOEV-CPPL-ADDR.

**
* NOW THAT WE’RE BACK FROM THE TSO/E ENVIRONMENT SERVICE, CHECK THE
* RETURN CODE.
*
* IF THE RETURN CODE WAS ZERO, ISSUE IKJEFTSR TO INVOKE A REXX EXEC.
* IF THE RETURN CODE WAS NON-ZERO, DISPLAY AN ERROR MESSAGE.
**

IF RETURN-CODE = 0 THEN
PERFORM EXEC-REXX THROUGH EXEC-REXX-EXIT

ELSE
PERFORM DISPLAY-MESSAGE THROUGH DISPLAY-MESSAGE-EXIT.

STOP RUN.

Figure 4. Sample COBOL Routine (Part 2 of 3)

Examples Using the TSO/E Environment Service

32 z/OS V1R4.0 TSO/E Programming Services

**
* EXEC-REXX - EXECUTE THE REXX EXEC ’TEST1’ USING THE TSO SERVICE FACILITY
*
* PARM1 WILL INDICATE THAT A TSO/E COMMAND, CLIST, OR REXX EXEC IS BEING
* INVOKED AND A DUMP SHOULD BE PRODUCED IF AN ABEND OCCURS.
*
* PARM2 WILL CONTAIN THE NAME OF THE REXX EXEC - ’TEST1’
*
* PARM3 WILL CONTAIN THE RETURN CODE FROM THE INVOCATION OF THE REXX
* EXEC ’TEST1’.
*
* PARM4 WILL CONTAIN THE RETURN CODE FROM THE TSO SERVICE FACILITY
*
* PARM5 WILL CONTAIN THE REASON CODE FROM THE TSO SERVICE FACILITY
*
* PARM6 WILL CONTAIN THE ABEND CODE FROM THE TSO SERVICE FACILITY
*
**

* INITIALIZE PARM1
MOVE 0 TO TSF-PARM1.
ADD UNAUTH TO TSF-PARM1.
ADD REQUEST-DUMP TO TSF-PARM1.
ADD INVOKE-REXX TO TSF-PARM1.

* INITIALIZE PARM2
MOVE SPACES TO TSF-PARM2.
MOVE ’EXEC TEST1’ TO TSF-PARM2.

* INVOKE THE TSO SERVICE FACILITY
CALL ’TSOLNK’ USING TSF-PARM1

TSF-PARM2
TSF-PARM3
TSF-PARM4
TSF-PARM5
TSF-PARM6.

DISPLAY ’IKJEFTSR RETURNED THE FOLLOWING:’
DISPLAY ’ FUNCTION RETURN CODE - ’ TSF-PARM4.
DISPLAY ’ RETURN CODE - ’ TSF-PARM6.
DISPLAY ’ REASON CODE - ’ TSF-PARM5.
DISPLAY ’ ABEND CODE - ’ TSF-PARM6.

EXEC-REXX-EXIT.

**
* DISPLAY MESSAGE - DISPLAY THE RETURN, REASON, AND ABEND CODES FROM
* IKJTSOEV.
**
DISPLAY-MESSAGE.

DISPLAY ’IKJTSOEV RETURNED THE FOLLOWING:’
DISPLAY ’ RETURN CODE - ’ TSOEV-RETURN-CODE.
DISPLAY ’ REASON CODE - ’ TSOEV-REASON-CODE.
DISPLAY ’ ABEND CODE - ’ TSOEV-ABEND-CODE.

DISPLAY-MESSAGE-EXIT.

Figure 4. Sample COBOL Routine (Part 3 of 3)

Examples Using the TSO/E Environment Service

Chapter 3. Using the TSO/E Environment Service IKJTSOEV 33

Assembler
Figure 7 on page 35 shows a sample assembler program that processes a TSO/E
command. The program uses the TSO/E environment service to establish a TSO/E
environment. The program then verifies that the TSO/E environment has been
initialized successfully by checking the return code from the TSO/E environment
service. If the TSO/E environment service fails to initialize a TSO/E environment,
the program generates an abend and terminates. After IKJTSOEV successfully
establishes a TSO/E environment, the program invokes the TSO/E ALTLIB
command using the TSO/E service facility, and TSO/E writes the output from the
ALTLIB command to the SYSTSPRT file.

You can modify this program and use it as a subroutine to process TSO/E
commands that you specify.

/* REXX */
SAY HI, IN TEST1

Figure 5. REXX Exec ’TEST1’ Executed by COBOL

HI, IN TEST1

Figure 6. Output From the Invocation of ’TEST1’

Examples Using the TSO/E Environment Service

34 z/OS V1R4.0 TSO/E Programming Services

**
* THIS IS A SAMPLE ASSEMBLER PROGRAM TO DEMONSTRATE THE USE OF THE TSO/E
* ENVIRONMENT SERVICE. IT DOES THE FOLLOWING:
*
* 1. CALLS IKJTSOEV TO ESTABLISH A TSO/E ENVIRONMENT.
* 2. CALLS THE TSO SERVICE FACILITY TO INVOKE THE TSO ALTLIB COMMAND.
**
ENVTSCMD CSECT
ENVTSCMD AMODE 31
ENVTSCMD RMODE ANY

STM R14,R12,12(R13)
BALR R12,0
USING *,R12
ST R13,SAVEAREA+4
LA R11,SAVEAREA
ST R11,8(,R13)
LA R13,SAVEAREA

**
* CALTSOEV - CALL THE TSO/E ENVIRONMENT SERVICE TO ESTABLISH A TSO/E
* ENVIRONMENT IN THIS PROGRAM’S ADDRESS SPACE.
* PARM1 IS RESERVED
* PARM2 IS A FULLWORD THAT WILL CONTAIN THE RETURN CODE FROM IKJTSOEV.
* PARM3 IS A FULLWORD THAT WILL CONTAIN THE REASON CODE ON RETURN FROM
* IKJTSOEV.
* PARM4 IS A FULLWORD THAT WILL CONTAIN THE ABEND CODE, IF AN ABEND
* OCCURS DURING TSO/E ENVIRONMENT SERVICE PROCESSING.
* PARM5 IS A FULLWORD THAT WILL CONTAIN THE ADDRESS OF THE CPPL.
**
CALTSOEV DS 0H

L R15,=V(IKJTSOEV)
CALL (15),(PARM1,PARM2,PARM3,PARM4,PARM5),VL

**
* CHKEVRC - CHECK THE RETURN CODE FROM IKJTSOEV
**
CHKEVRC DS 0H

L R2,PARM2
LTR R2,R2
BNZ BADEVRC

**
* CALLTSR - CALL IKJEFTSR TO INVOKE THE TSO/E COMMAND ’ALTLIB DISPLAY’.
* THE OUTPUT FROM THIS COMMAND WILL GO TO THE PREVIOUSLY
* STACKED DATA SET.
**
CALLTSR DS 0H

L R15,CVTPTR
L R15,CVTTVT(,R15)
L R15,TSVTASF-TSVT(,R15)
CALL (15),(FLAGS,CMDBUF,BUFLEN,RETCODE,RSNCODE,ABNDCODE),VL

**
* DOALL - AT THIS POINT, YOU CAN PROCESS THE RETURN VALUES FROM
* IKJEFTSR AND THE INVOKED FUNCTION, ALTLIB.

Figure 7. Sample Assembler Routine (Part 1 of 3)

Examples Using the TSO/E Environment Service

Chapter 3. Using the TSO/E Environment Service IKJTSOEV 35

**
DOALL DS 0H

B EXIT
**
* BADEVRC - BRANCH HERE IF IKJTSOEV RETURNED A NON-ZERO RETURN CODE.
* IF THE PROGRAM BRANCHES HERE, IT WILL ABEND WITH A DUMP.
* IN THE DUMP, THE CONTENTS OF THE REGISTERS WILL BE AS FOLLOWS:
* REGISTER 2 - THE RETURN CODE FROM IKJTSOEV
* REGISTER 3 - THE REASON CODE FROM IKJTSOEV
* REGISTER 4 - THE ABEND CODE FROM IKJTSOEV
**
BADEVRC DS 0H

L R2,PARM2
L R3,PARM3
L R4,PARM4
ABEND 100,DUMP

**
* EXIT - RETURN TO CALLING PROGRAM
**
EXIT DS 0H

L R13,4(,R13)
LM R14,R12,12(R13)
SLR R15,R15
BR R14

* REGISTER EQUATES
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

* PARAMETERS USED TO INVOKE THE TSO/E ENVIRONMENT SERVICE
PARM1 DS F RESERVED FIELD
PARM2 DS F RETURN CODE FIELD
PARM3 DS F REASON CODE FIELD
PARM4 DS F FUNCTION ABEND CODE
PARM5 DS F CPPL ADDRESS

Figure 7. Sample Assembler Routine (Part 2 of 3)

Examples Using the TSO/E Environment Service

36 z/OS V1R4.0 TSO/E Programming Services

JCL for COBOL and Assembler Program Invocation
Figure 8 shows sample JCL to run the COBOL program. The program ENVCOBRX
resides in IBMUSER.LOAD. Because neither the program nor the REXX exec that
the program executes requires input, the JCL allocates SYSTSIN to a dummy data
set. TSO/E uses the SYSTSPRT file to output messages issued by the REXX exec.
Program DISPLAY statements send program error messages to the SYSOUT file.

Figure 9 on page 38 shows sample JCL to run the assembler program. The
program ENVTSCMD resides in IBMUSER.LOAD. Because the program does not
use SYSTSIN for input, the JCL allocates SYSTSIN to a dummy data set. The
program redirects output for the TSO/E command invocation to MYPRTDD, which is
allocated to a data set. The program sends all other TSO/E output is sent to the
SYSTSPRT file.

* PARAMETERS USED TO INVOKE THE TSO SERVICE FACILITY
FLAGS DS 0F FULLWORD OF FLAGS
RESFLAGS DC H’0001’ ESTABLISH UNAUTHORIZED ENVIRONMENT
ABFLAGS DC X’01’ PRODUCE A DUMP IF FUNCTION ABENDS
FNCFLAGS DC X’01’ INVOKE A TSO/E CMD, REXX EXEC, OR CLIST
CMDBUF DC C’ALTLIB DISPLAY’ COMMAND BUFFER
BUFLEN DC A(L’CMDBUF) LENGTH OF COMMAND BUFFER
RETCODE DS F FUNCTION RETURN CODE
RSNCODE DS F FUNCTION REASON CODE
ABNDCODE DS F FUNCTION ABEND CODE
CVTPTR EQU 16 THESE TWO PARMS ARE USED TO DETERMINE
CVTTVT EQU X’9C’ THE ADDRESS OF THE TSO SERVICE FACILITY
* SAVEAREA AND OTHER PROGRAM STORAGE
SAVEAREA DS 18F
* TSVT MAPPING MACRO (USED TO OBTAIN THE ADDRESS OF THE TSO SERVICE FACILITY)

IKJTSVT
END

Figure 7. Sample Assembler Routine (Part 3 of 3)

//IBMUSERA JOB ’IKJTSOEV SAMPLE1’,MSGLEVEL=(1,1),TIME=2,
// CLASS=A,MSGCLASS=H
//*
//DOTSO EXEC PGM=ENVCOBRX
//STEPLIB DD DSN=IBMUSER.LOAD,DISP=SHR
//SYSPROC DD DSN=IBMUSER.TSOENV.CLIST,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//SYSOUT DD SYSOUT=*

Figure 8. Execution JCL for the COBOL Program

Examples Using the TSO/E Environment Service

Chapter 3. Using the TSO/E Environment Service IKJTSOEV 37

//IBMUSERA JOB ’IKJTSOEV SAMPLE1’,MSGLEVEL=(1,1),TIME=2,
// CLASS=A,MSGCLASS=H
//*
//DOTSO EXEC PGM=ENVTSCMD
//STEPLIB DD DSN=IBMUSER.LOAD,DISP=SHR
//SYSPROC DD DSN=IBMUSER.TSOENV.CLIST,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//MYPRTDD DD SYSOUT=*
//SYSOUT DD SYSOUT=*

Figure 9. Execution JCL for the Assembler Program

Examples Using the TSO/E Environment Service

38 z/OS V1R4.0 TSO/E Programming Services

Chapter 4. Invoking TSO/E Service Routines with CALLTSSR

When to Use the CALLTSSR Macro Instruction 39
Syntax and Operands . 39
Example Using TSO/E Service Routines with CALLTSSR 40

This chapter describes how to use the CALLTSSR macro instruction to pass control
to certain TSO/E service routines.

When to Use the CALLTSSR Macro Instruction
You can use the CALLTSSR macro instruction to generate a branch to certain
TSO/E service routines. The CALLTSSR macro instruction can be issued in either
24- or 31-bit addressing mode.

The CALLTSSR macro instruction can be used to invoke the following TSO/E
service routines only:
IKJADTAB Alternate library interface routine
IKJCAF CLIST attention facility
IKJDAIR Dynamic allocation interface routine
IKJEFF02 TSO/E message issuer routine
IKJEFTSI TSO/E service facility initialization routine
IKJEFTST TSO/E service facility termination routine
IKJEHCIR Catalog information routine
IKJEHDEF Default routine
IKJGETL GETLINE service routine
IKJPARS Parse service routine
IKJPTGT PUTGET service routine
IKJPUTL PUTLINE service routine
IKJSCAN Command scan service routine
IKJSTCK STACK service routine
IKJTBLS Table look-up service
IKJURPS Unauthorized resource processor service

Notes:

1. A module that uses the CALLTSSR macro instruction must include the CVT
mapping macro (CVT), which is provided in SYS1.MACLIB.

2. A module that invokes IKJADTAB, IKJCAF, IKJEFTSI, IKJEFTST, IKJBLS and
IKJURPS must also include the TSVT mapping macro (IKJTSVT), which is
provided in SYS1.MACLIB.

Syntax and Operands
Figure 10 shows the execute form of the CALLTSSR macro instruction. There is no
list form. Each operand is explained following the figure.

[symbol] CALLTSSR EP=entry point name
[MF=(E,{list address })]
[({(register) })]

Figure 10. The CALLTSSR Macro Instruction

© Copyright IBM Corp. 1988, 2002 39

EP=entry point name
specifies one of the following names: IKJADTB (for IKJADTAB), IKJCAF,
IKJDAIR, IKJEFF02, IKJEHCIR, IKJEHDEF, IKJGETL, IKJPARS, IKJPTGT,
IKJPUTL, IKJSCAN, IKJSTCK, IKJTBLS, IKJTSFI (for IKJEFTSI), IKJTSFT (for
IKJEFTST), or IKJURPS.

MF=E
indicates that this is the execute form of the macro instruction.

list address | (register)
specifies the address, or register that contains the address, of a parameter list
to be passed to the service routine.

Example Using TSO/E Service Routines with CALLTSSR
This example shows how the CALLTSSR macro instruction can be used to invoke
the parse service routine (IKJPARS) and pass the parse parameter list (PPL) as
input.

CALLTSSR EP=IKJPARS,MF=(E,PPL)

Syntax and Operands

40 z/OS V1R4.0 TSO/E Programming Services

Chapter 5. Verifying Subcommand Names with IKJSCAN

Functions Performed by the Command Scan Service Routine. 41
Syntax Requirements for Command and Subcommand Names 42
Invoking the Command Scan Service Routine (IKJSCAN) 43

The Command Scan Parameter List 43
Passing Flags to the Command Scan Service Routine 45
The Command Scan Output Area 45

Output from the Command Scan Service Routine 45
Return Codes from the Command Scan Service Routine 46
Example Using the Command Scan Service Routine 46

This chapter describes how a command processor can use the command scan
service routine to determine the validity of a subcommand name

Functions Performed by the Command Scan Service Routine
If you write your own command processors, you need a method of determining
whether subcommand names entered into the system are syntactically correct. The
command scan service routine provides this function by searching the command
buffer for a valid subcommand name. Command scan can be invoked by any
command processor that processes subcommands. It can also be used to scan the
reply to a prompt message.

Figure 11 shows the format of the command buffer.

When your command processor invokes the command scan service routine, the
two-byte length field contains the length of the command buffer. The two-byte offset
field is set to zero.

The command scan service routine examines the command buffer and performs the
following functions:

v It translates all lowercase characters in the subcommand name to uppercase.

v If a valid operand is present, it resets the offset to the number of text bytes
preceding the first non-blank character in the operand field. If a valid operand is
not present, the offset equals the length of the text portion of the buffer.

v It returns a pointer to the subcommand name, the length of the subcommand
name, and a code explaining the results of its scan to the calling routine.

v It optionally checks the syntax of the subcommand name.

v It recognizes an implicit EXEC command that has a percent sign as the first
character.

v It handles leading blanks and embedded comments.

Length Offset Text

2 Bytes 2 Bytes

Length

Figure 11. Format of the Command Buffer

© Copyright IBM Corp. 1988, 2002 41

Syntax Requirements for Command and Subcommand Names
If you write your own command processor, and you intend to use the command
scan service routine to check for a valid subcommand name, the name you choose
must meet the following syntax requirements:
v The first character must be alphabetic or one of the special characters $, #, @.
v The remaining characters must be alphanumeric.
v The length of the subcommand name must not exceed eight characters.
v The command delimiter must be a separator character.

It is recommended that the name include one or more numerals. Because no
IBM-supplied command names include numerals, this insures that your
subcommand name will be unique.

The command scan service routine accepts double-byte character set (DBCS)
strings in addition to EBCDIC character strings. The shift-out character (X'0E')
indicates a change from EBCDIC to DBCS; the shift-in character (X'0F') indicates
the reverse. Each double-byte character requires a double-byte representation so
that valid DBCS strings contain an even number of bytes. With the exception of
blank, which is X'4040', each byte has a value from X'41' to X'FE'.

Double-byte characters can appear in comments and certain types of strings of user
data. For a discussion of the types of strings that can contain double-byte
characters, see Chapter 6, “Verifying Command and Subcommand Operands with
Parse” on page 51.

The following table shows the various character types recognized by the command
scan service routine. Unless otherwise indicated, alphanumeric characters are (1)
alphabetic (A-Z), (2) numeric (0-9), and (3) the special characters $, #, @.

Table 9. Character Types Recognized by the Parse Service Routine

Separator $ # @ Alphabetic Numeric
Command
Delimiter Delimiter Special

Comment /* X

Horizontal Tab HT X X

Blank b X X

Comma , X X

Dollar Sign $ X

Number Sign # X

At Sign @
a-z
A-Z
0-9

X
X
X

X

New line NL X X

Period . X X

Left parenthesis (X X

Right
parenthesis

) X X

Ampersand & X X

Asterisk * X

Semicolon ; X X

Syntax Requirements for Command and Subcommand Names

42 z/OS V1R4.0 TSO/E Programming Services

Table 9. Character Types Recognized by the Parse Service Routine (continued)

Separator $ # @ Alphabetic Numeric
Command
Delimiter Delimiter Special

Minus sign,
hyphen

- X X

Slash / X X

Apostrophe ‘ X X

Equal sign = X X

Cent sign c X

Less than < X

Greater than > X

Plus sign + X

Logical OR | X

Exclamation
point

! X

Logical NOT ¬ X

Percent sign % X

Dash - X

Question mark ? X

Colon : X

Quotation Mark " X

Shift-out1 X'0E' X

Shift-in1 X'0F' X
1 The shift-out and shift-in characters indicate the beginning and end of a string of double-byte character set data.

Invoking the Command Scan Service Routine (IKJSCAN)
Your command processor can invoke the command scan service routine by using
either the CALLTSSR or LINK macro instructions, specifying IKJSCAN as the entry
point name. However, you must first create the command scan parameter list
(CSPL) and place its address into general register 1.

The command scan service routine can be invoked in either 24-bit or 31-bit
addressing mode. IKJSCAN can be passed input that resides above or below 16
MB in virtual storage. The caller’s parameters must be in the primary address
space.

The Command Scan Parameter List
The command scan parameter list (CSPL) is a six-word parameter list containing
addresses required by the command scan service routine. To ensure that your
command processor is reentrant, build the CSPL in subpool 1 in an area that the
command processor obtains by issuing the GETMAIN macro instruction. Figure 12
on page 44 shows the parameter list structure that your command processor must
create as input to the command scan service routine.

Syntax Requirements for Command and Subcommand Names

Chapter 5. Verifying Subcommand Names with IKJSCAN 43

Use the IKJCSPL DSECT, which is provided in SYS1.MACLIB, to map the fields in
the CSPL. Table 10 shows the format of the command scan parameter list.

Table 10. The Command Scan Parameter List

Number of
Bytes

Field Name Contents or Meaning

4 CSPLUPT The address of the user profile table. This address is
passed to a command processor in the CPPL.

4 CSPLECT The address of the environment control table. This address
is passed to a command processor in the CPPL.

4 CSPLECB The address of the command processor’s event control
block.

4 CSPLFLG The address of a fullword, obtained via the GETMAIN
macro instruction by the routine linking to command scan,
and located in subpool 1. The first byte of the word pointed
to contains flags set by the calling routine.

4 CSPLOA The address of an 8-byte command scan output area,
located in subpool 1. The output area is obtained by the
calling routine via a GETMAIN macro instruction. It is filled
in by the command scan service routine before it returns
control to the calling routine. (See Figure 12.)

4 CSPLCBUF The address of the command buffer.

General
Register 1

CSPL

UPT

ECT

CP ECB

Flag Word

Output Area

Command Buffer

Flag Word

Flags Reserved

Command Scan Output Area

Command Name Pointer

Length Flags Reserved

To be set by
Command
Scan

Command Buffer

Length Offset Text

0 2 4

+ 0

+ 4

+ 8

+ 12

+ 16

+ 20

Figure 12. The Parameter List Structure Passed to Command Scan

Invoking the Command Scan Service Routine (IKJSCAN)

44 z/OS V1R4.0 TSO/E Programming Services

Passing Flags to the Command Scan Service Routine
The fourth word of the CSPL, CSPLFLG, is a flag word that your command
processor must build in subpool 1 in an area that the command processor obtains
by issuing the GETMAIN macro instruction. Command scan uses only the first byte
of the field.

Your command processor must set the flag byte before invoking the command scan
service routine to indicate whether you want the command to be syntax checked.
The flag byte has the following meanings:

Value Meaning

X'00' Syntax check the command name.

X'80' Do not syntax check the command name.

After your command processor invokes the command scan service routine, it should
free the area obtained for the flag field.

The Command Scan Output Area
The command scan service routine returns the results of its scan to the calling
program by filling in a two-word command scan output area (CSOA). Your
command processor must build the CSOA in subpool 1 in an area that your
command processor obtains by issuing the GETMAIN macro instruction. Your
command processor must then store the address of the CSOA into the fifth word of
the command scan parameter list before invoking IKJSCAN.

You can use the IKJCSOA DSECT, which is provided in SYS1.MACLIB, to map the
fields in the CSOA. Table 11 shows the format of the command scan output area.

Table 11. The Command Scan Output Area

Number of
Bytes

Field Name Contents or Meaning

4 CSOACNM The address of the command name if the command name
is present and valid. Zero otherwise.

2 CSOALNM Length of the command name if the command name is
present and valid. Zero otherwise.

1 CSOAFLG A flag field. Command scan sets these flags to indicate the
results of its scan. See Table 12.

1 Reserved.

After your command processor invokes the command scan service routine and
processes its output, it should free the area obtained for the CSOA.

Output from the Command Scan Service Routine
The command scan service routine scans the command buffer and returns the
results of its scan to the calling routine by filling in the command scan output area,
and by updating the offset field in the command buffer. Table 12 shows the possible
CSOA settings and command buffer offset settings upon return from the command
scan service routine.

Invoking the Command Scan Service Routine (IKJSCAN)

Chapter 5. Verifying Subcommand Names with IKJSCAN 45

Table 12. Return from Command Scan - CSOA and Command Buffer Settings

Command Scan Output Area Command Buffer

Flag Meaning Length Field Offset set to:

X'80' The command name is valid and the
remainder of the buffer contains
non-separator characters.

Length of command name The first non-separator following the
command name.

X'40' The command name is valid and
there are no non-separator
characters remaining.

Length of command name The end of the buffer.

X'20' The command name is a question
mark.

Zero Unchanged.

X'10' The buffer is empty or contains only
separators.

Zero The end of the buffer.

X'08' The command name is syntactically
not correct.

Zero Unchanged.

X'04' The command is an implicit EXEC
command.

Length of command name The first non-separator following the
command name.

Return Codes from the Command Scan Service Routine
The command scan service routine returns the following codes in general register
15 to the program that invoked it:

Code Meaning

0 Command scan completed successfully.

4 Command scan was passed incorrect parameters.

Example Using the Command Scan Service Routine
The sample assembler code in Figure 13 on page 47 demonstrates the use of the
command scan service routine to syntax check a subcommand name. Suppose the
command buffer passed to command scan contains the following subcommand:
SUBCMD OPERAND1 OPERAND2

When IKJSCAN returns control, the offset field in the command buffer contains the
value 7, the number of bytes that precede OPERAND1 in the command buffer.

Output from the Command Scan Service Routine

46 z/OS V1R4.0 TSO/E Programming Services

SCANEX CSECT ,
SCANEX AMODE 31 COMMAND’S ADDRESSING MODE
SCANEX RMODE ANY COMMAND’S RESIDENCY MODE
SCANEX CSECT

STM R14,R12,12(R13) SAVE CALLER’S REGISTERS
LR R11,R15 ESTABLISH ADDRESSABILITY WITHIN
USING SCANEX,R11 THIS CSECT
LR R9,R1 SAVE THE POINTER TO THE CPPL
GETMAIN RU,LV=WORKSIZE OBTAIN A DYNAMIC WORK AREA

*
LR R10,R1
USING WORK_AREA,R10 ESTABLISH ADDRESSABILITY
ST R10,8(R13) PUT THE ADDRESS OF MY SAVE AREA

* INTO CALLER’S SAVE AREA
ST R13,4(R10) PUT THE ADDRESS OF MY SAVE AREA

* INTO MY SAVE AREA FOR CALLING
LR R13,R1 LOAD GETMAINED AREA ADDRESS

*
ST R9,CPPL_PTR
USING CPPL,R9 GET ADDRESSABILITY TO THE CPPL

*
LA R2,DYN_CSPL POINT TO MY CSPL
ST R2,CSPL_PTR SAVE CSPL POINTER
USING CSPL,R2 GET ADDRESSABILITY TO THE CSPL
MVC CSPLCBUF,CPPLCBUF GET THE ADDRESS OF THE COMMAND BUFFER
LA R4,OUT_AREA GET THE ADDRESS OF THE OUTPUT AREA
ST R4,CSPLOA AND STORE IT IN THE CSPL
MVC CSPLUPT,CPPLUPT MOVE IN THE UPT ADDRESS
MVC CSPLECT,CPPLECT MOVE IN THE ECT ADDRESS
LA R4,ECB GET THE ADDRESS OF THE ECB
ST R4,CSPLECB AND STORE IT IN THE CSPL
LA R4,FLAGWORD GET THE FLAGWORD ADDRESS
ST R4,CSPLFLG AND STORE IT IN THE CSPL
XC ECB,ECB SET THE ECB TO ZERO

*
CALLTSSR EP=IKJSCAN,MF=(E,CSPL) INVOKE IKJSCAN

*
ST R15,RETCODE SAVE THE RETURN CODE

*
*
* TEST THE RETURN CODE AND EXAMINE THE COMMAND SCAN OUTPUT AREA.
* PROCESS ACCORDINGLY.
* .
* .
* .
*

DROP R2
DROP R9

Figure 13. An Example Using the Command Scan Service Routine (Part 1 of 3)

Example Using the Command Scan Service Routine

Chapter 5. Verifying Subcommand Names with IKJSCAN 47

*
* PERFORM CLEANUP PROCESSING
*
*

L R5,RETCODE GET THE RETURN CODE
LR R1,R13 POINT TO THE WORK AREA
L R13,4(R13) CHAIN TO PREVIOUS SAVE AREA
FREEMAIN RU,LV=WORKSIZE,A=(1)
L R14,12(R13) HERE’S OUR RETURN ADDRESS
LR R15,R5 HERE’S THE RETURN CODE
LM R0,R12,20(R13) RESTORE REGS 0-12
BSM 0,14 RETURN TO INVOKER

* *
* DECLARES FOR DYNAMIC VARIABLES *
* *

WORK_AREA DSECT
SAVEAREA DS 0CL72 STANDARD SAVE AREA

DS F UNUSED
DS F BACKWARD SAVE AREA POINTER
DS F FORWARD SAVE AREA POINTER

REG14 DS F CONTENTS OF REGISTER 14
REG15 DS F CONTENTS OF REGISTER 15
REG0 DS F CONTENTS OF REGISTER 0
REG1 DS F CONTENTS OF REGISTER 1
REG2 DS F CONTENTS OF REGISTER 2
REG3 DS F CONTENTS OF REGISTER 3
REG4 DS F CONTENTS OF REGISTER 4
REG5 DS F CONTENTS OF REGISTER 5
REG6 DS F CONTENTS OF REGISTER 6
REG7 DS F CONTENTS OF REGISTER 7
REG8 DS F CONTENTS OF REGISTER 8
REG9 DS F CONTENTS OF REGISTER 9
REG10 DS F CONTENTS OF REGISTER 10
REG11 DS F CONTENTS OF REGISTER 11
REG12 DS F CONTENTS OF REGISTER 12
CPPL_PTR DS F ADDRESS OF THE CPPL
CSPL_PTR DS F ADDRESS OF THE CSPL
DYN_CSPL DS 6F STORAGE FOR THE CSPL
OUT_AREA DS 2F COMMAND SCAN OUTPUT AREA
FLAGWORD DS F FLAG WORD
ECB DS F ECB
RETCODE DS F RETURN CODE
WORKSIZE EQU *-WORK_AREA DESCRIBES LENGTH OF THE
* DYNAMIC WORK AREA

Figure 13. An Example Using the Command Scan Service Routine (Part 2 of 3)

Example Using the Command Scan Service Routine

48 z/OS V1R4.0 TSO/E Programming Services

*
IKJCPPL COMMAND PROCESSOR PARAMETER LIST

LCPPL EQU *-CPPL DESCRIBES LENGTH OF THE CPPL
*

CVT DSECT=YES CVT NEEDED FOR CALLTSSR
IKJCSPL COMMAND SCAN PARAMETER LIST
IKJCSOA COMMAND SCAN OUTPUT AREA

* *
* REGISTER EQUATES *
* *

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END SCANEX

Figure 13. An Example Using the Command Scan Service Routine (Part 3 of 3)

Example Using the Command Scan Service Routine

Chapter 5. Verifying Subcommand Names with IKJSCAN 49

Example Using the Command Scan Service Routine

50 z/OS V1R4.0 TSO/E Programming Services

Chapter 6. Verifying Command and Subcommand Operands
with Parse

Overview of the Parse Service Routine (IKJPARS) 52
The Parse Macro Instructions 52

Character Types Accepted by the Parse Service Routine 53
Treatment of Comment Character /* by the Parse Service Routine 54
Acceptance of Double-Byte Character Set Data 55

Services Provided by the Parse Service Routine 56
Prompting the User for Missing or Required Operands 56
Issuing Error Messages When Parse Does Not Complete Successfully . . . 58
Issuing Second-Level Messages 58
Passing Control to Validity Checking Routines 59
Passing Control to Verify Exit Routines 59
Translation to Uppercase . 59
Insertion of Default Values. 60
Insertion of Keywords . 60

What You Need to do to Use the Parse Service Routine. 60
Defining Command Operand Syntax 61

Positional Operands . 61
Keyword Operands . 75

Using the Parse Macro Instructions to Define Command Syntax 76
Using IKJPARM to Begin the PCL and the PDL 77
Using IKJPOSIT to Describe a Delimiter-Dependent Positional Operand . . . 78
Using IKJTERM to Describe a Delimiter-Dependent Positional Operand . . . 83
Using IKJOPER to Describe a Delimiter-Dependent Positional Operand . . . 87
Using IKJRSVWD to Describe a Delimiter-Dependent Positional Parameter 91
Using IKJIDENT to Describe a Non-Delimiter-Dependent Positional Operand 94
Using IKJKEYWD to Describe a Keyword Operand 99
Using IKJNAME to List Keyword or Reserved Word Operand Names . . . 100
Using IKJSUBF to Describe a Keyword Subfield 103
Using IKJUNFLD to Describe Unidentified Keyword Operands 104
Using IKJENDP to End the Parameter Control List 106
Using IKJRLSA to Release Virtual Storage Allocated by Parse 107
Examples Using the Parse Macro Instructions 107

Using Validity Checking Routines 112
Passing Control to Validity Checking Routines 112
Return Codes from Validity Checking Routines 113

Using Verify Exit Routines . 114
Passing Control to Verify Exit Routines 114
Return Codes from Verify Exit Routines 116

Passing Control to the Parse Service Routine 117
The Parse Parameter List 118

Checking Return Codes from the Parse Service Routine 118
Examining the PDL Returned by the Parse Service Routine 120

The PDL Header . 121
PDEs Created for Positional Operands Described by IKJPOSIT 121
PDEs Created for Positional Operands Described by IKJTERM 131
The PDE Created for Expression Operands Described by IKJOPER 135
The PDE Created for Reserved Word Operands Described by IKJRSVWD 136
The PDE Created for Positional Operands Described by IKJIDENT 136
The PDE Created for Keyword Operands Described by IKJKEYWD 137
The PDE Created for Keyword Operands Described by IKJUNFLD 137
How the List and Range Options Affect PDE Formats 137

© Copyright IBM Corp. 1988, 2002 51

Examples Using the Parse Service Routine 144
Example 1: Describing a PROCESS Command Syntax 144
Example 2: Describing an EDIT Command Syntax 145
Example 3: Describing an AT Command Syntax 149
Example 4: Describing a LIST Command Syntax 152
Example 5: Describing a WHEN Command Syntax 156

This chapter describes how to use the parse service routine in a command
processor to determine the validity of command and subcommand operands. The
first three sections, Overview of the Parse Service Routine (IKJPARS), Character
Types Accepted by the Parse Service Routine, and Services Provided by the Parse
Service Routine, present the terminology and concepts that are necessary to
understand the functions of the parse service routine. The remainder of this chapter
consists of a step-by-step explanation of how to use the parse service routine,
followed by detailed discussions of each of the steps in the process.

Overview of the Parse Service Routine (IKJPARS)
If you write your own command processors to run under TSO/E, you need a
method of determining whether command or subcommand operands entered into
the system are syntactically correct. The parse service routine performs this
function by searching the command buffer for valid operands.

There are two types of operands that are recognized by the parse service routine:
positional operands and keyword operands. Positional operands occur first, and
must be in a specific order. Keyword operands can be entered in any order, as long
as they follow all of the positional operands. Positional operands or their
placeholders (,) cannot be omitted when followed by keyword operands.

Before invoking the parse service routine, your command processor must create a
parameter control list (PCL), which describes the permissible operands. Parse
compares the information supplied by your command processor in the PCL to the
operands in the command buffer. Each acceptable operand must have an entry built
for it in the PCL; an individual entry is called a parameter control entry (PCE).

The parse service routine returns the results of scanning and checking the
operands in the command buffer to the command processor in a parameter
descriptor list (PDL). The entries in the PDL, called parameter descriptor entries
(PDEs), contain indications of specified options, pointers to data set names, or
pointers to the subfields entered with the command operands.

When your command processor invokes the parse service routine, it must pass a
parse parameter list (PPL), which contains pointers to control blocks and data areas
that are needed by parse. Addresses needed to access the PCL and PDL are
included in the parse parameter list.

The Parse Macro Instructions
Use the parse macro instructions in your command processor to:

v Build a PCL describing the valid command or subcommand operands.

v Establish symbolic references for the PDL returned by the parse service routine.
The labels used by your command processor on the various parse macro
instructions allow you to access the fields in the DSECT which maps the PDL.

See Table 15 on page 76 for a description of the parse macro instructions and their
functions.

52 z/OS V1R4.0 TSO/E Programming Services

Figure 14 shows the interaction between a command processor and the parse
service routine.

Character Types Accepted by the Parse Service Routine
The following table shows the various character types that are recognized by the
parse service routine. Throughout this chapter, the alphanumeric characters are as
follows, unless otherwise indicated.
Alpha A - Z
Numeric 0 - 9
Special $, #, @

Table 13. Character Types Recognized by the Parse Service Routine

Separator $ # @ Alphabetic Numeric
Command
Delimiter Delimiter Special

Comment /* X

Horizontal Tab HT X X

Blank b X X

Length Offset Command Name

Command Buffer

The Command
Processor uses the
IKJPARMD DSECT
to access the
various PDEs within
the PDL.

Parse Service RoutineCommand Processor

0 2 4

Builds the PDL.

CALLTSSR/LINK to Parse

PCL

PCE1

PCE2

PCE3

PDL

PDE

PDE

PDE

Return to the Command Processor

label1

label2

label3

Operand 1 Operand 2 Operand 3

Issues Parse macro
instructions to build
a PCL describing
valid operands

label1 Macro
label2 Macro
label3 Macro

These macro
instructions also
create the
IKJPARMD DSECT.

IKJPARMD
DSECT

Compares PCE’s to
operands in the
Command Buffer.

Figure 14. An Example of a Command Processor Using the Parse service routine

Overview of the Parse Service Routine (IKJPARS)

Chapter 6. Verifying Command and Subcommand Operands with Parse 53

Table 13. Character Types Recognized by the Parse Service Routine (continued)

Separator $ # @ Alphabetic Numeric
Command
Delimiter Delimiter Special

Comma , X X

Dollar Sign $ X

Number Sign # X

At Sign @
a-z
A-Z
0-9

X
X
X

X

New line NL X X

Period . X X

Left parenthesis (X X

Right
parenthesis

) X X

Ampersand & X X

Asterisk * X

Semicolon ; X X

Minus sign,
hyphen

- X X

Slash / X X

Apostrophe ‘ X X

Equal sign = X X

Cent sign c X

Less than < X

Greater than > X

Plus sign + X

Logical OR | X

Exclamation
point

! X

Logical NOT ¬ X

Percent sign % X

Dash - X

Question mark ? X

Colon : X

Quotation Mark " X

Shift-out1 X'0E' X

Shift-in1 X'0F' X
1 The shift-out and shift-in characters indicate the beginning and end of a string of double-byte character set data.

Treatment of Comment Character /* by the Parse Service Routine
The parse service routine recognizes blanks, tabs, commas, and comments as
separator characters between command operands. Comments are used with TSO/E
commands in two flavors:

Character Types Accepted by the Parse Service Routine

54 z/OS V1R4.0 TSO/E Programming Services

1. As an embedded comment, separated from the command part by a starting
delimiter of /* and an ending delimiter of */, for example:
listd /* my data sets */ (data_set_list)

This is the required form if the command is continued after the comment.

2. As an open comment that is not ended by an ending delimiter of */, for
example:
listd (data_set_list) /* my data sets

Here, the comment is the last part of the line and the ending delimiter of */ is
not required. Everything what follows the starting /* on this logical line is treated
as a comment.

Also ending a comment with */ is a convention, it is not a requirement.

The parse service routine treats the starting delimiter /* and the ending delimiter */
as separator characters in the same manner as it does with tabs, blanks, and
commas, when scanning and checking the command buffer content.

v If found within a quoted string, /* and */ are treated as literal characters, no
matter whether they appear paired, single, or in reverse order.

v Outside quoted strings /* and */ are treated as comment delimiters. The
delimiters and everything between them is removed by the parse service routine
and are not accessible for further processing.

A single occurrence of /* without ending */ makes the parse service routine to
ignore the starting delimiter and everything what follows on the logical line.

A single occurrence of */ without starting /* makes the parse service routine to
treat */ as literal characters.

Acceptance of Double-Byte Character Set Data
The parse service routine accepts double-byte character set (DBCS) strings in
addition to EBCDIC character strings. The shift-out character (X'0E') indicates a
change from EBCDIC to DBCS; the shift-in character (X'0F') indicates the reverse.
Each double-byte character requires a double-byte representation so that valid
DBCS strings contain an even number of bytes. With the exception of blank, which
is X'4040', each byte has a value from X'41' to X'FE'. If the DBCS string contains
an incorrect character, parse replaces it with X'4195'.

Double-byte characters can appear in comments and certain types of strings of user
data. If the programming language you are using supports DBCS data, default
values can also contain valid DBCS strings. DBCS strings that appear where they
are not accepted could cause an error condition. The types of user strings that can
contain DBCS data along with the associated parse macro and operand follows:

Type of String Macro Operand

Self delimiting string IKJPOSIT STRING

Quoted string IKJPOSIT QSTRING

Parenthesized string IKJPOSIT PSTRING

Value string IKJPOSIT VALUE

Quoted character constant IKJTERM CONSTANT

Quoted character string IKJIDENT CHAR or HEX

Character Types Accepted by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 55

Parse does not accept DBCS strings in prompting mode. In addition, you cannot
use DBCS strings in quoted data set names, quoted passwords for data sets, or
quoted passwords for user IDs because MVS does not accept DBCS strings in
those cases. However, the parse macro, IKJPOSIT, treats X'0E' and X'0F' as DBCS
delimiters in quoted data set names (DSNAME and DSTHING parameters), quoted
passwords for data sets (DSNAME and DSTHING parameters), and quoted
passwords for user IDs (USERID and UID2PSWD parameters).

Check all hexadecimal data that you pass to parse to be sure that X'0E' and X'0F'
represent the shift-out and shift-in characters when appropriate. Previously, parse
treated those characters simply as hexadecimal data. Now, when used in the
strings mentioned earlier in this topic, parse treats them as DBCS delimiters.
Therefore, change X'0E' and X'0F' to some other values if they do not represent the
shift-out and shift-in characters and you are passing them through the parse
service.

Services Provided by the Parse Service Routine
The function of the parse service routine is to syntax check command operands
within the command buffer against the PCL, and build a PDL containing the results
of the syntax check. In addition, the parse service routine provides the following
services that can be selected by the calling routine:

v It prompts the user if required operands are missing or incorrect.

v It issues messages for certain error conditions, or the validity checking routine or
verify exit routine issues messages before requesting that parse terminate.

v It appends second-level messages, supplied by the calling program, to prompting
messages.

v It passes control to a validity checking routine, supplied by the calling program, to
do additional checking on a positional operand.

v It passes control to a verify exit routine, supplied by the calling program, to
perform checking on a keyword operand that is not specifically defined in the
PCL.

v It translates the command operands to uppercase.

v It substitutes default values for missing operands.

v It inserts implied keywords.

Prompting the User for Missing or Required Operands
The parse service routine prompts the terminal user if the command operands
found are incorrect or if required operands are missing. It allows the terminal user
to enter a missing operand or correct an incorrect one without having to reenter the
entire command. The parse service routine prompts, and the terminal user must
respond, in the following situations:

v A userid or dsname was entered with a slash but without a password.

v An operand is syntactically not valid.

v A keyword is ambiguous, that is, it is not clear to the parse service routine which
keyword of several similar ones is being entered.

v A required positional operand is missing. The requirement for a particular
positional operand and the prompting message to be issued if that operand is not
present, are specified to the parse service routine through the PROMPT operand
of the IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD, and IKJIDENT macro
instructions. The parse service routine issues the prompting message supplied in
the macro instruction.

Character Types Accepted by the Parse Service Routine

56 z/OS V1R4.0 TSO/E Programming Services

v A validity checking routine indicates that an operand is incorrect.

v A verify exit routine indicates that an operand is incorrect and that parse should
prompt the user.

How Parse Processes Responses
There are several rules that govern how the parse service routine processes
responses entered from the terminal after a prompt:

1. All of the new data entered is parsed before the scan of the original command
is resumed.

2. Unless otherwise stated in the command syntax definition, the new operand
must be entered as it is entered in the original command. See “Defining
Command Operand Syntax” on page 61 for exceptions to this rule.

3. In general, a user can enter additional operands along with the data prompted
for. It must be kept in mind, however, that all of the new data entered is parsed
before the scan of the material in the original command buffer is resumed.

Positional operands must occur first in the string of operands, and they must be
in a specific order. Therefore, a problem could occur in a situation where a
command is entered followed by two positional operands and a keyword, and
the first positional operand is not valid. The parse service routine issues a
prompt for the first positional operand. When the user at the terminal reenters
that first positional operand, it would be incorrect to enter additional keywords
along with it. The additional keywords would be scanned before the second
positional operand and an error condition would result when the parse service
routine returned to the original command buffer and found a positional operand.

Note: If the operand prompted for is within a subfield, only operands valid
within that subfield can be entered along with the operand prompted for.

4. In general, a null response is acceptable only for optional operands. However, if
the user enters a null response for an optional operand that has a default, parse
inserts the default. If a prompt for a required operand is answered by a null
response from the terminal, parse reissues the prompt message. The parse
service routine continues prompting until a correct operand is entered. The
terminal user can request termination by entering an attention.

Parse always accepts a null response to a prompt for a password, whether or
not the dsname or userid operands are required. The program that invokes the
parse service routine must ensure that the correct password was entered if one
was required, by checking the password pointed to by the PDE returned by the
parse service routine.

5. If a required operand which can be entered in the form of a list is missing, or if
it was entered as a single operand (not as a list), and that single operand is
incorrect, parse will not accept a list after the prompt. The user at the terminal
must enter a single operand.

If, however, the item was entered as a list but an item within the list is incorrect,
the parse service routine accepts one or more operands after the prompt. The
parse service routine considers these newly entered operands to be part of the
original list. Operands that are not valid in the list cannot be entered from the
terminal in response to this prompt.

If the last item in a list is found to be not valid, parse only accepts one operand
after a prompt.

6. If the parse service routine determines that an operand is not valid, the not valid
portion of the operand is indicated in the error message. The remainder of the
operand is not yet parsed. The user must reenter as much of the incorrect
operand as was indicated in the error message. For example, this can occur if a

Services Provided by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 57

dsname operand or userid operand is entered with blanks between the dsname
or userid and the password. The dsname or userid can be not valid but the
password is still good and will be parsed after a new dsname or userid is
entered in response to the prompt.

Although the parse service routine always attempts to obtain syntactically correct
operands before returning to the calling routine, this is not always possible. The
terminal user could have requested that no prompt messages be sent to the
terminal, or the command being parsed could have come from a procedure. In
these cases, the parse service routine issues an error message and returns a code
to the calling routine indicating that a correct command could not be obtained. Any
second-level messages that would ordinarily be appended to the request for new
data are appended to the error message.

Issuing Error Messages When Parse Does Not Complete Successfully
If the parse service routine does not complete successfully, register 15 contains a
return code. If that return code is 4, parse has already issued a message. When the
return code is either 20 or 32, the validity checking routine or verify exit routine,
respectively, has issued a message before it requested that parse terminate.

Issuing Second-Level Messages
Your command processor can supply second-level messages to be chained to any
prompt message issued for a positional operand (keyword operands are never
required). Use the HELP operand of the IKJPOSIT, IKJTERM, IKJOPER,
IKJRSVWD or IKJIDENT macro instructions to supply these second-level messages
to the parse service routine. You can supply up to 255 second-level messages for
each positional operand. One second-level message is issued each time a question
mark is entered from the terminal.

If a user-provided validity checking routine returns the address of a second-level
message to the parse service routine, that second-level message or chain will be
written out in response to question marks entered from the terminal. The original
second-level chain, if one was present, is deleted.

The format of these second-level messages is the same as the HELP second-level
message portion of the PCE for the macro from which the validity checking routine
received control.

Using the Prompt Mode HELP Function
If a question mark is entered and no second-level messages were provided, or they
have all been issued in response to previous question marks, parse determines
whether it can generate a valid HELP command to provide the user with additional
information.

If the ECTNOQPR bit in the environment control table (ECT) is zero, then the
prompt mode HELP function is active and parse processing generates a HELP
command on the user’s behalf. Parse ensures that only one HELP command is
issued during a prompting sequence for a given operand. If the user enters another
question mark after viewing the on-line usage information, the NO INFORMATION
AVAILABLE message is issued.

When your command processor receives control, the ECTNOQPR bit in the ECT is
set to zero, which activates the prompt mode HELP function. However, parse sets
ECTNOQPR to one before it returns control to the command processor. Therefore,

Services Provided by the Parse Service Routine

58 z/OS V1R4.0 TSO/E Programming Services

the prompt mode HELP function is not active during subsequent invocations of
parse from your command processor or from any subcommands attached by your
command processor.

If your command processor accepts subcommands and wants the prompt mode
HELP function to be available for a subcommand, it should set ECTNOQPR to zero
before attaching the subcommand. The command processor should also ensure
that the ECTPCMD and ECTSCMD fields in the ECT contain the command name
and the subcommand name respectively.

If you do not want the prompt mode HELP function to be active, your command
processor should set the ECTNOQPR bit to one before it invokes parse for the first
time.

Passing Control to Validity Checking Routines
Your command processor can provide a validity checking routine to do additional
checking on a positional operand. This routine receives control after the parse
service routine has determined that the operand is non-null and syntactically
correct. Each positional operand can have a unique validity checking routine. “Using
Validity Checking Routines” on page 112 describes what you must do to provide a
validity checking routine.

Passing Control to Verify Exit Routines
Your command processor can provide verify exit routines to perform checking when
the parse service routine encounters either of the following in the command buffer:
v Unidentified keyword operands
v Unidentified keyword operands within a subfield.

To indicate the presence of a verify exit routine, specify its address on the
IKJUNFLD macro instruction. When the parse service routine encounters a keyword
operand or subfield operand in the command buffer that is not specifically defined in
the PCL, it determines whether a PCE has been created by the IKJUNFLD macro
instruction. If parse encounters such a PCE, it gives control to the verify exit
routine; if it does not, the operand is treated as not valid. The parse service routine
uses only the first specification of the IKJUNFLD macro instruction when
unidentified keyword operands are present in the command buffer. Similarly, parse
uses only the first specification of the IKJUNFLD macro instruction within a subfield
specification when an unidentified keyword is present within a subfield. “Using Verify
Exit Routines” on page 114 describes what you must do to provide verify exit
routines.

Translation to Uppercase
The parse service routine normally translates positional operands to uppercase
unless the calling routine specifies ASIS in the IKJPOSIT or IKJIDENT macro
instructions. The first character of a value operand, the type-character, is always
translated to uppercase, however. Parse translates the string that follows the type
character to uppercase unless ASIS is coded in the describing macro instructions.

Double-byte character set strings are an exception to this rule. Regardless of
whether you specify ASIS, parse does not translate the contents of the double-byte
character set string to upper case.

Services Provided by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 59

Insertion of Default Values
Positional operands (except delimiter and space) and keyword operands can have
default values. These default values are indicated to the parse service routine
through the DEFAULT= operand of the IKJPOSIT, IKJTERM, IKJOPER,
IKJRSVWD, IKJIDENT, and IKJKEYWD macro instructions. When a positional or a
keyword operand is omitted, for which a default value has been specified, the parse
service routine inserts the default value.

The parse service routine also inserts the default value you specified if an operand
is not valid and the terminal user enters a null line in response to a prompt.

Insertion of Keywords
Some keyword operands can imply other keyword operands. You can specify that
other keywords are to be inserted into the parameter string when a certain keyword
is entered. Use the INSERT operand of the IKJNAME macro instruction to indicate
that a keyword or a list of keywords is to be inserted following the named keyword.
Parse processes inserted keywords as though they were entered from the terminal.

What You Need to do to Use the Parse Service Routine
This section gives a step-by-step description of what you must do to use the parse
service routine. The sections that follow provide more detailed information on each
of the major steps.

Follow these steps when using the parse service routine:

1. Define the syntax of the operands of the command or subcommand. This topic
is discussed in “Defining Command Operand Syntax” on page 61.

2. Use the parse macro instructions to build the parameter control list (PCL) that
describes the command or subcommand operand syntax. The parse macro
instructions are described in “Using the Parse Macro Instructions to Define
Command Syntax” on page 76.

v Use the IKJPARM macro instruction to begin the parameter control list (PCL).

v Use the appropriate parse macro instructions to build the parameter control
entries (PCEs) that parse will use to check the syntax of the operands.

v Use the IKJENDP macro instruction to indicate the end of the parameter
control list (PCL) for the command or subcommand.

3. Provide installation exits for operand checking (optional).

v Write validity checking routines to do additional checking on positional
operands. See “Using Validity Checking Routines” on page 112 for a
discussion of this topic.

v Write verify exit routines to check unidentified keyword operands or
unidentified keyword operands within a subfield. See “Using Verify Exit
Routines” on page 114 for a discussion of this topic.

4. Pass control to the parse service routine. See “Passing Control to the Parse
Service Routine” on page 117.

5. Check the return code passed by the parse service routine in general register
15. Return codes are listed in “Checking Return Codes from the Parse Service
Routine” on page 118.

6. Examine the results of the scan of the command buffer returned by parse in the
parameter descriptor list (PDL). See “Examining the PDL Returned by the Parse
Service Routine” on page 120 for a description of the PDEs returned by parse.

Services Provided by the Parse Service Routine

60 z/OS V1R4.0 TSO/E Programming Services

Defining Command Operand Syntax
If you write your own command processors, and you intend to use the parse service
routine to determine which operands have been entered following the command
name, your command operands must adhere to the syntactical structure described
in this section.

Command operands must be separated from one another by one or more of the
separator characters: blank, tab, comma, or a comment (see the table on page 53).
The command operands end either at the end of a logical line (carrier return), or at
a semicolon. If the command operands end with a semicolon, and other characters
are entered after the semicolon but before the end of the logical line, the parse
service routine ignores the portion of the line that follows the semicolon. The parse
service routine does not issue a message to indicate this condition.

The parse service routine recognizes two types of command operands:

Positional operands This type must be entered first in the parameter
string, and they must be entered in a specific order.

Keyword operands This type can be entered anywhere in the
command as long as they follow all positional
operands. See “Keyword Operands” on page 75 for
more information.

Positional Operands
Positional operands must be entered first in the parameter string, and they must be
in a specific order.

In general, the parse service routine considers a positional operand to be missing if
the first character of the operand scanned is not the character expected. For
example, if an operand is supposed to begin with a numeric character and the
parse service routine finds an alphabetic character in that position, the numeric
operand is considered missing. The parse service routine then prompts for the
missing operand if it is required, substitutes a default value if one is available, or
ignores the missing operand if the operand is optional.

For the purpose of syntax checking, positional operands are divided into two
categories:

v Delimiter-dependent operands include delimiters as part of their definition. See
“Delimiter-Dependent Operands” for more information.

v Non-delimiter-dependent operands do not include delimiters as part of their
definition. See “Positional Operands Not Dependent on Delimiters” on page 74 for
more information.

Delimiter-Dependent Operands
Those operands that include delimiters as part of their definition are called
delimiter-dependent operands. Table 14 shows the delimiter-dependent syntaxes
that the parse service routine recognizes and the macro instruction that is used to
specify each type.

Defining Command Operand Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 61

Table 14. Delimiter-Dependent Operands

Operand Macro Instruction Used to Describe Operand

DELIMITER
STRING
VALUE
ADDRESS
PSTRING
USERID
UID2PSWD
DSNAME
DSTHING
QSTRING
SPACE
JOBNAME

IKJPOSIT

CONSTANT
VARIABLE
STATEMENT NUMBER

IKJTERM

EXPRESSION IKJOPER

RESERVED WORD IKJRSVWD

HEX
CHAR
INTEG

IKJIDENT

DELIMITER
A delimiter can be any character other than an asterisk, left parenthesis, right
parenthesis, semicolon, blank, comma, tab, carrier return, digit, shift-out
character (X'0E'), or shift-in character (X'0F'). A self-defining delimiter character
is represented in this discussion by the symbol #. The delimiter operand is used
only in conjunction with the string operand.

STRING
A string is the group of characters between two alike self-defining delimiter
characters, such as
#string#

or, the group of characters between a self-defining delimiter character and the
end of a logical line, such as
#string

The same self-defining delimiter character can be used to delimit two
contiguous strings, such as
#string#string#

or
#string#string

A null string, which indicates that a positional operand has not been entered, is
defined as two contiguous delimiters or a delimiter and the end of the logical
line. If the missing string is a required operand, the null string must be entered
as two contiguous delimiters. Note that a string received from a prompt or a
default must not include the delimiters. See “Acceptance of Double-Byte
Character Set Data” on page 55 for information about using double-byte
character set data in a self-delimiting string.

Defining Command Operand Syntax

62 z/OS V1R4.0 TSO/E Programming Services

VALUE
A value consists of a character followed by a string enclosed in apostrophes,
such as
X'string'

The character must be alphabetic or one of the special characters $, #, @. The
string can be of any length and can consist of any combination of enterable
characters. If the ending apostrophe is omitted, the parse service routine
assumes that the string ends at the end of the logical line. If the parse service
routine encounters two successive apostrophes, it assumes they are part of the
string and continues to scan for a single ending apostrophe. The parse service
routine always translates the character preceding the first apostrophe to
uppercase. The value is considered missing if the first character is not
alphabetic or one of the special characters $, #, @, or if the second character is
not an apostrophe. See “Acceptance of Double-Byte Character Set Data” on
page 55 for information about using double-byte character set data in a value
string.

ADDRESS
There are several forms of the ADDRESS operand. Note that blanks are not
allowed within any form of the ADDRESS operand.

Absolute address
consists of from one to six hexadecimal digits followed by a period, or, in
extended mode, from one to eight hexadecimal digits followed by a period.
An extended absolute address must not exceed the address represented by
the hexadecimal value X'7FFFFFFF'. (For more information on extended
addressing, see the description of the EXTENDED operand in “Using
IKJPOSIT to Describe a Delimiter-Dependent Positional Operand” on
page 78.)

Relative address
consists of from one to six hexadecimal digits preceded by a plus sign, or,
in extended mode, from one to eight hexadecimal digits preceded by a plus
sign.

General register address
consists of a decimal integer in the range 0 to 15 followed by the letter R. R
can be entered in either uppercase or lowercase.

Floating-point register address
consists of an even decimal integer in the range 0 to 6 followed by the
letter D (for double precision) or E (for single precision). The letter E or D
can be entered in either uppercase or lowercase.

Vector register address
is of the form:

register-number
consists of a decimal integer in the range 0-15, if V is specified. If W is
specified, the register number must be an even decimal integer in the
range 0-14.

register-number {V} (element-number)
{W}

Defining Command Operand Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 63

V indicates single precision. V can be entered in either uppercase or
lowercase.

W indicates double precision. W can be entered in either uppercase or
lowercase.

element-number
consists of a decimal integer in the range 0 through one less than the
section size, or an asterisk, (*). Asterisk indicates that all elements of
the vector register are considered.

The section size, which is the number of elements in a vector register,
is dependent upon the model of the CPU that has the vector facility
installed. See System/370 Vector Operations for information on the
vector facility.

Vector mask register address
consists of the decimal integer 0 followed by the letter M. M can be entered
in either uppercase or lowercase.

Access register address
consists of a decimal integer in the range 0 to 15 followed by the letter A. A
can be entered in either uppercase or lowercase.

Symbolic address
consists of any combination of alphanumeric characters and the break
character, and may be up to 32 characters long. The first character must be
either alphabetic or one of the special characters $, #, @.

Qualified address
has one of the following formats:
1. module_name.entry_name.relative_address
2. module_name.entry_name
3. module_name.entry_name.symbolic_address
4. .entry_name.symbolic_address
5. .entry_name.relative_address
6. .entry_name

module_name
any combination of one to eight alphanumeric characters, where the
first is an alphabetic character or one of the special characters $, #, @

entry_name
same syntax as a module_name, and always preceded by a period

symbolic_address
syntax as defined above, and always preceded by a period

relative_address
syntax as defined above, and always preceded by a period.

The user can qualify symbolic or relative addresses to indicate that they
apply to a particular module and CSECT as in formats 1 to 3. However, if
the address applies to the currently active module, it is not necessary to
specify module_name, as in formats 4 to 6.

Indirect address
is an absolute, relative, or symbolic address (or general register containing
an address), followed by 1 to 255 indirection symbols (% or ?). When the
EXTENDED keyword is specified on the IKJPOSIT macro, the user can

Defining Command Operand Syntax

64 z/OS V1R4.0 TSO/E Programming Services

specify the 31-bit indirection symbol, ?. The 24-bit indirection symbol, %,
can also be specified. If EXTENDED is not specified, only the 24-bit
indirection symbol can be used.

Note: In the following examples, hash marks indicate that the byte is not
used to determine the 24-bit address.

Figure 15 shows an example of an indirect address that is made up of a
relative address with one level of 24-bit indirect addressing.

The number of indirection symbols following the address indicates the In
Figure 15, the data is at the location pointed to by bits 0-24 of relative
address +A.

Figure 16 shows how the substitution of a 31-bit indirection symbol, ?,
changes the result of the resolution of an indirect address. The example
assumes that EXTENDED has been specified on IKJPOSIT.

Figure 17 shows an example of an indirect address in which 24- and 31-bit
indirection symbols are combined. The example assumes that EXTENDED
has been specified on IKJPOSIT.

In Figure 17, four levels of indirect addressing are processed to resolve the
indirect address.

+ A%

RELATIVE LOC + A

LOC C2C

DATA

00 0C 2C

Figure 15. Example of 24-Bit Indirect Addressing

DATA

00 0C 2C

+ A?

RELATIVE LOC + A

LOC 23000C2C

23

Figure 16. Example of 31-Bit Indirect Addressing

Defining Command Operand Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 65

Address expression
has one of two formats, depending on whether the EXTENDED keyword is
specified on the IKJPOSIT macro.

1. EXTENDED not specified:

An address expression has the following format when EXTENDED has
not been specified:
address{±}expression_value[%...][{±}expression_value [%...]]...

address
can be an absolute, symbolic, indirect, relative, or general register
address. If a general register is specified, it must be followed by at
least one indirection symbol.

expression_value
a plus or minus displacement from an address in storage, consisting
of from one to six decimal or hexadecimal digits

v Decimal displacement is indicated by an “N” or “n” following the
offset. The absence of an “N” or “n” indicates hexadecimal
displacement.

v There is no limit to the number of expression values in an
address expression.

Each expression value can be followed by from one to 255 percent
signs, one for each level of indirect addressing.

For example, addr1+124n, an address expression in decimal format,
indicates a location 124 decimal bytes beyond addr1. Another example,
addr2-AC, is an address expression in hexadecimal format and
indicates a location 172 decimal bytes before addr2.

+A%??%

RELATIVE LOC +A

00 0B C8

00 00 01 48

01 00 A0 94

00 00 30

DATA

LOC BC8

LOC 148

LOC 100A094

LOC 30

Figure 17. An Indirect Address with Mixed Indirection Symbols

Defining Command Operand Syntax

66 z/OS V1R4.0 TSO/E Programming Services

The processing of an address expression, 12R%%+4N%, involving
24-bit indirect addressing, is shown in Figure 18. The address in the
expression is a general register address with two levels of indirect
addressing. The result of the processing of this part of the address
expression is location 1D0. The expression value indicates a
displacement of four bytes beyond location 1D0 with one level of
indirect addressing. The data, then, is at location 474.

2. EXTENDED specified:

An address expression has the following format when EXTENDED has
been specified:

address
can be an absolute, symbolic, indirect, relative, or general register
address. If a general register is specified, it must be followed by at
least one indirection symbol.

expression_value
a plus or minus displacement from an address in storage, consisting
of a one- to ten-digit decimal number, or a one- to eight-digit
hexadecimal number.

v Decimal displacement is indicated by an “N” or “n” following the
offset. The absence of an “N” or “n” indicates hexadecimal
displacement.

v There is no limit to the number of expression values in an
address expression.

12R%%+4N%

R12

00 01 28

00 01 D0

00 04 74

DATA

LOC 128

LOC 1D0

LOC 474

+4

Figure 18. An Address Expression with 24-Bit Indirect Addressing

[] []
address{±}expression_value[[%]][{±}expression_value[[%]]]

[[&?] ...][[[?] ...]] ...

Defining Command Operand Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 67

Each expression value can be followed by from one to 255
indirection symbols (including any valid combination of question
marks and percent signs), one for each level of indirect addressing.

The processing of an address expression involving both 24- and 31-bit
indirect addressing is shown in Figure 19.

PSTRING
A parenthesized string is a string of characters enclosed within a set of
parentheses, such as:
(string)

The string can consist of any combination of characters of any length, with one
restriction; if it includes parentheses, they must be balanced. However, the
enclosing right parenthesis of a PSTRING can be omitted if the string ends at
the end of a logical line.

A null PSTRING is defined as a left parenthesis followed by either a right
parenthesis or the end of a logical line. See “Acceptance of Double-Byte
Character Set Data” on page 55 for information about using double-byte
character set data in a parenthesized string.

USERID
A user ID consists of an identification optionally followed by a slash and a
password. The format is:

7R?%+4N%?%

R7

00 00 07 28

00 0A C4

00 07 84

03 00 12 88

03 79 20

DATA

LOC 728

LOC AC4

LOC 784

LOC 3001288

LOC 37920

+4

Figure 19. An Address Expression with Mixed Indirection Symbols

Defining Command Operand Syntax

68 z/OS V1R4.0 TSO/E Programming Services

identification[/password]

identification
can be any combination of alphanumeric characters up to seven characters
in length, the first of which must be an alphabetic character or one of the
special characters $, #, @.

password
can be any combination of alphanumeric characters up to eight characters
in length. If delimiters are used, the password must be enclosed in quotes.
If quotes are to be used in the password, two quotes must be entered
consecutively. One of them will be eliminated by the parse service routine.

Separators can be inserted between the identification and the slash, and
between the slash and the password.

If just the identification is entered, the parse service routine does not prompt for
a password. If the identification is entered followed by a slash and no password,
the parse service routine prompts for a password. The password entered by the
terminal user does not print at the terminal. The terminal user can reply to a
prompt for password by entering either a password or a null line. If the user
enters a null line, the parse service routine builds the PDE and leaves the
respective password field zero.

UID2PSWD
A user ID consists of an identification optionally followed by two passwords. The
delimiter between the three values is a slash. The format is:
identification[/password1[/password2]]

identification
can be any combination of alphanumeric characters up to seven characters
in length, the first of which must be an alphabetic character or one of the
special characters $, #, @.

password1
can be any combination of alphanumeric characters up to eight characters
in length. If delimiters are used, the password must be enclosed in quotes.
If quotes are to be used in the password, two quotes must be entered
consecutively. One of them will be eliminated by the parse service routine.

password2
Same as password1.

Separators can be inserted between the identification and the slash, and
between a slash and any of the passwords.

If just the identification is entered, the parse service routine does not
prompt for a password.

If the identification is entered followed by a slash and no password1, the
parse service routine prompts for password1. The password1 entered by
the terminal user does not print at the terminal.

If password1 is entered followed by a slash and no password2, the parse
service routine prompts for password2. The password2 entered by the
terminal user does not print at the terminal.

The terminal user can reply to a prompt for a password by entering either a
password or a null line. If the user enters a null line, the parse service
routine builds the PDE and leaves both password fields zero.

Defining Command Operand Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 69

|
|

|
|

|
|
|

|
|
|

|
|
|

IKJPOSIT generates a variable-length parameter control entry (PCE). Within the
PCE, a field contains a hexadecimal number indicating the type of positional
operand described by the PCE. For UID2PSWD, the hexadecimal number is C.

DSNAME
The data set name operand has three possible formats:

dsname
may be either a qualified or an unqualified name.

An unqualified name is any combination of alphanumeric characters up to
eight characters in length, the first of which must be an alphabetic character
or one of the special characters $, #, @.

A qualified name is made up of several unqualified names, each unqualified
name separated by a period. A qualified name, including the periods, can
be up to 44 characters in length.

membername
One to eight alphanumeric characters, the first of which must be an
alphabetic character or one of the special characters $, #, @.

The parse service routine considers the entire DSNAME operand missing if the
first character scanned is not an apostrophe, an alphabetic character, a special
character $, #, @, or a left parenthesis. If the VOLSER option is specified, the
first character can be numeric.

If it is numeric, only six characters are accepted for VOLSER. VOLSER is valid
only for DSNAME or DSTHING. If USID is specified, the parse service routine
will prefix all data set names not entered in quotes with the user identification
contained in the user profile table (UPT). Note that the user identification is not
necessarily the user ID but can be any dsname-prefix specified as parameter
with the PROFILE PREFIX command.

If the slash and the password are not entered, the parse service routine does
not prompt for the password. If the slash is entered and not the password, the
parse service routine prompts for the password. This ensures that the terminal
user’s reply does not print at the terminal.

DSTHING
A DSTHING is a dsname operand as previously defined except that an asterisk
can be substituted for an unqualified name or for each qualifier of a qualified
name. The parse service routine processes the asterisk as if it were a dsname.
The asterisk is used to indicate that all data sets at that particular level are
considered.

Note: If the first character of a dsname is an asterisk, the parse service routine
will not prefix the USERID.

QSTRING
A quoted string is a string of characters enclosed within apostrophes, such as:
‘string’

dsname [(membername)] [/password]
[dsname] (membername) [password]
’dsname [(membername)] ’ [/password]

Defining Command Operand Syntax

70 z/OS V1R4.0 TSO/E Programming Services

The string can consist of a combination of characters, of any length, with one
restriction: if the user wants to enter apostrophes within the string, two
successive apostrophes must be entered for each single apostrophe desired.
One of the apostrophes is removed by the parse service routine.

The ending apostrophe is not required if the string ends at the end of the logical
line.

A null quoted string is defined as two contiguous apostrophes or an apostrophe
at the end of the logical line. See “Acceptance of Double-Byte Character Set
Data” on page 55 for information about using double-byte character set data in
a quoted string.

SPACE
Space is a special purpose operand; it allows a string operand that directly
follows a command name to be entered without a preceding self- defining
delimiter character. The space operand must always be followed by a string
operand. If the delimiter of the command name is a tab, the tab is the first
character of the string. The string always ends at the end of the logical line.

JOBNAME
The jobname can have an optional job identifier. Each job identifier is a
maximum of eight alphanumeric characters, the first of which must be an
alphabetic character or one of the special characters $, #, @. There is no
separator character between the jobname and job identifier. The syntax is
jobname(jobid).

CONSTANT
There are several forms of the constant operand.

Fixed-point numeric literal
consists of a string of digits (0 through 9) preceded optionally by a sign (+
or -), such as:
+1234.43

This literal can contain a decimal point anywhere in the string except as the
rightmost character. The total number of digits cannot exceed 18.
Embedded blanks are not allowed.

Floating-point numeric literal
takes the following form:
+1234.56E+10

This literal is a string of digits (0 through 9) preceded optionally by a sign (+
or -) and must contain a decimal point. This is immediately followed by the
letter E and then a string of digits (0 through 9) preceded optionally by a
sign (+ or -). Embedded blanks are not allowed. The string of digits
preceding the letter E cannot be greater than 16 and the string following E
cannot be greater than 2.

Non-numeric literal
consists of a string of characters from the EBCDIC character set, excluding
the apostrophe, and enclosed in apostrophes, entered as:
‘numbers (1234567890) and letters are ok’

The length of the string excluding apostrophes can be from 1 to 120
characters in length.

Defining Command Operand Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 71

Figurative constant
is one of a set of reserved words supplied by the caller of the parse service
routine such as:
test123

A figurative constant consists of a string of characters up to 255 in length.
Embedded blanks are not allowed. All characters of the EBCDIC character
set are allowed except the blank, comma, tab, semicolon, and carrier
return, however, the first operand must be alphabetic.

See “Acceptance of Double-Byte Character Set Data” on page 55 for
information about using double-byte character set data in a quoted character
constant.

VARIABLE
The following is the form of the variable operand.

program_id
consists of the first eight characters of a program identifier followed by a
period. The first character must be alphabetic (A through Z) and the
remaining characters must be alphabetic or numeric (0 through 9).

data_name
consists of a maximum of 30 characters of the following types: alphabetic
(A through Z), numeric (0 through 9), and hyphen (-).

An example is:
mydataset-123

The data-name cannot begin or end with a hyphen and must contain at
least one alphabetic character.
here55.mydataset-123

qualification
is applied by placing one or more data-names (preceded by the qualifiers
IN or OF) after a data-name. An example is:
mydataset-123 of yourdataset-456

The number of qualifiers that can be entered for a data-name is limited to
255.

subscript
consists of a data-name with subscripts enclosed in parentheses following
the data-name entered as:
yourdataset-456 (mydataset-123)

A separator between the data-name and the subscript is optional.
Subscripts are a list of constants or variables.

The number of subscripts that can be entered for a data-name is limited to
3, entered as:
here55 (abc def h15)

[program_id.]data_name[{OF}qualification]
[{IN}]
[(subscript)]

Defining Command Operand Syntax

72 z/OS V1R4.0 TSO/E Programming Services

A separator character between subscripts is required.

STATEMENT NUMBER
The following is the form of a statement number:
[program_id.]line_number[.verb_number]

An example is:
here.23.7

program_id
consists of the first eight characters of a program identifier followed by a
period. The first character must be alphabetic (A through Z) and the
remaining characters must be alphanumeric (A through Z or 0 through 9).

line_number
consists of a string of digits (0 through 9) and cannot exceed a length of six
digits.

verb_number
consists of one digit (0 through 9) that is preceded by a period.

Embedded blanks are not allowed in a statement number.

EXPRESSION
An expression takes the form:
(operand1 operator operand2)

The operator in the expression shows a relationship between the operands,
such as:
(abc equals 123)

An expression must be enclosed in parentheses. An expression is defined by
the IKJOPER macro. The operands are defined by the IKJTERM macro, and
the operator is defined by the IKJRSVWD macro instruction.

RESERVED WORD
has three uses depending on the presence of operands on the IKJRSVWD
macro instruction. The uses are:

v When used with the RSVWD keyword of the IKJTERM macro instruction, the
IKJRSVWD macro identifies the beginning of a list of reserved words, any
one of which can be entered as a constant.

v When used with the RSVWD keyword of the IKJOPER macro instruction, the
IKJRSVWD macro identifies the beginning of a list of reserved words, any
one of which can be an operator in an expression.

v When used by itself, the IKJRSVWD macro instruction defines a positional
reserved word operand.

The IKJRSVWD macro instruction is followed by a list of IKJNAME macros that
contain all of the possible reserved words used as figurative constants or
operators.

HEX
A hexadecimal value is any quantity of the form X'nn', ‘ABC’ (quoted string), or
any non-quoted character string where a separator or delimiter indicates the
end. See “Acceptance of Double-Byte Character Set Data” on page 55 for
information about using double-byte character set data in a quoted string of
characters.

Defining Command Operand Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 73

CHAR
A character string is any data in the form of a quoted or non-quoted string. See
“Acceptance of Double-Byte Character Set Data” on page 55 for information
about using double-byte character set data in a quoted string of characters.

INTEG
An integer is a numeric quantity in one of the following forms:

v (X'nn') - where n is a valid hexadecimal digit (A-F, 0-9), and there is a
maximum of 8 digits.

v (B'mm') - where m is a valid binary bit (0-1), and there is a maximum of 32
digits.

v dddddd - where d is a decimal digit 0-9, and there is a maximum of 10 digits.

The parse service routine converts an integer operand into its equivalent binary
value. The maximum decimal value for INTEG is 2147843647.

Positional Operands Not Dependent on Delimiters
A positional operand that is not dependent on delimiters is passed as a character
string with restrictions on the beginning character, additional characters, and length.
These restrictions are passed to the parse service routine as operands on the
IKJIDENT macro instruction.

The parse service routine recognizes the following character types as the beginning
character and additional characters of a non-delimiter-dependent positional
operand:

ALPHA
indicates an alphabetic character or one of the special characters $, #, @.

NUMERIC
indicates a number 0-9.

ALPHANUM
indicates an alphabetic character, one of the special characters $, #, @, or a
number.

ANY
indicates that the character to be expected can be any character other than a
blank, comma, tab, semicolon, or carrier return. A right parenthesis must,
however, be balanced by a left parenthesis.

NONATABC
indicates only an alphabetic character is accepted; special characters $, #, @
are not accepted.

NONATNUM
indicates numbers and alphabetic characters are accepted; special characters
$, #, @ are not accepted.

An asterisk can be entered in place of any positional operand that is not dependent
on delimiters.

Entering Positional Operands as Lists of Ranges
You might want to have some positional operands of your command entered in the
form of a list, a range, or a list of ranges. The macro instructions that describe
positional operands to the parse service routine, IKJPOSIT, IKJTERM and
IKJIDENT, provide a LIST and a RANGE operand. If coded in the macro instruction,
they indicate that the positional operands expected can be in the form of a list or a
range.

Defining Command Operand Syntax

74 z/OS V1R4.0 TSO/E Programming Services

LIST
indicates to the parse service routine that one or more of the same type of
positional operands can be entered enclosed in parentheses as follows:
(positional-operand positional-operand ...)

If one or more of the items contained in the list are to be entered enclosed in
parentheses, both the left and the right parenthesis must be included for each
of those items.

The following positional operand types can be used in the form of a list: VALUE,
ADDRESS, USERID, UID2PSWD, DSNAME, DSTHING, JOBNAME,
CONSTANT, STATEMENT NUMBER, VARIABLE, HEX, CHAR, INTEG, and any
positional operands that are not dependent upon delimiters.

RANGE
indicates to the parse service routine that two positional operands are to be
entered separated by a colon as follows:
positional-operand:positional-operand

The following positional operand types can be used in the form of a range or a
list of ranges: HEX (form X'' only), ADDRESS, VALUE, CONSTANT,
STATEMENT NUMBER, VARIABLE, INTEG, and any positional operand that is
not dependent upon delimiters.

If the user at the terminal wants to enter an operand that begins with a left
parentheses, and you have specified in either the IKJPOSIT or IKJIDENT macro
instruction that the operand can be entered as a list or a range, the user must
enclose the operand in an extra set of parentheses to obtain the correct result.

For instance, if you have used the IKJPOSIT macro instruction to specify that the
DSNAME operand can be entered as a list, and the terminal user wants to enter a
dsname of the form:
(membername)/password

The user must enter it as:
((membername)/password)

Keyword Operands
Keyword operands can be entered anywhere in the command as long as they
follow all positional operands. They can consist of any combination of alphanumeric
characters up to 31 characters long, the first of which must be an alphabetic
character.

Describe keyword operands to the parse service routine with the IKJKEYWD,
IKJUNFLD, IKJNAME, and IKJSUBF macro instructions.

Subfields Associated with Keyword Operands
A keyword operand can have a subfield of operands associated with it. A subfield
contains positional and/or keyword operands, and must be enclosed in parentheses
directly following its associated keyword operand.

Separators can appear between a keyword operand and the opening parenthesis of
its subfield. In addition, separators can appear after the closing parenthesis of a
subfield and the following keyword operand. In the following example, posn1 and
kywd2 are operands in the subfield of keyword1:

Defining Command Operand Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 75

keyword1(posn1 kywd2)

The same syntax rules that apply to commands apply within keyword subfields.

v Keyword operands must follow positional operands.

v Enclosing right parenthesis can be eliminated if the subfield ends at the end of a
logical line.

v The subfield cannot contain unbalanced right parentheses.

If a user enters a keyword with a subfield in which there is a required operand, but
does not enter the subfield, the parse service routine prompts for the required
operand. The terminal user must not include the subfield parentheses when he
enters the required operand.

If a subfield has a positional operand that can be entered as a list, and if this is the
only operand in the subfield, the list must be enclosed by the same parentheses
that enclose the subfield, such as:
keyword(item1 item2 item3)

where item1, item2, and item3 are members of a list.

If a subfield has as its first operand a positional operand that can be entered as a
list, and there are additional operands in the subfield, a separate set of parentheses
is required to enclose the list, such as:
keyword((item1 item2 item3) param)

where item1, item2, and item3 are members of a list, and param is an operand not
included in the list.

Using the Parse Macro Instructions to Define Command Syntax

A command processor that uses the parse service routine must build a parameter
control list (PCL) to define the syntax of acceptable command or subcommand
operands. Each acceptable operand is described by a parameter control entry
(PCE) within the PCL. The parse service routine compares the operands within the
command buffer against the PCL to determine if valid command or subcommand
operands have been entered.

The command processor builds the PCL, and the PCEs within it, using the parse
macro instructions. These macro instructions generate the PCL and establish
symbolic references for the parameter descriptor list (PDL). The parse service
routine returns the PDL to the command processor to describe the results of
comparing the operands in the command buffer with the PCL. The PDL is
composed of separate entries (PDEs) for each of the command operands found in
the command buffer.

Table 15 describes the functions of each of the parse macro instructions.

Table 15. The Parse Macro Instructions

Macro
Instruction

Function

IKJPARM Begins the PCL and establishes a symbolic reference for the PDL.

IKJPOSIT Builds a PCE to describe a positional operand that contains delimiters, but
not including positional operands described by IKJTERM, IKJOPER,
IKJIDENT or IKJRSVWD.

Defining Command Operand Syntax

76 z/OS V1R4.0 TSO/E Programming Services

Table 15. The Parse Macro Instructions (continued)

Macro
Instruction

Function

IKJTERM Builds a PCE for a positional operand that can be a constant, statement
number or variable.

IKJOPER Builds a PCE that describes an expression.

IKJRSVWD Builds a PCE to describe a reserved word operand. It can also be used
with IKJTERM to describe a reserved word constant, or with IKJOPER to
describe the operator portion of an expression.

IKJIDENT Builds a PCE that describes a positional operand that does not depend
upon a particular delimiter.

IKJKEYWD Builds a PCE that describes a keyword operand.

IKJNAME Builds a PCE that describes the possible names that can be entered for a
keyword or reserved word operand.

IKJSUBF Builds a PCE that indicates the beginning of a keyword subfield
description.

IKJUNFLD Builds a PCE to indicate that unidentified keyword operands can be
encountered and specifies the address of a verify exit routine to be given
control.

IKJENDP Indicates the end of the PCL.

IKJRLSA Releases any virtual storage allocated by the parse service routine for the
PDL that remains after parse returns control to its caller.

These macro instructions perform the following additional functions:

v When complete, all of the parse macros, except for IKJRLSA, return to the user’s
CSECT. If a DSECT appears between the CSECT statement and the parse
macro(s), an assembly error occurs. To prevent this error, place the DSECT after
the macro(s).

v The IKJPOSIT, IKJTERM, IKJOPER, IKJRSVWD, IKJIDENT, IKJKEYWD,
IKJNAME, and IKJSUBF macro instructions describe the positional and keyword
operands valid for the command processor. The command processor uses the
label fields of these macro instructions to reference fields within the DSECT that
maps the PDL returned by the parse service routine.

The macros that generate input to parse can be issued by a program that is loaded
above 16 MB in virtual storage. The IKJRLSA macro can be issued in either 24-or
31-bit addressing mode. If the PCL resides above 16 MB in virtual storage, you
should not attempt to update it in a validity checking routine after the PCL has been
passed to parse. However, if the PCL resides below 16 MB, you can update the
PCL in a validity checking routine after passing it to parse.

Using IKJPARM to Begin the PCL and the PDL
Use the IKJPARM macro instruction to begin the parameter control list (PCL) and to
provide a symbolic address for the beginning of the parameter descriptor list (PDL)
returned by the parse service routine. The PCL is constructed in the CSECT named
by the label field of the macro instruction; the PDL is mapped by the DSECT named
in the DSECT operand of the macro instruction.

Figure 20 shows the format of the IKJPARM macro instruction. Each of the
operands is explained following the figure.

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 77

label
The name you provide is used as the name of the CSECT in which the PCL is
constructed.

DSECT=dsect_name | IKJPARMD
provides a name for the DSECT created to map the parameter descriptor list.
This can be any name; the default is IKJPARMD.

The Parameter Control Entry Built By IKJPARM
The IKJPARM macro instruction generates the parameter control entry (PCE)
shown in Table 16. This PCE begins the parameter control list.

Table 16. The Parameter Control Entry Built by IKJPARM

Number of
Bytes

Field Name Contents or Meaning

2 Length of the parameter control list. This field contains a
hexadecimal number representing the number of bytes in
this PCL. The maximum allowable value is X'7FFF'.
Specifying a PCL greater than X'7FFF' will produce
unpredictable results.

2 Length of the parameter descriptor list. This field contains a
hexadecimal number representing the number of bytes in
the parameter descriptor list returned by the parse service
routine.

2 This field contains a hexadecimal number representing the
offset within the PCL to the first IKJKEYWD PCE or to an
end-of-field indicator if there are no keywords. An
end-of-field indicator can be either an IKJSUBF or an
IKJENDP PCE.

Using IKJPOSIT to Describe a Delimiter-Dependent Positional Operand
Use the IKJPOSIT macro instruction to describe the following delimiter-dependent
positional operands:

SPACE DELIMITER STRING VALUE
ADDRESS PSTRING USERID UID2PSWD
DSNAME DSTHING QSTRING JOBNAME

Use the IKJIDENT macro instruction to describe the other delimiter-dependent
positional operands.

The order in which you code the macros for positional operands is the order in
which the parse service routine expects to find the positional operands in the
command string.

Figure 21 on page 79 shows the format of the IKJPOSIT macro instruction. Each of
the operands is explained following the figure.

label IKJPARM DSECT={dsect_name }
{ IKJPARMD }

Figure 20. The IKJPARM Macro Instruction

Using the Parse Macro Instructions to Define Command Syntax

78 z/OS V1R4.0 TSO/E Programming Services

label
This name is used as the symbolic address within the PDL DSECT of the
parameter descriptor entry (PDE) for the operand described by this IKJPOSIT
macro instruction.

SPACE through JOBNAME
specifies the type of delimiter-dependent positional operand. The positional
operand types are described in detail in “Delimiter-Dependent Operands” on
page 61.

Positional Operand Type Where Described

SPACE Page 71

DELIMITER Page 62

STRING Page 62

VALUE Page 63

ADDRESS Page 63

PSTRING Page 68

USERID Page 68

UID2PSWD Page 69

DSNAME Page 70

DSTHING Page 70

QSTRING Page 70

JOBNAME Page 71

SQSTRING
The command operand is processed either as a string or as a quoted string. If
the delimiter is an apostrophe, the command operand is processed as a quoted
string. If the delimiter is any of the other acceptable delimiter characters, the
command operand is processed as a string. The SQSTRING option can only be
specified if STRING is specified for the operand type.

label IKJPOSIT SPACE
{ DELIMITER }
{ STRING }
{ VALUE }
{ ADDRESS [,EXTENDED] } [,LIST][,RANGE]
{ [,VECTOR] }
{ [,AR] }
{ PSTRING }
{ USERID }
{ UID2PSWD }
{ DSNAME } [,VOLSER][,DDNAM][,USID]
{ DSTHING }
{ QSTRING }
{ JOBNAME }

[,SQSTRING]
[,UPPERCASE ,PROMPT=’prompt data’]
[,ASIS ,DEFAULT=’default value’]
[,HELP=(’help data’,’help data’,...)]
[,VALIDCK=symbolic-address]

Figure 21. The IKJPOSIT Macro Instruction

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 79

For example, if SQSTRING is coded in the IKJPOSIT macro instruction, a
terminal user entering a command could specify either:
/string/string...

or
’string’ ’string’ ...

EXTENDED
specifies that the user can enter 31-bit addresses. This operand is valid only
with ADDRESS. For more information, refer to the descriptions of absolute,
relative, and indirect addresses and address expressions under the description
of the address operand on .

VECTOR
specifies that the user can enter:
v Vector registers as addresses
v Vector mask registers as addresses
v 31-bit addresses.

This operand is valid only when ADDRESS is specified as the operand type.
For more information, see the discussion of vector addresses under the
description of the address operand on 63.

AR
specifies that the user can enter:
v Access registers as addresses
v Vector registers as addresses
v Vector mask registers as addresses
v 31-bit addresses.

This operand is valid only when ADDRESS is specified as the operand type.
For more information, see the description of the address operand on 63.

LIST
The command operands can be entered by the terminal user as a list:
commandname (operand,operand, ...)

This list option can be used with the following delimiter-dependent positional
operands: USERID, DSNAME, DSTHING, ADDRESS, VALUE, JOBNAME, and
PSTRING (within a subfield only).

RANGE
The command operands can be entered by the terminal user as a range:
commandname operand:operand

The range option can be used with the following delimiter-dependent positional
operands: ADDRESS, VALUE.

VOLSER
specifies that a data set name is to be a volume serial name. This operand is
valid only with DSNAME or DSTHING. If the first character is numeric, a
maximum of six characters are allowed.

DDNAM
specifies a data definition name. This option causes an INVALID DDNAME
message if the name is not valid.

USID
specifies that the user identification is to prefix all data set names that either are

Using the Parse Macro Instructions to Define Command Syntax

80 z/OS V1R4.0 TSO/E Programming Services

not entered in quotes or start with an asterisk. If you specify USID and
DSTHING and the first character of a data set name is an asterisk (*), the parse
service routine does not prefix the user identification. Note that the user
identification is not necessarily the user ID but can be any dsname-prefix
specified as parameter with the PROFILE PREFIX command.

The following options (UPPERCASE, ASIS, PROMPT, DEFAULT, HELP, and
VALIDCK) can be used with all delimiter-dependent positional operands except
SPACE and DELIMITER.

UPPERCASE
The operand is to be translated to uppercase.

ASIS
The operand is to be left as it was entered by the terminal user.

PROMPT=‘prompt data’
The operand described by this IKJPOSIT macro instruction is required; the
prompting data is the message to be issued if the operand is not entered by the
terminal user. If prompting is necessary and the terminal is in prompt mode, the
parse service routine supplies a message-identifying number (message ID) and
adds the word ENTER to the beginning of this message before writing it to the
terminal. If prompting is necessary but the terminal is in no-prompt mode, the
parse service routine supplies a message ID and adds the word MISSING to
the beginning of this message before writing it to the terminal.

DEFAULT=‘default value’
The operand described by this IKJPOSIT macro instruction is required, but the
terminal user need not enter it. If the operand is not entered, the value specified
as the default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the operand is optional.
The parse service routine takes no action if the operand specified by this
IKJPOSIT macro instruction is not present in the command buffer.

HELP=(‘help data’,‘help data’,...)
You can provide up to 255 second-level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are issued one at a time after
each question mark is entered by the terminal user in response to a prompting
message from the parse service routine. These messages are not sent to the
user when the prompt is for a password on a DSNAME or USERID operand.

Parse adds a message ID and the word ENTER (in prompt mode) or MISSING
(in no-prompt mode) to the beginning of each message before writing it to the
terminal.

VALIDCK=symbolic-address
Supply the symbolic address of a validity checking routine if you want to
perform additional validity checking on this operand. Parse calls this routine
after first determining that the operand is syntactically correct.

The Parameter Control Entry Built by IKJPOSIT
The IKJPOSIT macro instruction generates the variable-length parameter control
entry (PCE) shown in Table 17.

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 81

Table 17. The Parameter Control Entry Built by IKJPOSIT

Number of
Bytes

Field Name Contents or Meaning

2 Flags. These flags are set to indicate which options were
specified in the IKJPOSIT macro instruction.

Byte 1:
001. This is an IKJPOSIT PCE.
...1 PROMPT
.... 1... DEFAULT
.... .1.. This is an extended format PCE. If the

VALIDCK parameter was specified, the
length of the field containing the address
of the validity checking routine is four
bytes.

.... ..1. HELP

.... ...1 VALIDCK

Byte 2:
1... LIST
.1.. ASIS
..1. RANGE
...1 MEMNAME
.... 1... SQSTRING
.... .1.. USID
.... ..1. VOLSER
.... ...1 DDNAME

2 Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in
this IKJPOSIT PCE.

2 Contains a hexadecimal offset from the beginning of the
parameter descriptor list to the related parameter descriptor
entry built by the parse service routine.

1 This field contains a hexadecimal number indicating the
type of positional operand described by this PCE. These
numbers have the following meaning:
X'1' DELIMITER
X'2' STRING
X'3' VALUE
X'4' ADDRESS
X'5' PSTRING
X'6' USERID
X'7' DSNAME
X'8' DSTHING
X'9' QSTRING
X'A' SPACE
X'B' JOBNAME
X'C' UID2PSWD
X'D' EXTENDED ADDRESS
X'E' VECTOR ADDRESS
X'F' AR ADDRESS

1 Contains the length minus one of the default or prompting
information supplied on the IKJPOSIT macro instruction.
This field and the next field are present only if DEFAULT or
PROMPT was specified on the IKJPOSIT macro instruction.

Using the Parse Macro Instructions to Define Command Syntax

82 z/OS V1R4.0 TSO/E Programming Services

Table 17. The Parameter Control Entry Built by IKJPOSIT (continued)

Number of
Bytes

Field Name Contents or Meaning

Variable This field contains the prompting or default information
supplied on the IKJPOSIT macro instruction.

2 This field contains a hexadecimal figure representing the
length in bytes of all the PCE fields used for second-level
messages. The figure includes the length of this field. The
fields are present only if HELP is specified on the IKJPOSIT
macro instruction.

1 This field contains a hexadecimal number representing the
number of second-level messages specified by HELP on
this IKJPOSIT PCE.

2 This field contains a hexadecimal number representing the
length of this HELP segment. The length figure includes the
length of this field, the message segment offset field, and
the length of the information. These fields are repeated for
each second-level message specified by HELP on the
IKJPOSIT macro instruction.

2 This field contains the message segment offset. It is set to
X'0000'.

Variable This field contains one second-level message supplied on
the IKJPOSIT macro instruction specified by HELP. This
field and the two preceding ones are repeated for each
second-level message supplied on the IKJPOSIT macro
instruction. These fields do not appear if second-level
message data was not supplied.

3 or 4 This field contains the address of a validity checking routine
if VALIDCK was specified on the IKJPOSIT macro. If the
“extended format PCE” bit is on in the IKJPOSIT PCE, the
address is four bytes long; if the bit is off, the address is
three bytes long. This field is not present if VALIDCK was
not specified.

Using IKJTERM to Describe a Delimiter-Dependent Positional Operand
Use the IKJTERM macro instruction to describe a positional operand that is one of
the following:
v Statement number
v Constant
v Variable
v Constant or variable

The order in which you code the macros for positional operands is the order in
which the parse service routine expects to find the operands in the command string.

Figure 22 shows the format of the IKJTERM macro instruction. Each of the
operands is explained following the figure.

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 83

label
This name is used to address the PCE built by the IKJTERM macro. The
hexadecimal offset to the parameter descriptor entry (PDE) built by the parse
service routine for this operand is contained in the PCE.

Note: The hexadecimal offset to the PDE will contain binary zero when the
IKJTERM macro is used to describe a subscript of a data name.

‘parameter-type’
This field is required so that the operand can be identified when an error
message is necessary. This field differs from the PROMPT field in that the
PROMPT field is not required and, if supplied, is used only for a required
operand that is not entered by the terminal user. Blanks within the apostrophes
are allowed.

LIST
The command operands can be entered by the terminal user as a list, in the
form:
commandname (operand,operand,...)

The LIST option can be used with any of the TYPE= positional operands.

RANGE
The command operands can be entered by the terminal user as a range, in the
form:
commandname operand:operand

The RANGE option can be used with any of the TYPE= positional operands.

Note: The LIST and RANGE options cannot be used when the IKJTERM
macro instruction is used to describe a subscript of a data-name.

UPPERCASE
The operand is to be translated to uppercase.

ASIS
The operand is to be left as it was entered by the terminal user.

TYPE=STMT | CNST | VAR | ANY
describes the type of the operand as one of the following:

STMT Statement number

CNST Constant

VAR Variable

ANY Constant or variable

label IKJTERM ’parameter-type’[,LIST][,RANGE]
[,UPPERCASE] [{STMT }]
[,ASIS] ,[TYPE= {CNST }]

[{VAR }]
[{ANY }]

[,SBSCRPT[=label-PCE]] ,[PROMPT=’prompt data’]
,[DEFAULT=’default value’]

[,HELP=(’help data’,’help data’,...)]
[,VALIDCK=symbolic-address][,RSVWD=label-PCE]

Figure 22. The IKJTERM Macro Instruction

Using the Parse Macro Instructions to Define Command Syntax

84 z/OS V1R4.0 TSO/E Programming Services

See “Delimiter-Dependent Operands” on page 61 for a syntactical definition of
these operands.

SBSCRPT[=label-PCE]
specifies one of two conditions:

1. If you specify SBSCRPT with a label-PCE, then the data-name described by
the IKJTERM macro can be subscripted. Supply the name of the label of an
IKJTERM macro instruction that describes the subscript. Only TYPE=VAR or
TYPE=ANY operands can be subscripted.

2. If you specify SBSCRPT without a label-PCE, then the IKJTERM macro
describes the subscript of a data-name. All TYPE= parameters can be used
on a subscript except TYPE=STMT. The LIST and RANGE options cannot
be used on an IKJTERM macro that describes a subscript.

Note: You must use two IKJTERM macro instructions to describe a subscripted
data-name. The first IKJTERM macro describes the data name and
specifies the SBSCRPT option with the label of the second IKJTERM
macro. The second IKJTERM macro describes the subscript of the
data-name and specifies SBSCRPT without a label-PCE. The second
macro instruction must immediately follow the first.

PROMPT=‘prompt data’
The operand described by this IKJTERM macro instruction is required. The
prompting data that you specify is issued as a message if the operand is not
entered by the terminal user. If prompting is necessary and the terminal is in
prompt mode, the parse service routine adds a message-identifying number
(message ID) and the word ENTER to the beginning of the message before
writing it to the terminal.

If prompting is necessary but the terminal is in no-prompt mode, the parse
service routine adds a message ID and the word MISSING to the beginning of
the message before writing it to the terminal. If a subscripted data-name
requires prompting, the terminal user is prompted for the entire name including
the subscript.

DEFAULT=‘default value’
The operand described by this IKJTERM macro instruction is required, but the
terminal user need not enter it. If the operand is not entered, the value specified
as the default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the operand is optional.
The parse service routine takes no action if the operand is not present.

HELP=(‘help data’,‘help data’,...)
You can provide up to 255 second-level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are issued one at a time after
each question mark entered by the terminal user in response to a prompting
message from the parse service routine.

Parse adds a message ID and the word ENTER (in prompt mode) or MISSING
(in no-prompt mode) to the beginning of each message before writing it to the
terminal.

VALIDCK=symbolic-address
Supply the symbolic address of a validity checking routine if you want to
perform additional checking on this operand. Parse calls this routine after first
determining that the operand is syntactically correct.

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 85

RSVWD=label-PCE
Use this option when TYPE=CNST or TYPE=ANY is specified to indicate that
this operand can be a figurative constant. Supply the address of the PCE (label
on a IKJRSVWD macro instruction) that begins the list of reserved words that
can be entered as a figurative constant.

This list of reserved words is defined by a series of IKJNAME macros that
contain all possible names and immediately follow the IKJRSVWD macro.

Note: The IKJRSVWD macro can be coded anywhere in the list of macros that
build the PCL except following an IKJSUBF macro instruction. This
permits other IKJTERM macro instructions to refer to the same list.

The Parameter Control Entry Built by IKJTERM
The IKJTERM macro instruction generates the variable parameter control entry
(PCE) shown in Table 18.

Table 18. The Parameter Control Entry Built by IKJTERM

Number of
Bytes

Field Name Contents or Meaning

2 Flags. These flags are set to indicate options on the
IKJTERM macro instruction.

Byte 1:
110. This is an IKJTERM PCE.
...1 PROMPT
.... 1... DEFAULT
.... .1.. This is an extended format PCE. If the

VALIDCK parameter was specified, the
length of the field containing the address
of the validity checking routine is four
bytes.

.... ..1. HELP

.... ...1 VALIDCK

Byte 2:
1... LIST
.1.. ASIS
..1. RANGE
...1 This term can be SUBSCRIPTED.
.... 1... A reserved word PCE is chained from this

term.
.... .000 Reserved

2 The hexadecimal length of this PCE.
2 Contains a hexadecimal offset from the beginning of the

parameter descriptor list to the parameter descriptor entry
built by the parse routine.

1 This field indicates the type of positional parameter
described by this PCE.
1... STATEMENT NUMBER
.1.. VARIABLE
..1. CONSTANT
...1 ANY (constant or variable)
.... 1... This term is a SUBSCRIPT term.
.... .000 Reserved

Using the Parse Macro Instructions to Define Command Syntax

86 z/OS V1R4.0 TSO/E Programming Services

Table 18. The Parameter Control Entry Built by IKJTERM (continued)

Number of
Bytes

Field Name Contents or Meaning

4 Byte 1-2 contain the hexadecimal length of the
parameter-type field.

Byte 3-4 contain the offset of the parameter-type field. It is
set to X'0012'.

Variable Contains the parameter-type field.
1 Contains the length of the default or prompting information

supplied on the macro instruction.
Variable Contains the default or prompting information supplied on

the macro instruction.
2 If a subscript is specified on the macro, this field contains

the offset into the parameter control list of the subscript
PCE.

2 If a reserved word PCE is specified on the macro, this field
contains the offset into the parameter control list of the
reserved word PCE.

2 Contains the length (including this field) of all the PCE fields
used for second-level messages if HELP is specified on the
macro.

1 The number of second-level messages specified on the
macro instruction by the HELP parameter.

2 Contains the length of this segment including this field, the
message offset field and second-level message.
Note: This field and the following two are repeated for each
second-level message specified by HELP on the macro.

2 This field contains the message segment offset.
Variable This field contains one second-level message specified by

HELP on the macro instruction. This field and the two
preceding fields are repeated for each second-level
message specified.

3 or 4 This field contains the address of a validity checking routine
if VALIDCK was specified on the IKJTERM macro. If the
“extended format PCE” bit is on in the IKJTERM PCE, the
address is four bytes long; if the bit is off, the address is
three bytes long. This field is not present if VALIDCK was
not specified.

Using IKJOPER to Describe a Delimiter-Dependent Positional Operand
Use the IKJOPER macro instruction to provide a parameter control entry (PCE) that
describes an expression. An expression consists of three parts; two operands and
one operator in the form:
(operand1 operator operand2)

typically entered as:
(abc eq 123)

The parts of an expression are described by PCEs that are chained to the
IKJOPER PCE. Use the IKJTERM macro instruction to identify the operands, and
use the IKJRSVWD macro instruction to identify the operator.

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 87

Figure 23 shows the format of the IKJOPER macro instruction. Each of the
operands is explained following the figure.

label
This name is used to address the PCE built by the IKJOPER macro. The
hexadecimal offset to the parameter descriptor entry built by the parse service
routine for this operand is contained in the PCE.

‘parameter-type’
This field is required so that the operand can be identified when an error
message is necessary. This field differs from the PROMPT field in that the
PROMPT field is not required and if supplied is used only for a required
operand that is not entered by the terminal user. Blanks within the apostrophes
are allowed.

Note: Parse uses this field only for error messages for the complete
expression. The IKJTERM and IKJRSVWD PCEs are used when parse
issues error messages for missing operands or a missing operator. If a
validity check routine indicates that the expression is not valid, parse
prompts for the entire expression.

PROMPT=‘prompt data’
The operand described by this IKJOPER macro instruction is required. The
prompting data that you specify is issued as a message if the operand is not
entered by the terminal user. If prompting is necessary and the terminal is in
prompt mode, the parse service routine adds a message- identifying number
(message ID) and the word ENTER to the beginning of the message before
writing it to the terminal. If prompting is necessary but the terminal is in
no-prompt mode, the parse service routine adds a message ID and the word
MISSING to the beginning of the message before writing it to the terminal.

DEFAULT=‘default value’
The operand described by this IKJOPER macro instruction is required, but the
terminal user need not enter it. If the operand is not entered, the parse service
routine uses the value specified as the default value.

Note: If neither PROMPT nor DEFAULT is specified, the operand is optional.
The parse service routine takes no action if the operand is not present.

HELP=(‘help data’,‘help data’,...)
You can provide up to 255 second-level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are issued one at a time after
each question mark entered by the terminal user in response to a prompting
message from the parse service routine.

label IKJOPER ’parameter-type’[,PROMPT=’prompt data’]
[,DEFAULT=’default value’]

[,HELP=(’help data’,’help data’,...)]
[,VALIDCK=symbolic-address],OPERND1=label1
,OPERND2=label2,RSVWD=label3
[,CHAIN=label4]

Figure 23. The IKJOPER Macro Instruction

Using the Parse Macro Instructions to Define Command Syntax

88 z/OS V1R4.0 TSO/E Programming Services

Parse adds a message ID and the word ENTER (in prompt mode) or MISSING
(in no-prompt mode) to the beginning of each message before writing it to the
terminal.

VALIDCK=symbolic-address
Supply the symbolic address of a validity checking routine if you want to
perform additional checking on this expression. The parse service routine calls
this routine after first determining that the expression is syntactically correct.

OPERND1=label1
Supply the name of the label field of the IKJTERM macro instruction that is
used to describe the first operand in the expression. This IKJTERM macro
instruction should be coded immediately following the IKJOPER macro
instruction that describes the expression.

OPERND2=label2
Supply the name of the label field of the IKJTERM macro instruction that is
used to describe the second operand in the expression. This IKJTERM macro
instruction should be coded immediately following the IKJNAME macro
instructions that describe the operator in the expression under the associated
IKJRSVWD macro instruction.

RSVWD=label3
Supply the name of the label field of the IKJRSVWD macro instruction that
begins the list of reserved words that are used to describe the possible
operators to be entered for the expression. The IKJRSVWD and associated
IKJNAME macro instructions should be coded immediately following the
IKJTERM macro that describes the first operand, and immediately preceding
the IKJTERM macro that describes the second operand.

CHAIN=label4
indicates that this operand described by the IKJOPER macro instruction can be
entered as an expression or as a variable. Supply the name of the label field of
an IKJTERM macro instruction that describes the variable term. The LIST and
RANGE options are not permitted on this IKJTERM macro instruction. Code this
IKJTERM macro instruction immediately following the IKJTERM macro that
describes the second operand.

Note: The parse service routine first determines if the operand is entered as an
expression. If the operand is an expression, that is, enclosed in
parentheses, then it is processed as an expression. If it is not an
expression, then it is processed using the chained IKJTERM PCE to
control the scan of the operand.

The Parameter Control Entry Built by IKJOPER
The IKJOPER macro instruction generates the variable parameter control entry
(PCE) shown in Table 19.

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 89

Table 19. The Parameter Control Entry Built by IKJOPER

Number of
Bytes

Field Name Contents or Meaning

2 Flags. These flags are set to indicate options on the
IKJOPER macro instruction.

Byte 1:
111. This is an IKJOPER PCE.
...1 PROMPT
.... 1... DEFAULT
.... .1.. This is an extended format PCE. If the

VALIDCK parameter is specified, the
length of the field containing the address
of the validity checking routine is four
bytes.

.... ..1. HELP

.... ...1 VALIDCK

Byte 2:
0000 0000 Reserved

2 The hexadecimal length of this PCE.
2 Contains a hexadecimal offset from the beginning of the

parameter descriptor list to the parameter descriptor entry
built by the parse service routine.

4 Byte 1-2 contain the hexadecimal length of the
parameter-type field.

Byte 3-4 contain the offset of the parameter-type field
(X'0012').

Variable Contains the parameter-type field.
2 If a reserved word PCE is specified on the macro, this field

contains the offset into the parameter control list of the
reserved word PCE.

2 Contains the offset into the parameter control list of the
OPERND1 PCE.

2 Contains the offset into the parameter control list of the
OPERND2 PCE.

2 Contains the offset into the parameter control list of the
chained term PCE if present. Zero if not present.

1 Contains the length of the default or prompting information
supplied on the macro instruction.

Variable Contains the default or prompting information supplied on
the macro instruction.

2 Contains the length (including this field) of all the PCE fields
used for second-level messages if HELP is specified on the
macro.

1 The number of second-level messages specified on the
macro instruction by the HELP= parameter.

2 Contains the length of this segment including this field, the
message offset field and second-level message.
Note: This field and the following two are repeated for each
second-level message specified by HELP on the macro.

2 This field contains the message segment offset.

Using the Parse Macro Instructions to Define Command Syntax

90 z/OS V1R4.0 TSO/E Programming Services

Table 19. The Parameter Control Entry Built by IKJOPER (continued)

Number of
Bytes

Field Name Contents or Meaning

Variable This field contains one second-level message specified by
HELP on the macro instruction. This field and the two
preceding fields are repeated for each second-level
message specified.

3 or 4 This field contains the address of a validity checking routine
if VALIDCK was specified on the IKJOPER macro. If the
“extended format PCE” bit is on in the IKJOPER PCE, the
address is four bytes long; if the bit is off, the address is
three bytes long. This field is not present if VALIDCK was
not specified.

Using IKJRSVWD to Describe a Delimiter-Dependent Positional
Parameter

Use the IKJRSVWD macro instruction to do the following:

v Define a positional reserved word operand.

In this case, use the IKJRSVWD macro instruction by itself and specify at least
the ‘parameter-type’ operand.

v Describe the operator portion of an expression.

In this case, use the RSVWD operand of the IKJOPER macro instruction to
define the beginning of a list of the possible reserved words that can be an
operator in an expression. To identify the possible reserved words that can be
operators in an expression, specify a list of IKJNAME macro instructions that
immediately follow the IKJRSVWD macro instruction.

You must specify at least the ‘parameter-type’ operand on the IKJRSVWD macro
instruction.

v Describe a reserved word constant.

In this case, use the RSVWD keyword of the IKJTERM macro instruction to
define the beginning of a list of possible reserved words that can be used as a
figurative constant. To define the possible figurative constants, specify a list of
IKJNAME macros that immediately follow the IKJRSVWD macro instruction.

When you use the IKJRSVWD macro instruction to define a reserved word
constant, code the macro without any operands as follows:

The order in which you code the macros for positional operands is the order in
which the parse service routine expects to find the operands in the command string.

Figure 24 shows the format of the IKJRSVWD macro instruction. Each of the
operands is explained following the figure.

label IKJRSVWD

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 91

label
This name is used to address the PCE built by the IKJRSVWD macro. The
hexadecimal offset to the parameter descriptor entry (PDE) built by the parse
service routine for this operand is contained in the PCE.

Code the following operands on the IKJRSVWD macro when you use it either by
itself to describe a positional reserved word operand, or with IKJOPER to describe
the operator portion of an expression.

‘parameter-type’
This field is required so that the operand can be identified when an error
message is necessary. This field differs from the PROMPT field in that the
PROMPT field is not required and if supplied is used only for a required
operand that is not entered by the terminal user. Blanks within the apostrophes
are allowed.

PROMPT=‘prompt data’
The operand described by this IKJRSVWD macro instruction is required. The
prompting data that you specify is issued as a message if the operand is not
entered by the terminal user. If prompting is necessary and the terminal is in
prompt mode, parse adds a message-identifying number (message ID) and the
word ENTER to the beginning of the message before writing it to the terminal. If
prompting is necessary but the terminal is in no-prompt mode, parse adds a
message ID and the word MISSING to the beginning of the message before
writing it to the terminal.

DEFAULT=‘default value’
The operand described by this IKJRSVWD macro instruction is required, but the
terminal user need not enter it. If the operand is not entered, the value specified
as the default value is used.

Note: If neither PROMPT nor DEFAULT is specified, the operand is optional.
The parse service routine takes no action if the operand is not present.

HELP=(‘help data’,‘help data’,...)
You can provide up to 255 second-level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are issued one at a time after
each question mark entered by the terminal user in response to a prompting
message from the parse routine.

The parse service routine adds a message ID and the word ENTER (in prompt
mode) or MISSING (in no-prompt mode) to the beginning of each message
before writing it to the terminal.

The Parameter Control Entry Built by IKJRSVWD
The IKJRSVWD macro instruction generates the variable parameter control entry
(PCE) shown in Table 20.

label IKJRSVWD ’parameter-type’ [,PROMPT=’prompt data’]
[,DEFAULT=’default value’]

[,HELP=(’help data’,’help data’,...)]

Figure 24. The IKJRSVWD Macro Instruction

Using the Parse Macro Instructions to Define Command Syntax

92 z/OS V1R4.0 TSO/E Programming Services

Table 20. The Parameter Control Entry Built by IKJRSVWD

Number of
Bytes

Field Name Contents or Meaning

2 Flags. These flags are set to indicate options on the
IKJRSVWD macro instruction.

Byte 1:
101. This is an IKJRSVWD PCE.
...1 PROMPT
.... 1... DEFAULT
.... .0.. Reserved
.... ..1. HELP
.... ...0 Reserved

Byte 2:
1... This PCE is used with the IKJTERM

macro as a figurative constant.
0... This PCE is not used with the IKJTERM

macro as a figurative constant.
.000 0000 Reserved.

2 The hexadecimal length of this PCE.
2 Contains a hexadecimal offset from the beginning of the

parameter descriptor list to the parameter descriptor entry
built by the parse service routine.
Note: The following fields are omitted if this PCE is used
with the IKJTERM macro to describe a figurative constant.

4 Byte 1-2 contain the hexadecimal length of the
parameter-type field.

Byte 3-4 contain the offset of the parameter-type field
(X'0012').

Variable Contains the parameter-type field.
1 Contains the length of the default or prompting information

supplied on the macro instruction.
Variable Contains the default or prompting information supplied on

the macro instruction.
2 Contains the length (including this field) of all the PCE fields

used for second-level messages if HELP is specified on the
macro.

1 The number of second-level messages specified on the
macro instruction by the HELP= parameter.

2 Contains the length of this segment including this field, the
message offset field and second-level message.
Note: This field and the following two are repeated for each
second-level message specified by HELP on the macro.

2 This field contains the message segment offset.
Variable This field contains one second-level message specified by

HELP on the macro instruction. This field and the two
preceding fields are repeated for each second-level
message specified.

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 93

Using IKJIDENT to Describe a Non-Delimiter-Dependent Positional
Operand

Use the IKJIDENT macro instruction to describe a positional operand that does not
depend upon a particular delimiter for its syntactical definition. These operands are
discussed in “Positional Operands Not Dependent on Delimiters” on page 74.

These positional operands must be in the form of a character string, with
restrictions on the beginning character, additional characters, and length, decimal
integers, or hexadecimal characters.

The order in which you code the macro instructions for positional operands is the
order in which the parse service routine expects to find the positional operands in
the command string.

Figure 25 shows the format of the IKJIDENT macro instruction. Each of the
operands is explained following the figure.

label
This name is used within the PDL DSECT as the symbolic address of the
parameter descriptor entry for this positional operand.

‘parameter-type’
This field is required so that the operand can be identified when an error
message is necessary. This field differs from the PROMPT field in that the
PROMPT field is not required and if supplied is used only for a required
operand that is not entered by the terminal user. Blanks within the apostrophes
are allowed.

LIST
This positional operand can be entered by the terminal user as a list, that is, in
the form:
commandname (operand,operand,...)

RANGE
This positional operand can be entered by the terminal user as a range, that is,
in the form:
commandname operand:operand

label IKJIDENT ’parameter-type’ [,LIST][,RANGE][,PTBYPS]
[,ASTERISK][,UPPERCASE] [,MAXLNTH=number]

[,ASIS]
[{ ALPHA }] [{ALPHA }]
[{ NUMERIC }] [{NUMERIC }]
[,FIRST={ ALPHANUM}] [,OTHER= {ALPHANUM }]
[{ ANY }] [{ANY }]
[{ NONATABC}] [{NONATABC }]
[{ NONATNUM}] [{NONATNUM }]
[,PROMPT=’prompt data’]
[,DEFAULT=’default value’]
[,CHAR]
[,INTEG]
[,HEX]
[,VALIDCK=symbolic-address]
[,HELP=(’help data’, ’help data’,...)]

Figure 25. The IKJIDENT Macro Instruction

Using the Parse Macro Instructions to Define Command Syntax

94 z/OS V1R4.0 TSO/E Programming Services

If you specify RANGE and OTHER=ANY, parse treats any colons it finds as
delimiters. For example, the first colon after RANGE marks the end of the first
part of the range and the start of the next part of the range. To include the
colon in your data, you must use the CHAR operand and enclose the colon in
quotation marks.

PTBYPS
All prompting for the operand is to be done in print inhibit mode. This option can
be specified only when the PROMPT option is specified.

ASTERISK
An asterisk can be substituted for this positional operand.

Note: ASTERISK and INTEG are mutually exclusive.

UPPERCASE | ASIS

UPPERCASE
The operand is to be translated to uppercase.

ASIS
The operand is to be left as it was entered.

MAXLNTH=number
The maximum number of characters the string can contain. The number must
be a value from 1 to 255. If you do not code the MAXLNTH operand, the parse
service routine accepts a character string of any length. MAXLNTH is
determined by the length of the input string. This may not be the same as the
length returned in the PDE.

FIRST=
Specify the character type restriction on the first character of the string.

OTHER=
Specify the character type restriction on the characters of the string other than
the first character.

Specify the restrictions on the characters of the string by coding one of the following
character types after the FIRST= and the OTHER= operands. This is true unless
HEX, INTEG, or CHAR is specified; FIRST= and OTHER= serve no purpose in
these cases.

ALPHA
An alphabetic character or one of the special characters $, #, @. ALPHA is the
default value for both the FIRST and the OTHER operands.

NUMERIC
A digit, 0-9.

ALPHANUM
An alphabetic character, one of the special characters $, #, @, or a number
0-9.

ANY
Any character other than a blank, comma, tab, or semicolon. Parentheses must
be balanced.

NONATABC
An alphabetic character only. The special characters $, #, @ and numerics are
excluded.

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 95

NONATNUM
An alphabetic or numeric character. The special characters $, #, @ are
excluded.

PROMPT=‘prompt data’
The operand described by this IKJIDENT macro instruction is required. The
prompting data that you specify is issued as a message if the operand is not
entered by the terminal user. If prompting is necessary and the terminal is in
prompt mode, the parse service routine adds a message-identifying number
(message ID) and the word ENTER to the beginning of this message before
writing it to the terminal. If prompting is necessary but the terminal is in
no-prompt mode, the parse service routine adds a message ID and the word
MISSING to the beginning of this message before writing it to the terminal.

DEFAULT=‘default value’
The operand is required, but a default value can be used. If the operand is not
entered by the terminal user, the value specified as the default value is used.

Note: The operand is optional if neither PROMPT nor DEFAULT is specified.
The parse service routine takes no action if the operand specified by this
IKJIDENT macro instruction is not present in the command buffer.

CHAR
specifies that the parse service routine is to accept a string of characters as
input. This input string can be either quoted or unquoted.

INTEG
specifies that the parse service routine is to accept a numeric quantity as input.
This quantity can be decimal, hexadecimal, or binary. The number is stored
internally as a fullword binary value, regardless of how INTEG was specified.

Note: A maximum length is automatically implied if the INTEG option is
specified. For binary input, the maximum number of characters is 32. For
hexadecimal input, the maximum length is 8. For decimal input, the
maximum length is 10.

HEX
specifies that the parse service routine is to accept a hexadecimal value as
input. This string quantity can be hexadecimal or a quoted or non-quoted string.

Note: All input entered in the form X'n...' must be valid hexadecimal digits (0-9,
A-F). All input entered in the form B'n...' must be valid binary digits (0,1).
All input entered as unquoted decimals must be valid decimal digits 0-9.

VALIDCK=symbolic-address
Supply the symbolic address of a validity checking routine if you want to
perform additional validity checking on this operand. The parse service routine
calls the addressed routine after first determining that the operand is
syntactically correct.

HELP=(‘help data’,‘help data’,...)
You can provide up to 255 second-level messages. (Note, however, that the
assembler in use can limit the number of characters that a macro operand with
a sublist can contain.) Enclose each message in apostrophes and separate the
messages by single commas. These messages are issued one at a time after
each question mark entered by the terminal user in response to a prompting
message from the parse service routine. These messages are not sent to the
user when the prompt is for a password on a DSNAME or USERID operand.

Using the Parse Macro Instructions to Define Command Syntax

96 z/OS V1R4.0 TSO/E Programming Services

The parse service routine adds a message ID and the word ENTER (in prompt
mode) or MISSING (in no-prompt mode) to the beginning of each message
before writing it to the terminal.

The Parameter Control Entry Built by IKJIDENT
The IKJIDENT macro instruction generates the variable-length parameter control
entry (PCE) shown in Table 21.

Table 21. The Parameter Control Entry Built by IKJIDENT

Number of
Bytes

Field Name Contents or Meaning

2 Flags. These flags are set to indicate which options were
specified in the IKJIDENT macro instruction.

Byte 1:
100. This is an IKJIDENT PCE.
...1 PROMPT
.... 1... DEFAULT
.... .1.. This is an extended format PCE. If the

VALIDCK parameter is specified, the
length of the field containing the address
of the validity checking routine is four
bytes.

.... ..1. HELP

.... ...1 VALIDCK

Byte 2:
1... LIST
.1.. ASIS
..1. RANGE
...0 0000 Reserved

2 Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in
this IKJIDENT PCE.

2 Contains a hexadecimal offset from the beginning of the
parameter descriptor list to the related parameter descriptor
entry built by the parse service routine.

1 A flag field indicating the options coded on the IKJIDENT
macro instruction.
1... ASTERISK
.1.. MAXLNTH
..1. PTBYPS
...1 Integer
.... 1... Character
.... .1.. Hexadecimal
.... ..00 Reserved

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 97

Table 21. The Parameter Control Entry Built by IKJIDENT (continued)

Number of
Bytes

Field Name Contents or Meaning

1 This field contains a hexadecimal number indicating the
character type restriction on the first character of the
character string described by the IKJIDENT macro
instruction.

HEX Acceptable characters

X'0' Any (except blank, comma, tab,
semicolon)

X'1' Alphabetic or one of the special
characters $, #, @

X'2' Numeric
X'3' Alphabetic, numeric, or one of the special

characters $, #, @
X'4' Alphabetic
X'5' Alphabetic or numeric

1 This field contains a hexadecimal number indicating the
character type restriction on the other characters of the
character string described by the IKJIDENT macro
instruction.

HEX Acceptable characters

0 Any (except blank, comma, tab,
semicolon)

1 Alphabetic or one of the special
characters $, #, @

2 Numeric
3 Alphabetic, numeric, or one of the special

characters $, #, @
4 Alphabetic
5 Alphabetic or numeric

2 This field contains a hexadecimal number representing the
length of the parameter type segment. This figure includes
the length of this field, the length of the message segment
offset field, and the length of the parameter type field
supplied on the IKJIDENT macro instruction.

2 This field contains the message segment offset. It is set to
X'0012'.

Variable This field contains the field supplied as the parameter type
operand of the IKJIDENT macro instruction.

1 This field contains a hexadecimal number representing the
maximum number of characters the string can contain. This
field is present only if the MAXLNTH operand was coded on
the IKJIDENT macro instruction.

1 This field contains the length minus one of the defaults or
prompting information supplied on the IKJIDENT macro
instruction. This field and the next are present only if
DEFAULT or PROMPT were specified on the IKJIDENT
macro instruction.

Variable This field contains the prompting or default information
supplied on the IKJIDENT macro instruction.

Using the Parse Macro Instructions to Define Command Syntax

98 z/OS V1R4.0 TSO/E Programming Services

Table 21. The Parameter Control Entry Built by IKJIDENT (continued)

Number of
Bytes

Field Name Contents or Meaning

2 This field contains a hexadecimal figure representing the
length in bytes of all the PCE fields used for second-level
messages. The figure includes the length of this field. The
fields are present only if HELP is specified on the IKJIDENT
macro instruction.

1 This field contains a hexadecimal number representing the
number of second-level messages specified by HELP on
this IKJIDENT PCE.

2 This field contains a hexadecimal number representing the
length of this HELP segment. The figure includes the length
of this field, the message segment offset field, and the
length of the information. These fields are repeated for each
second-level message specified by HELP on the IKJIDENT
macro instruction.

2 This field contains the message segment offset. It is set to
X'0000'.

Variable This field contains one second-level message supplied on
the IKJIDENT macro instruction specified by HELP. This
field and the two preceding ones are repeated for each
second-level message supplied on the IKJIDENT macro
instruction; these fields do not appear if no second-level
message data was supplied.

3 or 4 This field contains the address of a validity checking routine
if VALIDCK was specified on the IKJIDENT macro. If the
“extended format PCE” bit is on in the IKJIDENT PCE, the
address is four bytes long; if the bit is off, the address is
three bytes long. This field is not present if VALIDCK was
not specified.

Using IKJKEYWD to Describe a Keyword Operand
To describe a keyword operand, use the IKJKEYWD macro instruction immediately
followed by a series of IKJNAME macro instructions that indicate the possible
names for the keyword operand. See “Using IKJNAME to List Keyword or Reserved
Word Operand Names” on page 100 for information on the IKJNAME macro
instruction.

Keyword operands can appear in any order in the command but must follow all
positional operands. A user is never required to enter a keyword operand; if he
does not, the default value you supply, if you choose to supply one, is used.
Keywords can consist of any combination of alphanumeric characters up to 31
characters in length, the first of which must be an alphabetic character.

Figure 26 shows the format of the IKJKEYWD macro instruction. Each of the
operands is explained following the figure.

label IKJKEYWD [DEFAULT=’default-value’]

Figure 26. The IKJKEYWD Macro Instruction

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 99

label
This name is used within the PDL DSECT as the symbolic address of the
parameter descriptor entry for this operand.

DEFAULT=‘default-value’
The default value you specify is the value that is used if this keyword is not
present in the command buffer. Specify the valid keyword names with IKJNAME
macro instructions following this IKJKEYWD macro instruction.

The Parameter Control Entry Built by IKJKEYWD
The IKJKEYWD macro instruction generates the variable-length parameter control
entry (PCE) shown in Table 22.

Table 22. The Parameter Control Entry Built by IKJKEYWD

Number of
Bytes

Field Name Contents or Meaning

2 Flags. These flags are set to indicate which options were
coded in the IKJKEYWD macro instruction.

Byte 1:
010. This is an IKJKEYWD PCE.
...0 Reserved.
.... 1... DEFAULT
.... .000 Reserved.

Byte 2:
0000 0000 Reserved

2 Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in
this IKJKEYWD PCE.

2 This field contains a hexadecimal offset from the beginning
of the parameter descriptor list to the related parameter
descriptor entry built by the parse service routine.

1 This field contains the length minus one of the default
information supplied on the IKJKEYWD macro instruction.
This field and the next are present only if DEFAULT was
specified on the IKJKEYWD macro instruction.

Variable This field contains the default value supplied on the
IKJKEYWD macro instruction.

Using IKJNAME to List Keyword or Reserved Word Operand Names
Use the IKJNAME macro instruction to do the following:

v Define keyword operand names. In this case, use the IKJNAME macro
instruction with the IKJKEYWD macro instruction.

v Define reserved word operand names. In this case, use the IKJNAME macro
instruction with the IKJRSVWD macro instruction.

Defining Keyword Operand Names
Use a series of IKJNAME macro instructions to indicate the possible names for a
keyword operand. One IKJNAME macro instruction is needed for each possible
keyword name. Code the IKJNAME macro instructions immediately following the
IKJKEYWD macro instruction to which they pertain.

Using the Parse Macro Instructions to Define Command Syntax

100 z/OS V1R4.0 TSO/E Programming Services

Figure 27 shows the format of the IKJNAME macro instruction. Each of the
operands is explained following the figure.

keyword-name
One of the valid keyword operands for the IKJKEYWD macro instruction that
precedes this IKJNAME macro instruction.

SUBFLD=subfield-name
This option indicates that this keyword name has other operands associated
with it. Use the subfield-name as the label field of the IKJSUBF macro
instruction that begins the description of the possible operands in the subfield.
See “Using IKJSUBF to Describe a Keyword Subfield” on page 103 for a
description of the IKJSUBF macro instruction.

INSERT=‘keyword-string’
The use of some keyword operands implies that other keyword operands are
required. The parse service routine inserts the keyword string specified into the
command string just as if it had been entered as part of the original command
string. The command buffer is not altered.

ALIAS=(‘name’,‘name’,...)
specifies up to 32 alias names for a keyword. Each name represents a valid
abbreviation or alternate name and must be enclosed in quotes. All
abbreviations or names must be enclosed in a single set of parentheses.

Parse automatically accepts a keyword abbreviation if the abbreviation is
distinguishable from the other keywords of the command or subcommand.
Therefore, parse does not require you to code unambiguous abbreviations as
alias names.

Defining Reserved Word Operand Names
Use a series of IKJNAME macro instructions to indicate the possible names for
reserved words. One IKJNAME macro instruction is needed for each possible
reserved word name. Code the IKJNAME macro instructions immediately following
the IKJRSVWD macro instruction to which they apply.

Figure 28 shows the format of the IKJNAME macro instruction. Each of the
operands is explained following the figure.

reserved-word name
One of the valid reserved word operands for the IKJRSVWD macro instruction
that precedes the IKJNAME macro instructions.

IKJNAME ’keyword-name’[,SUBFLD=subfield-name]
[,INSERT=’keyword-string’]
[,ALIAS=(’name’,’name’,...)]

Figure 27. The IKJNAME Macro Instruction (when used with the IKJKEYWD Macro
Instruction)

IKJNAME ’reserved-word name’

Figure 28. The IKJNAME Macro Instruction (when used with the IKJRSVWD Macro
Instruction)

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 101

Note: The IKJNAME macro instruction has two uses when coded with the
IKJRSVWD macro instruction. The reserved-words identified on the
IKJNAME macros can be figurative constants when the IKJRSVWD
macro is chained from an IKJTERM macro, or operators in an
expression when the IKJRSVWD macro is chained from the IKJOPER
macro. See “Using IKJRSVWD to Describe a Delimiter-Dependent
Positional Parameter” on page 91 for more information on using the
IKJRSVWD macro instruction.

The Parameter Control Entry Built by IKJNAME
The IKJNAME macro instruction generates the variable-length parameter control
entry (PCE) shown in Table 23.

Note: Only the first four fields are valid when the IKJNAME macro instruction is
coded with the IKJRSVWD macro instruction.

Table 23. The Parameter Control Entry Built by IKJNAME

Number of
Bytes

Field Name Contents or Meaning

2 Flags. These flags are set to indicate which options were
coded in the IKJNAME macro instruction.

Byte 1:
011. This is an IKJNAME PCE.
...0 0... Reserved.
.... .1.. SUBFLD
.... ..00 Reserved.

Byte 2:
000. Reserved.
...1 INSERT
.... ..1. ALIAS
.... 00.0 Reserved.

2 Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in
this IKJNAME PCE.

1 This field contains the length minus one of the keyword or
reserved word names specified on the IKJNAME macro
instruction.

Variable This field contains the keyword or reserved word name
specified on the IKJNAME macro instruction.

2 This field contains a hexadecimal offset, plus one, from the
beginning of the parameter control list to the beginning of a
subfield PCE. This field is present only if the SUBFLD
operand was specified in the IKJNAME macro instruction.

1 This field contains the length minus one of the keyword
string included as the INSERT operand in the IKJNAME
macro instruction. This field and the next are not present if
INSERT was not specified.

Variable This field contains the keyword string specified as the
INSERT operand of the IKJNAME macro instruction.

1 The total number of aliases.
1 The length of first alias.

Variable The first alias.
1 The length of second alias.

Variable The second alias.

Using the Parse Macro Instructions to Define Command Syntax

102 z/OS V1R4.0 TSO/E Programming Services

Using IKJSUBF to Describe a Keyword Subfield
Keyword operands can have subfields associated with them. A subfield consists of
a parenthesized list of operands (either positional or keyword types) which directly
follows the keyword.

Use the IKJSUBF macro instruction to indicate the beginning of a subfield
description. The IKJSUBF macro instruction ends the main part of the parameter
control list or the previous subfield description, and begins a new subfield
description. All subfield descriptions must occur after the main part of the parameter
control list.

The IKJSUBF macro instruction is used only to begin the subfield description; the
subfield is described using the IKJPOSIT, IKJIDENT, IKJUNFLD, and IKJKEYWD
macro instructions, depending upon the type of operands within the subfield.

The label of this macro instruction must be the same name as the SUBFLD
operand of the IKJNAME macro instruction that you coded to describe the keyword
name.

Figure 29 shows the format of the IKJSUBF macro instruction.

label
The name you supply as the label of this macro instruction must be the same
name you have coded as the SUBFLD operand of the IKJNAME macro
instruction describing the keyword name that takes this subfield.

The Parameter Control Entry Built by IKJSUBF
The IKJSUBF macro instruction generates the parameter control entry (PCE) shown
in Table 24.

Table 24. The Parameter Control Entry Built by IKJSUBF

Number of
Bytes

Field Name Contents or Meaning

1 Flags. These flags indicate which type of PCE this is.
000. This PCE indicates an end-of-field. These

end-of-field indicators are present in
IKJSUBF and IKJENDP PCEs; they
indicate the end of a previous subfield or
of the PCL itself.

...0 0000 Reserved.

2 This field contains a hexadecimal number representing the
offset within the PCL to the first IKJKEYWD PCE or to the
next end-of-field indicator if there are no keywords in this
subfield.

label IKJSUBF

Figure 29. The IKJSUBF Macro Instruction

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 103

Using IKJUNFLD to Describe Unidentified Keyword Operands
Use the IKJUNFLD macro instruction to indicate that the parse service routine
should do the following:

v Accept an unidentified keyword operand that it encounters in the command
buffer. An unidentified keyword operand is an operand that is not specifically
defined in the parameter control list (PCL).

v Pass control to an indicated verify exit routine to perform checking on the
unidentified keyword operand.

Notes:

1. When unidentified keyword operands are present in the command buffer, the
parse service routine uses only the first specification of the IKJUNFLD macro
instruction. Similarly, when an unidentified keyword is present within a subfield,
parse uses only the first specification of the IKJUNFLD macro instruction within
a subfield specification.

2. Parse processes unidentified operands within a subfield in the same way as
keyword operands except that operands are not limited to alphanumeric
characters. Unidentified operands in a subfield can be up to 31 characters in
length and can contain any character other than a blank, comma, tab, or
semicolon. Parse interprets left parentheses within a subfield to indicate the
start of a sublist.

3. The extended format of the IKJUNFLD macro instruction allows unidentified
operands within a subfield to be up to 250 characters. If the subfield string is
not in quotes, it can contain any character other than a blank, comma, tab, or
semicolon. If the string is in quotes, parse recognizes any character, including a
blank.

Be aware that if you issue a command in ISPF or program control facility (PCF),
the extended format of IKJUNFLD does not immediately receive control, the
character used as the ISPF or PCF command delimiter still functions as a
delimiter, and may cause a syntax error. The default command delimiter
character for each is the semicolon (;) unless respecified by your installation.

Figure 30 shows the format of the IKJUNFLD macro instruction.

VERIFCK=symbolic-address
Supply the symbolic address of a verify exit routine that will check unidentified
keyword operands. The parse service routine will pass control to this routine
when it encounters an unidentified keyword operand. “Using Verify Exit
Routines” on page 114 describes what you must do to provide a verify exit
routine.

SUBFLD=subfield-name
This option indicates that the unidentified keyword has other operands
associated with it. Use the subfield-name as the label field of the IKJSUBF
macro instruction that begins the description of the possible operands in the
subfield. See “Using IKJSUBF to Describe a Keyword Subfield” on page 103 for
a description of the IKJSUBF macro instruction.

IKJUNFLD VERIFCK=symbolic-address
[,SUBFLD=subfield-name]
[,EXT]

Figure 30. The IKJUNFLD Macro Instruction

Using the Parse Macro Instructions to Define Command Syntax

104 z/OS V1R4.0 TSO/E Programming Services

EXT
This option specifies extended parsing. The extended format allows up to 250
characters in the subfield. It also recognizes quoted strings, which may contain
blanks. If a quoted string is processed with extended parsing, the quotes are
stripped and the PPEEXTQS flag is set in the parse parameter element (PPE).

The Parameter Control Entry Built by IKJUNFLD
The IKJUNFLD macro instruction generates the parameter control entry (PCE)
shown in Table 25.

Table 25. The Parameter Control Entry Built by IKJUNFLD

Number of
Bytes

Field Name Contents or Meaning

2 Flags.

Byte 1:
0101 This is an IKJUNFLD PCE.
.... 1... This is an EXT-type IKJUNFLD PCE.
.... .000 Reserved.

Byte 2:
0000 0000 Reserved.

2 Length of the parameter control entry. This field contains a
hexadecimal number representing the number of bytes in
this IKJUNFLD PCE.

4 This field contains the address of a verify exit routine.
2 Flags. These flags are set to indicate that this field begins

an IKJKEYWD sub-PCE. This 6-byte sub-PCE is generated
by the IKJUNFLD macro instruction to describe a keyword
operand.

Byte 1:
010. This is an IKJKEYWD sub-PCE.
...0 0000 Reserved.

Byte 2:
0000 0000 Reserved.

2 Length of this sub-PCE. This field contains the hexadecimal
number X'6', which is the number of bytes in this
IKJKEYWD sub-PCE.

2 This field contains a hexadecimal offset from the beginning
of the parameter descriptor list to the related parameter
descriptor entry built by the parse service routine.

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 105

Table 25. The Parameter Control Entry Built by IKJUNFLD (continued)

Number of
Bytes

Field Name Contents or Meaning

2 Flags. These flags are set to indicate that this field begins
an IKJNAME sub-PCE. This sub-PCE is generated by the
IKJUNFLD macro instruction to describe a keyword
operand.

Byte 1:
011. This is an IKJNAME sub-PCE.
...0 0... Reserved.
.... .1.. SUBFLD
.... ..00 Reserved.

Byte 2:
0000 0000 Reserved.

2 Length of this sub-PCE. This field contains a hexadecimal
value representing the number of bytes in this IKJNAME
sub-PCE. If a subfield is not specified, this field contains the
value X'24' for a standard-type IKJUNFLD or X'FF' for an
EXT-type IKJUNFLD. If a subfield has been specified, this
field contains the value X'26' for a standard-type IKJUNFLD
or X'101' for an EXT-type IKJUNFLD.

1 This field contains the length minus one of the next field.
The value is either X'1E' or X'F9'.

Variable This field contains a dummy name. For a standard-type
IKJUNFLD, it contains 31 blanks. For a EXT-type
IKJUNFLD, it contains 250 blanks.

2 This field contains a hexadecimal offset, plus one, from the
beginning of the parameter control list to the beginning of a
subfield PCE. This field is present only if the SUBFLD
operand was specified on the IKJUNFLD macro instruction.

Using IKJENDP to End the Parameter Control List
Use the IKJENDP macro instruction to inform the parse service routine that it has
reached the end of the parameter control list built for this command.

Figure 31 shows the format of the IKJENDP macro instruction.

The Parameter Control Entry Built by IKJENDP
The IKJENDP macro instruction generates the parameter control entry (PCE)
shown in Table 26. It is merely an end-of-field indicator.

IKJENDP

Figure 31. The IKJENDP Macro Instruction

Using the Parse Macro Instructions to Define Command Syntax

106 z/OS V1R4.0 TSO/E Programming Services

Table 26. The Parameter Control Entry Built by IKJENDP

Number of
Bytes

Field Name Contents or Meaning

1 Flags. These flags are set to indicate end-of-field.
000. End-of-field indicator. Indicates the end of

the PCL.
...0 0000 Reserved.

Using IKJRLSA to Release Virtual Storage Allocated by Parse
Use the IKJRLSA macro instruction to release virtual storage allocated by the parse
service routine and not previously released by the parse service routine. This
storage consists of the parameter descriptor list (PDL) returned by the parse service
routine and any virtual storage obtained for new data received by parse as a result
of a prompt.

If the return code from the parse service routine is non-zero, parse has freed all
virtual storage that it has allocated. In this case, you do not need to issue this
macro instruction, but it will not cause an error if you do issue it.

Figure 32 shows the format of the IKJRLSA macro instruction. Each of the operands
is explained following the figure.

address of the answer place
The address of the word in which the parse service routine placed a pointer to
the parameter descriptor list (PDL), when control was returned to the command
processor. Your command processor can load this address into one of the
general registers 1 through 12, and right adjust it with the unused high-order
bits set to zero. See “Passing Control to the Parse Service Routine” on
page 117 for a description of the parse parameter list.

Examples Using the Parse Macro Instructions

Example 1: Describing a PROCESS Command Syntax
This example shows how the parse macro instructions could be used within a
command processor to describe the syntax of a PROCESS command to the parse
service routine. A sample command processor that includes the parse macros used
in this example is shown in z/OS TSO/E Programming Guide.

The sample PROCESS command we are describing to the parse service routine
has the following format:

label IKJRLSA Address of the answer place
(1-12)

Figure 32. The IKJRLSA Macro Instruction

PROCESS dsname [ACTION]
[NOACTION]

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 107

Figure 33 shows the sequence of parse macro instructions that describe the syntax
of this PROCESS command to the parse service routine. The parse macro
instructions used in this example perform the following functions:

v The IKJPARM macro instruction indicates the beginning of the parameter control
list and creates the PRDSECT DSECT that you use to map the parameter
descriptor list returned by the parse service routine.

v The IKJPOSIT macro instruction describes the data set name, which is a
positional operand. The address of a validity checking routine, POSITCHK, is
specified.

v The IKJKEYWD and IKJNAME macro instructions indicate the possible names
for keyword operands.

v The IKJENDP macro instruction indicates the end of the parameter control list.

Example 2: Describing an EDIT Command Syntax
This example shows how the parse macro instructions could be used within a
command processor to describe the syntax of an EDIT command to the parse
service routine.

The sample EDIT command we are describing to the parse service routine has the
following format:

PCLDEFS IKJPARM DSECT=PRDSECT
DSNPCE IKJPOSIT DSNAME, X

PROMPT=’THE NAME OF THE DATA SET YOU WANT TO PROCESS. X
ENTER ’’?’’ FOR HELP’, X
HELP=(’A DATA SET NAME WHICH HAS A FIRST-LEVEL QUALIFIER X
OTHER THAN ’’SYS1’’.’), X
VALIDCK=POSITCHK

ACTPCE IKJKEYWD DEFAULT=’NOACTION’
IKJNAME ’ACTION’
IKJNAME ’NOACTION’
IKJENDP

Figure 33. Example 1 - Using Parse Macros to Describe Command Operand Syntax

EDIT dsname
[PLI [([number [number]] [CHAR60)]]]
[[[2 [72]] [CHAR48]]]
[FORT]
[ASM]
[TEXT]
[DATA]

[SCAN]
[NOSCAN]

[NUM]
[NONUM]

[BLOCK(number)]
[BLKSIZE(number)]

LINE(number)

Using the Parse Macro Instructions to Define Command Syntax

108 z/OS V1R4.0 TSO/E Programming Services

Figure 34 shows the sequence of parse macro instructions that describe the syntax
of this EDIT command to the parse service routine. The parse macro instructions
used in this example perform the following functions:

v The IKJPARM macro instruction indicates the beginning of the parameter control
list and creates the DSECT that you use to map the parameter descriptor list
returned by the parse service routine. The name of the DSECT is defaulted to
IKJPARMD in this example.

v The IKJPOSIT macro instruction describes the data set name, which is a
positional operand.

v The IKJKEYWD and IKJNAME macro instructions indicate the possible names
for keyword operands.

v The IKJSUBF macro instruction indicates the beginning of subfield descriptions
for keyword operands. Within these subfields, IKJIDENT and IKJKEYWD macro
instructions describe the positional and keyword operands.

v The IKJENDP macro instruction indicates the end of the parameter control list.

Example 3: Describing an AT Command Syntax
This example shows how the parse macro instructions could be used to describe
the syntax of a sample AT command that has the following syntax:

PARMTAB IKJPARM
DSNAME IKJPOSIT DSNAME,PROMPT=’DATA SET NAME’
TYPE IKJKEYWD

IKJNAME ’PL1’,SUBFLD=PL1FLD
IKJNAME ’FORT’
IKJNAME ’ASM’
IKJNAME ’TEXT’
IKJNAME ’DATA’

SCAN IKJKEYWD DEFAULT=’NOSCAN’
IKJNAME ’SCAN’
IKJNAME ’NOSCAN’

NUM IKJKEYWD DEFAULT=’NUM’
IKJNAME ’NUM’
IKJNAME ’NONUM’

BLOCK IKJKEYWD
IKJNAME ’BLOCK’,SUBFLD=BLOCKSUB,ALIAS=’BLKSIZE’

LINE IKJKEYWD
IKJNAME ’LINE’,SUBFLD=LINESIZE

PL1FLD IKJSUBF
PL1COL1 IKJIDENT ’NUMBER’,FIRST=NUMERIC,OTHER=NUMERIC,DEFAULT=’2’
PL1COL2 IKJIDENT ’NUMBER’,FIRST=NUMERIC,OTHER=NUMERIC,DEFAULT=’72’
PL1TYPE IKJKEYWD DEFAULT=’CHAR60’

IKJNAME ’CHAR60’
IKJNAME ’CHAR48’

BLOCKSUB IKJSUBF
BLKNUM IKJIDENT ’NUMBER’,FIRST=NUMERIC,OTHER=NUMERIC, X

PROMPT=’BLOCKSIZE’,MAXLNTH=8
LINESIZE IKJSUBF
LINNUM IKJIDENT ’NUMBER’,FIRST=NUMERIC,OTHER=NUMERIC, X

PROMPT=’LINESIZE’
IKJENDP

Figure 34. Example 2 - Using Parse Macros to Describe Command Operand Syntax

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 109

Figure 35 shows the sequence of parse macro instructions that describe this
sample AT command to the parse service routine. The parse macro instructions
used in this example perform the following functions:

v The IKJPARM macro instruction indicates the beginning of the parameter control
list and creates the PARSEAT DSECT that you use to map the parameter
descriptor list returned by the parse service routine.

v The IKJTERM macro instruction indicates that the terminal user can enter the
statement number as a single value or as a list or range of values.

v The IKJPOSIT macro instruction indicates that the user must enter the
subcommand-chain as a parenthesized string.

v The IKJKEYWD and IKJNAME macro instructions indicate the name of the
keyword operand COUNT.

v The IKJSUBF macro instruction indicates the beginning of a subfield description
for the keyword operand. Within this subfield, an IKJIDENT macro instruction
describes the positional operand.

v The IKJENDP macro instruction indicates the end of the parameter control list.

Example 4: Describing a LIST Command Syntax
This example shows how the parse macro instructions could be used to describe
the syntax of a sample LIST command that has the following syntax:

Figure 36 on page 111 shows the sequence of parse macro instructions that
describe this sample LIST command to the parse service routine. The parse macro
instructions used in this example perform the following functions:

v The IKJPARM macro instruction indicates the beginning of the parameter control
list and creates the PARSELST DSECT that you use to map the parameter
descriptor list returned by the parse service routine.

v The IKJTERM macro instruction describes a subscripted variable, such as,
a of b in c(1)

[stmt]
AT [(stmt-1,stmt-2,...)] (cmd chain) COUNT(integer)

[stmt-3:stmt-4]

EXAM2 IKJPARM DSECT=PARSEAT
STMTPCE IKJTERM ’STATEMENT NUMBER’,UPPERCASE,LIST,RANGE,TYPE=STMT, X

VALIDCK=CHKSTMT
POSITPCE IKJPOSIT PSTRING,HELP=’CHAIN OF COMMANDS’,VALIDCK=CHKCMD
KEYPCE IKJKEYWD
NAMEPCE IKJNAME ’COUNT’,SUBFLD=COUNTSUB
COUNTSUB IKJSUBF
IDENTPCE IKJIDENT ’COUNT’,FIRST=NUMERIC,OTHER=NUMERIC, X

VALIDCK=CHKCOUNT
IKJENDP

Figure 35. Example 3 - Using Parse Macros to Describe Command Operand Syntax

LIST symbol PRINT(symbol)

Using the Parse Macro Instructions to Define Command Syntax

110 z/OS V1R4.0 TSO/E Programming Services

that the terminal user must specify.

v The IKJKEYWD and IKJNAME macro instructions indicate the name of the
keyword operand PRINT.

v The IKJSUBF macro instruction indicates the beginning of a subfield description
for the keyword operand. Within this subfield, an IKJTERM macro instruction
describes the positional operand.

v The IKJENDP macro instruction indicates the end of the parameter control list.

Example 5: Describing a WHEN Command Syntax
This example shows how the parse macro instructions could be used to describe
the syntax of a sample WHEN command that has the following syntax:

Figure 37 on page 112 shows the sequence of parse macro instructions that
describe this sample WHEN command to the parse service routine. The parse
macro instructions used in this example perform the following functions:

v The IKJPARM macro instruction indicates the beginning of the parameter control
list and creates the PARSEWHN DSECT that you use to map the parameter
descriptor list returned by the parse service routine.

v The IKJOPER macro instruction describes an operand that can be entered as
either an expression or a variable.

v The IKJTERM macro instructions that are labeled “SYMBOL” and “SYMBOL2”
describe the operands that are part of the expression.

v The IKJRSVWD and IKJNAME macro instructions define possible reserved
words that can be operators in the expression.

v The IKJTERM macro instruction that is labeled “ADDR1” describes the variable
that can be specified as the first positional operand.

v The IKJPOSIT macro instruction describes a parenthesized string.

v The IKJENDP macro instruction indicates the end of the parameter control list.

EXAM3 IKJPARM DSECT=PARSELST
VARPCE IKJTERM ’SYMBOL’,UPPERCASE,PROMPT=’SYMBOL’,TYPE=VAR, X

VALIDCK=CHECK,SBSCRPT=SUBPCE
SUBPCE IKJTERM ’SUBSCRIPT’,SBSCRPT,TYPE=CNST,PROMPT=’SUBSCRIPT’
KEYPCE IKJKEYWD
NAMEPCE IKJNAME ’PRINT’,SUBFLD=PRINTSUB
PRINTSUB IKJSUBF

IKJTERM ’SYMBOL-2’,UPPERCASE,PROMPT=’SYMBOL-2’,TYPE=VAR
IKJENDP

Figure 36. Example 4 - Using Parse Macros to Describe Command Operand Syntax

WHEN [addr] (subcommand chain)
[expression]

Using the Parse Macro Instructions to Define Command Syntax

Chapter 6. Verifying Command and Subcommand Operands with Parse 111

Using Validity Checking Routines
Your command processor can provide a validity checking routine to do additional
checking on a positional operand. Each positional operand can have a unique
validity checking routine. Indicate the presence of a validity checking routine by
coding the entry point address of the routine as the VALIDCK= operand in the
IKJPOSIT, IKJTERM, IKJOPER, or IKJIDENT macro instructions. This address must
be within the program that invokes the parse service routine.

The parse service routine can call validity checking routines for the following types
of positional parameters:
v HEX
v VALUE
v ADDRESS
v QSTRING
v USERID
v DSNAME
v DSTHING
v CONSTANT
v VARIABLE
v STATEMENT NUMBER
v EXPRESSION
v JOBNAME
v INTEG
v Any non-delimiter-dependent parameters.

Parse passes control to the validity checking routine after it has determined that the
operand is non-null and syntactically correct. If a DSNAME or USERID operand is
entered with a password, parse passes control to the validity checking routine after
first parsing both the userid or dsname and the password. If the terminal user
enters a list, the validity checking routine is called as each element in the list is
parsed. If a range is entered, the parse service routine calls the validity checking
routine only after both items of the range are parsed.

Passing Control to Validity Checking Routines
Parse invokes all validity checking routines in the same addressing mode in which
parse is invoked. Note that if a SYNCH macro is used to invoke parse, the
addressing mode of the caller can be different from that in which parse is invoked.

When the parse service routine passes control to a validity checking routine, parse
uses standard linkage conventions. The validity checking routine must save parse’s
registers and restore them before returning control to the parse service routine.

EXAM4 IKJPARM DSECT=PARSEWHN
OPER IKJOPER ’EXPRESSION’,OPERND1=SYMBOL1,OPERND2=SYMBOL2, X

RSVWD=OPERATOR,CHAIN=ADDR1,PROMPT=’TERM’,VALICHK=CHECK
SYMBOL1 IKJTERM ’SYMBOL1’,UPPERCASE,TYPE=VAR,PROMPT=’SYMBOL2’
OPERATOR IKJRSVWD ’OPERATOR’,PROMPT=’OPERATOR’

IKJNAME ’EQ’
IKJNAME ’NEQ’

SYMBOL2 IKJTERM ’SYMBOL2’,TYPE=VAR
ADDR1 IKJTERM ’ADDRESS’,TYPE=VAR,VALIDCK=CHECK1
LASTONE IKJPOSIT PSTRING,VALIDCK=CHECK2

IKJENDP

Figure 37. Example 5 - Using Parse Macros to Describe Command Operand Syntax

Using Validity Checking Routines

112 z/OS V1R4.0 TSO/E Programming Services

The Validity Check Parameter List
The parse service routine builds a three-word parameter list and places the address
of this list into register 1 before branching to a validity checking routine. This
three-word parameter list has the format shown in Table 27.

Table 27. Format of the Validity Check Parameter List

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

0(0) 4 PDEADR The address of the parameter descriptor
entry (PDE) built by parse for this
syntactically correct operand.

4(4) 4 USERWORD The address of the user work area. This is
the same address you supplied to the
parse service routine in the PPLUWA field
in the parse parameter list.

8(8) 4 VALMSG Initialized to X'00000000' by parse. Your
validity checking routine can place the
address of a second-level message in this
field when it sets a return code of 4.

Return Codes from Validity Checking Routines
Your validity checking routines must return a code in general register 15 to the
parse service routine. These codes inform the parse service routine of the results of
the validity check and determine the action that parse should take. Table 28 shows
the return codes, their meaning, and the action taken by the parse service routine.

Table 28. Return Codes from a Validity Checking Routine

Return Code
Dec(Hex)

Meaning Action Taken by Parse

0(0) The operand is valid. No additional processing is
performed on this operand by the
parse service routine.

4(4) The operand is not valid. The parse service routine writes an
error message to the terminal and
prompts for a valid operand.

8(8) The operand is not valid. The validity checking routine has
issued an error message; parse
prompts for a valid operand.

12(C) The operand is not valid; syntax
checking cannot continue.

The parse service routine stops all
further syntax checking, sets a
return code of 20, and returns to
the calling routine.

If the parse service routine receives a return code of 4 or 8, it processes new data
entered in response to the prompt as though it were the original data, and passes
control again to the validity checking routine. This cycle continues until a valid
operand is obtained.

Prior to issuing a return code of 12, your validity checking routine should issue a
message indicating that it has requested that parse terminate.

Using Validity Checking Routines

Chapter 6. Verifying Command and Subcommand Operands with Parse 113

Using Verify Exit Routines
Your command processor can provide verify exit routines to perform checking when
the parse service routine encounters either of the following in the command buffer:
v Unidentified keyword operands
v Unidentified keyword operands within a subfield.

To indicate the presence of a verify exit routine, specify the entry point address of
the routine on the VERIFCK= operand in the IKJUNFLD macro instruction. This
address must be within the program that invokes the parse service routine.

When the parse service routine encounters a keyword operand or subfield operand
in the command buffer that is not specifically defined in the PCL, it determines
whether a PCE has been created by the IKJUNFLD macro instruction. If parse
encounters such a PCE, it gives control to the verify exit routine; if it does not, the
operand is treated as not valid. When unidentified keyword operands are present in
the command buffer, the parse service routine uses only the first specification of the
IKJUNFLD macro instruction. Similarly, when an unidentified keyword is present
within a subfield, parse uses only the first specification of the IKJUNFLD macro
instruction within a subfield specification.

Passing Control to Verify Exit Routines
Parse invokes all verify exit routines in the same addressing mode in which parse is
invoked. If a SYNCH macro is used to invoke parse, the addressing mode of the
caller can be different from that in which parse is invoked.

When the parse service routine passes control to a verify exit routine, parse uses
standard linkage conventions. The verify exit routine must save parse’s registers
and restore them before returning control to the parse service routine.

The Verify Exit Parameter List
The parse service routine builds an eight-word parameter list and places the
address of this list into register 1 before branching to a verify exit routine. This
eight-word parameter list, the verify exit parameter list (VEPL), has the format
shown in Table 29.

Table 29. The Verify Exit Parameter List

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

0(0) 4 VEPLID Parse sets this field to the value of
C‘VEPL’.

4(4) 2 VEPLVERS Parse sets this field to the version number
of the VEPL.

6(6) 2 VEPLLEN Parse sets this field to the length of the
VEPL.

8(8) 4 VEPLPPE Parse sets this field to the address of the
parse parameter element (PPE) that
describes the operand.

12(C) 4 VEPLWRKA The address of the user work area. This
field is set by the parse service routine to
the value you supplied to parse in the
PPLVEWA field in the parse parameter list
(PPL).

Using Verify Exit Routines

114 z/OS V1R4.0 TSO/E Programming Services

Table 29. The Verify Exit Parameter List (continued)

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

16(10) 4 VEPLMSG1 The address of an insert for a first-level
message to be issued by parse when the
verify exit routine indicates that the
keyword operand is not valid. This field
should be set by the verify exit routine
when its return code is 4 or 12.

20(14) 2 VEPLM1LN The length of the message insert whose
address is contained in VEPLMSG1. This
field should be set by the verify exit routine
when its return code is 4 or 12.

22(16) 2 VEPLRSV1 Reserved.
24(18) 4 VEPLMSG2 The address of a second-level message to

be issued by parse when the verify exit
routine indicates that the keyword operand
is not valid. This field should be set by the
verify exit routine when its return code is 4
or 12.

28(1C) 2 VEPLM2LN The length of the message whose address
is contained in VEPLMSG2. This field
should be set by the verify exit routine
when its return code is 4 or 12.

30(1E) 2 VEPLRSV2 Reserved.

The Parse Parameter Element
The parse service routine builds a five-word parse parameter element (PPE) that
describes the operand or subfield operand currently being processed. Your verify
exit routine uses the information contained in the VEPL and the PPE to refer to the
operand that was entered by the terminal user. Use the VEPLPPE field in the verify
exit parameter list to obtain the address of the PPE. The PPE has the format shown
in Table 30.

Table 30. The Parse Parameter Element

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

0(0) 4 PPEID The value of C‘PPE’.
4(4) 2 PPEVERS The version number of the PPE.
6(6) 2 PPELEN The length of the PPE.
8(8) 4 PPEOPER The address of the unidentified operand or

subfield operand being processed.
12(C) 4 PPEVEXIT The address of the verify exit routine that

will receive control to process the
unidentified operand or subfield operand.

16(10) 2 PPEOPLEN The length of the unidentified operand or
subfield operand currently being processed.

Using Verify Exit Routines

Chapter 6. Verifying Command and Subcommand Operands with Parse 115

Table 30. The Parse Parameter Element (continued)

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

18(12) 1 PPEFLAGS These flags are set by the parse service
routine to indicate the following:

Setting Meaning

PPELST(X'80') The current operand is in
a list of operands, or is in
a list of operands within a
subfield.

PPENDLST(X'40')
The previous operand is
the last in a list of
operands, or is the last in
a list of operands within a
subfield. Because this
flag only indicates that a
list is complete, no
additional data is passed
to the verify exit routine
when it is set.

PPENDOP(X'20')
The previous operand is
the last unidentified
operand or the last
unidentified operand
within a subfield that
occurs in the command
buffer. The verify exit
should perform clean-up
processing, if necessary.

PPENWLST(X'10')
The current operand is
the first in a list of
operands, or is the first in
a list of operands within a
subfield.

PPEEXTQS(X'08')
The current operand was
originally a quoted string
and the quotes have
been stripped by the
parse service routine.

19(13) 1 PPERSVD2 Reserved.

Return Codes from Verify Exit Routines
Your verify exit routines must return a code in general register 15 to the parse
service routine. This code informs the parse service routine of the results of the
check and determines the action that parse should take. Table 31 shows the return
codes, their meaning, and the action taken by the parse service routine.

Using Verify Exit Routines

116 z/OS V1R4.0 TSO/E Programming Services

Table 31. Return Codes from a Verify Exit Routine

Return Code
Dec(Hex)

Meaning

0(0) The operand is valid. No additional processing is performed on this
operand by the parse service routine.

4(4) The operand is not valid. Parse prompts the user to reenter the operand
and takes the insert for the first-level message from the VEPLMSG1
field in the VEPL. Parse takes the second-level message from the
VEPLMSG2 field in the VEPL.

8(8) The operand is not valid. The verify exit routine has issued a message
indicating that the operand is not valid; parse prompts the user to
reenter the operand. This return code is not valid for cleanup calls.

12(C) The operand is not valid. Parse performs normal processing for a not
valid keyword operand by either:

v Issuing a message indicating that a not valid keyword operand has
been entered and prompting the user to reenter the operand. In this
case, parse takes the inserts for the first-level message from the
VEPLMSG1 field in the VEPL. It takes the second-level message
from the VEPLMSG2 field in the VEPL.

v Issuing a message indicating that extraneous information has been
entered. In this case, parse does not prompt the user.

This return code is not valid for cleanup calls.

16(10) The operand is not valid, and the verify exit routine requests that parse
terminate. Parse does not issue a message or prompt the user; it sets a
return code of 32, and returns to its caller. This return code is not valid
for cleanup calls.

20(14) The operand is not valid. Parse issues a message indicating that the
operand is extraneous and is ignored. If parse is currently processing a
subfield, it skips to the end of the subfield and continues processing.
This return code is not valid for cleanup calls.

If the parse service routine receives a return code of 4 or 8, it processes new data
entered in response to the prompt as though it were the original data, and passes
control again to the verify exit routine. This cycle continues until a valid operand is
obtained. After an operand is successfully processed, parse again calls the verify
exit for notification of cleanup. Return codes other than 0 or 4 are ignored by parse
for cleanup processing.

Prior to issuing a return code of 16, your verify exit routine should issue a message
indicating that it has requested that parse terminate.

Passing Control to the Parse Service Routine
Your command processor can invoke the parse service routine by using either the
CALLTSSR or LINK macro instructions, specifying IKJPARS as the entry point
name. However, you must first create the parse parameter list (PPL) and place its
address into register 1. This PPL must remain intact until the parse service routine
returns control to the calling routine. The PPL is described in “The Parse Parameter
List” on page 118.

The parse service routine can be invoked in either 24- or 31-bit addressing mode.
IKJPARS accepts input above or below 16 MB in virtual storage. The caller’s
parameters must be in the primary address space.

Using Verify Exit Routines

Chapter 6. Verifying Command and Subcommand Operands with Parse 117

Figure 38 on page 120 shows the flow of control between a command processor
and the parse service routine.

The Parse Parameter List
The parse parameter list (PPL) is an eight-word parameter list containing addresses
required by the parse service routine.

You can use the IKJPPL DSECT, which is provided in SYS1.MACLIB, to map the
fields in the PPL. Table 32 shows the format of the parse parameter list.

Table 32. The Parse Parameter List

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

0(0) 4 PPLUPT The address of the user profile table.
4(4) 4 PPLECT The address of the environment control

table.
8(8) 4 PPLECB The address of the command processor’s

event control block. The ECB is one word
of storage, which must be declared and
initialized to zero by your command
processor.

12(C) 4 PPLPCL The address of the parameter control list
(PCL) created by your command processor
using the parse macro instructions. Use
the label on the IKJPARM macro
instruction as the symbolic address of the
PCL.

16(10) 4 PPLANS The address of a fullword of virtual
storage, supplied by the calling routine, in
which the parse service routine places a
pointer to the parameter descriptor list
(PDL). If the parse of the command buffer
is unsuccessful, parse sets the pointer to
the PDL to X'FF000000'.

20(14) 4 PPLCBUF The address of the command buffer.
24(18) 4 PPLUWA A user supplied work area that parse

passes to validity checking routines. This
field can contain anything that your
command processor needs to pass to a
validity checking routine.

28(1C) 4 PPLVEWA A user supplied work area that parse
passes to verify exit routines. This field can
contain anything that your command
processor needs to pass to a verify exit
routine.

Checking Return Codes from the Parse Service Routine
When the parse service routine returns control to its caller, general register 15
contains one of the following return codes:

Table 33. Return Codes from the Parse Service Routine

Return Code
Dec(Hex)

Meaning

0(0) Parse completed successfully.

Passing Control to the Parse Service Routine

118 z/OS V1R4.0 TSO/E Programming Services

Table 33. Return Codes from the Parse Service Routine (continued)

Return Code
Dec(Hex)

Meaning

4(4) The command operands were incomplete and parse was unable to
prompt.

8(8) Parse did not complete because an attention interruption occurred
during parse processing.

12(C) Parse did not complete; the parse parameter list contains not valid
information.

16(10) Parse did not complete; no space was available.

20(14) Parse did not complete; a validity checking routine requested
termination by returning to parse with a return code of 12.

24(18) Parse did not complete; conflicting operands were found on the
IKJTERM, IKJOPER, or IKJRSVWD macro instruction.

28(1C) Parse did not complete; the user’s terminal has been disconnected.

32(20) Parse did not complete; a verify exit routine requested termination by
returning to parse with a return code of 16.

36(24) Parse did not complete; an out-of-range DBCS character was found.

40(28) Parse did not complete; an odd number of bytes was found in a DBCS
character string.

44(2C) Parse did not complete; a shift-out character was found with no
corresponding shift-in character.

48(30) Parse did not complete; a nested shift-out character was found.

If the parse service routine returns to your command processor with a return code
of zero, indicating that it has completed successfully, the PPLANS field in the parse
parameter list contains the address of a fullword containing a pointer to the
parameter descriptor list (PDL). See “Examining the PDL Returned by the Parse
Service Routine” on page 120 for information on how to use the PDL to examine the
results from the parse service routine.

If the parse service routine does not complete successfully, your command
processor should issue a message except when the return code from parse is 4, 20
or 32. When the return code is 4, parse has already issued a message. When the
return code is either 20 or 32, the validity checking routine or verify exit routine,
respectively, has issued a message before it requested that parse terminate.

Your command processor can invoke the GNRLFAIL routine to issue meaningful
error messages for the other parse return codes. See Chapter 21, “Analyzing Error
Conditions with GNRLFAIL/VSAMFAIL” on page 395.

Checking Return Codes from the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 119

Examining the PDL Returned by the Parse Service Routine
The parse service routine returns the results of the scan of the command buffer to
the command processor in a parameter descriptor list (PDL). The PDL, built by
parse, consists of the parameter descriptor entries (PDE), which contain pointers to
the operands, indicators of the options specified, and pointers to the subfield
operands entered with the command operands.

Use the name that you specified as the DSECT= operand on the IKJPARM macro
instruction as the name of the DSECT that maps the PDL. The default name for this
DSECT is IKJPARMD. Base this DSECT on the PDL address returned by the parse

Command Processor Parse Service Routine
CALLTSSR

EP = IKJPARS

Reg. 1

PPL

UPT

ECT

CP ECB

PCL

Answer Place

Command Buffer

User Work Area

Answer Place

Length Offset Command Name

+0

+4

+8

+12

+16

+20

+24

Command
Operands

+28 User Work Area

Figure 38. Control Flow between Command Processor and the Parse Service Routine

Examining the PDL Returned by the Parse Service Routine

120 z/OS V1R4.0 TSO/E Programming Services

service routine. The PPLANS field of the parse parameter list points to a fullword of
storage that contains the address of the PDL.

The format of the PDE depends upon the type of operand parsed. For a discussion
of operand types, see the topic “Defining Command Operand Syntax” on page 61.
The following description of the possible PDEs shows each of the PDE formats and
the type of operands they describe.

The PDL Header
The PDL begins with a two-word header. The DSECT= operand of the IKJPARM
macro instruction provides a name for the DSECT created to map the PDL. Use
this name as the symbolic address of the beginning of the PDL header.

Offset Decimal Meaning

0 A pointer to the next block of virtual storage
4 Subpool number
5 Reserved
6 Length

Pointer to the next block of virtual storage:
The parse service routine gets virtual storage for the PDL and for any data
received as the result of a prompt. Each block of virtual storage obtained begins
with another PDL header. The blocks of virtual storage are forward-chained by
this field. A forward-chain pointer of X'FF000000' in this field indicates that this
is the last storage element obtained.

Subpool number:
This field will always indicate subpool 1. All virtual storage allocated by the
parse service routine for the PDL and for data received from a prompt is
allocated from subpool 1.

Length:
This field contains a hexadecimal number indicating the length of this block of
real storage (this PDL). The length includes the header.

PDEs Created for Positional Operands Described by IKJPOSIT
The labels you use to name the macro instructions provide access to the
corresponding PDEs. The positional operands described by the IKJPOSIT macro
instruction have the following PDE formats.

SPACE, DELIMITER
The parse service routine does not build a PDE for either a SPACE or a
DELIMITER operand.

STRING, PSTRING, and QSTRING
The parse service routine builds a two-word PDE to describe a STRING, PSTRING,
or a QSTRING operand; the PDE has the following format:

Offset Decimal Meaning

0 A pointer to the character string
4 Length
6 Flags
7 Reserved

Examining the PDL Returned by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 121

Pointer to the character string:
contains a pointer to the beginning of the character string, or a zero if the
operand was omitted.

Length:
contains the length of the string. Any punctuation around the character string is
not included in this length figure. The length is zero if the string is omitted or if
the string is null.

Flags:

Setting Meaning

0... The operand is not present.
1... The operand is present.
.xxx xxxx Reserved bits.

Note: If the string is null, the pointer is set, the length is zero, and the flag bit is
1.

VALUE
The parse service routine builds a two-word PDE to describe a VALUE operand; the
PDE has the following format:

Offset Decimal Meaning

0 A pointer to the character string
4 Length
6 Flags
7 Type-character.

Pointer to the character string:
contains a pointer to the beginning of the character string; that is, the first
character after the quote. Contains a zero if the VALUE operand is not present.

Length:
contains the length of the character string excluding the quotes.

Flags:

Setting Meaning

0... The operand is not present.
1... The operand is present.
.xxx xxxx Reserved bits.

Type-character:
contains the letter that precedes the quoted string.

DSNAME, DSTHING
The parse service routine builds a six-word PDE to describe a DSNAME or a
DSTHING operand. The PDE has the following format:

Offset Decimal Meaning

0 A pointer to the dsname
4 Length1
6 Flags1

Examining the PDL Returned by the Parse Service Routine

122 z/OS V1R4.0 TSO/E Programming Services

Offset Decimal Meaning

7 Reserved
8 A pointer to the member name
12 Length2
14 Flags2
15 Reserved
16 A pointer to the password
20 Length3
22 Flag3
23 Reserved

Pointer to the dsname:
contains a pointer to the first character of the data set name. Contains zero if
the data set name was omitted. Contains a pointer to the USID if it is prefixed.

Length1:
contains the length of the data set name. If the data set name is contained in
quotes, this length figure does not include the quotes. When the USID is
prefixed, this field will contain the total length of the data set name and the
USID.

Flags1:

Setting Meaning

0... The data set name is not present.
1... The data set name is present.
.0.. The data set name is not contained within quotes.
.1.. The data set name is contained within quotes.
..xx xxxx Reserved bits.

Pointer to the member name:
contains a pointer to the beginning of the member name. Contains zero if the
member name was omitted.

Length2:
contains the length of the member name. This length value does not include the
parentheses around the member name.

Flags2:

Setting Meaning

0... The member name is not present.
1... The member name is present.
.xxx xxxx Reserved bits.

Pointer to the password:
contains a pointer to the beginning of the password. Contains zero if the
password was omitted.

Length3:
contains the length of the password.

Examining the PDL Returned by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 123

Flags3:

Setting Meaning

0... The password is not present.
1... The password is present.
.xxx xxxx Reserved bits.

JOBNAME
The parse service routine builds a four-word PDE to describe a JOBNAME
operand. The PDE has the following format:

Offset Decimal Meaning

0 A pointer to the jobname
4 Length1
6 Flags1
7 Reserved
8 A pointer to the jobid name
12 Length2
14 Flags2
15 Reserved

Pointer to the jobname:
contains a pointer to the beginning of the jobname. Contains zero if the
jobname was omitted.

Length1:
contains the length of the jobname. The jobname cannot be entered in quotes.

Flags1:

Setting Meaning

0... The jobname is not present.
1... The jobname is present.
.xxx xxxx Reserved bits.

Pointer to the jobid:
contains a pointer to the beginning of the jobid. Contains zero if the jobid was
omitted.

Length2:
contains the length of the jobid. This length figure does not include the
parentheses around the jobid.

Flags2:

Setting Meaning

0... The jobid is not present.
1... The jobid is present.
.xxx xxxx Reserved bits.

ADDRESS
The parse service routine builds a nine-word PDE to describe an ADDRESS
operand. The PDE has the following format:

Examining the PDL Returned by the Parse Service Routine

124 z/OS V1R4.0 TSO/E Programming Services

Offset Decimal Meaning

0 A pointer to the load name
4 Length1
6 Flags1
7 Reserved
8 A pointer to the entry name
12 Length2
14 Flags2
15 Flags3
16 A pointer to the address string
20 Length3
22 Flags4
23 Reserved
24 Flags5
25 Sign
26 Indirect count
28 A pointer to the first expression value PDE
32 Reserved for use by user validity check routine

Pointer to the load name:
contains a pointer to the beginning of the load module name. Contains zero if
no load module name was specified.

Length1:
contains the length of the load module name, excluding the period.

Flags1:

Setting Meaning

0... The load module name is not present.
1... The load module name is present.
.xxx xxxx Reserved bits.

Pointer to the entry name:
contains a pointer to the name of the CSECT; zero if the CSECT name is not
specified.

Length2:
contains the length of the entry name, excluding the period.

Flags2:

Setting Meaning

0... The entry name is not present.
1... The entry name is present.
.xxx xxxx Reserved bits.

Flags3:

Setting Meaning

1000 00.. A single vector register element is present.
0100 00.. A vector register pair element is present.
0010 00.. A complete single vector register is present.

Examining the PDL Returned by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 125

Setting Meaning

0001 00.. A complete vector register pair is present.
0000 10.. A vector mask register is present.
0000 01.. An access register is present.
.... ..xx Reserved bits.

Pointer to the address string:
contains a pointer to the address string portion of a qualified address. Contains
a zero if the address string was not specified.

Length3:
contains the length of the address string portion of a qualified address. This
length count excludes the following characters for the following address types:

Type Data Excluded

Relative address The plus sign.

Register address

Vector mask register address

Access register address

Letters.

Absolute address The period.

Vector address The right parenthesis.

Flags4:
The bits set in this one-byte flag field indicate whether the address string is
present and what type of indirect address is represented.

Setting Meaning

0... The address string is not present.
1... The address string is present.
.0.. A 24-bit indirect address is represented.
.1.. a 31-bit indirect address is represented.
..xx xxxx Reserved bits.

Note: Bit 1 of Flags4 has no meaning if the indirect count is zero. This bit can
be on only when the EXTENDED, VECTOR or AR keyword of IKJPOSIT
has been specified.

Offset 23:
This byte is reserved for use by a validity checking routine.

Flags5:
The bits set in this one-byte flag field indicate the type of address found by the
parse service routine.

Bit Setting Hex Meaning

0000 0000 00 Absolute address.

1000 0000 80 Symbolic address.

0100 0000 40 Relative address.

0010 0000 20 General register.

0001 0000 10 Double precision floating-point register.

Examining the PDL Returned by the Parse Service Routine

126 z/OS V1R4.0 TSO/E Programming Services

Bit Setting Hex Meaning

0000 1000 08 Single precision floating-point register.

0000 0100 04 Non-qualified entry name (optionally preceded by a load name).

0000 0010 02 This one-byte flag field is not used to indicate the type of
address.

Sign:
contains the arithmetic sign character used before the expression value defined
by the first expression value PDE. If the sign field is zero and the pointer to the
first expression value PDE is non-zero, then the first expression value PDE was
created due to a switch in indirection symbols (?% or %?). If there are no
address expression PDEs, then this field is zero.

Indirect count:
contains a number representing the number of levels of indirect addressing.

Pointer to the first expression value PDE:
This is a pointer to the first expression value PDE. Contains X'FF000000' if
there are no expression value PDEs.

User word for validity checking routine:
A word provided for use by a validity checking routine.

Expression Value: If the parse service routine finds an ADDRESS operand to be
in the form of an address expression, parse builds an expression value PDE for
each expression value in the address expression.

If the EXTENDED, VECTOR, or AR keyword is specified on the IKJPOSIT macro,
and parse encounters an alternating sequence of indirection symbols, (%? or ?%),
parse completes the current PDE and generates a new expression value PDE.

These expression value PDEs are chained together, beginning at the eighth word of
the address PDE built by the parse service routine to describe the address
operand. The last expression value PDE is indicated by X'FF000000' in its fourth
word, the forward chaining field.

The parse service routine builds a four-word PDE to describe an expression value;
it has the following format:

Offset Decimal Meaning

0 A pointer to the address string
4 Length3
6 Flags6
7 Reserved
8 Flags7
9 Sign
10 Indirect count
12 A pointer to the next expression value PDE

Pointer to the address string:
contains a pointer to the expression value address string. Contains zero if this
PDE was created due to a switch in indirection symbols.

Examining the PDL Returned by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 127

Length3:
contains the length of the expression value address string. The N is not
included in this length value.

Flags6:
The parse service routine sets bit 1 to indicate the type of indirect addressing.
Bit 1 has no meaning if the indirection count is 0.

Setting Meaning

x... Reserved bit.
.0.. A 24-bit indirect address is represented.
.1.. A 31-bit indirect address is represented.
..xx xxxx Reserved bits.

Flags7:
The parse service routine sets these flags to indicate the type of expression
value. X'00' indicates that this PDE was not created for an expression value.

Bit Setting Hex Meaning

0000 0000 00 This PDE was created due to a change in indirection symbols.

0000 0100 04 This is a decimal expression value.

0000 0010 02 This is a hexadecimal expression value.

Sign:
contains the arithmetic sign character used before the expression value defined
by the next expression value PDE. If the sign field is zero and the pointer to the
next expression value PDE is non-zero, then the next expression value PDE
was created due to a switch in indirection symbols (?% or %?). If there are no
more PDEs, then this field is zero.

Indirect count:
contains a value representing the number of levels of indirect addressing within
this particular address expression.

Pointer to the next expression value PDE:
contains a pointer to the next expression value PDE if one is present; contains
X'FF000000' if this is the last expression value PDE.

Each time parse encounters a %? sequence, the current PDE is completed with the
31-bit indirection bit off and the count of 24-bit indirection symbols placed in that
PDE. A new expression value PDE is generated in which the 31-bit indirection bit is
on and the address string address, the decimal value bit, and the hexadecimal
value bit are all zero. The number of consecutive 31-bit indirection symbols is
placed in the latter PDE.

Each time parse encounters a ?% sequence, a complementary process takes
place. Specifically, the 31-bit indirection bit is on and the count of 31-bit indirection
symbols is placed in the PDE. A new expression value PDE is generated in which
the 31-bit indirection bit is off and the address string address, the decimal value bit,
and the hexadecimal value bit are all zero. The number of consecutive 24-bit
indirection symbols is placed in the latter PDE.

Figure 39 illustrates the series of PDEs generated by parse when parse finds an
address expression containing a mixed sequence of 31-bit and 24-bit indirection

Examining the PDL Returned by the Parse Service Routine

128 z/OS V1R4.0 TSO/E Programming Services

symbols. The following series of PDEs are generated for 12R%??%+16n?, an
address expression with mixed indirection symbols:

USERID
The parse service routine builds a four-word PDE to describe a USERID operand; it
has the following format:

Offset Decimal Meaning

0 A pointer to the user ID
4 Length1
6 Flags1
7 Reserved
8 A pointer to the password
12 Length2
14 Flags2
15 Reserved

Pointer to the user ID:
contains a pointer to the beginning of the user ID. Contains zero if the user ID
was omitted.

A pointer to the load name

A pointer to the address string

2 X'80' Reserved

+0

+16

+20

+24

+28

+32

+25 +26

X'20' 0 1

A pointer to 1st exresssion value PDE

Reserved

(12R%)

ADDR type PDE

+0

+4

+8

+12

+6 +7

+9 +10

0

0 X'40' Reserved

0 0 2

A pointer to 2nd expression value PDE

(??)

Expression Value PDE

0

0 Reserved

0 '+' 1

A pointer to 3rd expression value PDE

(%)

Expression Value PDE

A pointer to the address string

2 X'40' Reserved

X'04' 0 1

X'FF000000'

(+16N?)

Expression Value PDE

+22 +23

X'00'

Figure 39. Series of PDEs Created for Mixed Sequence of Indirection Symbols

Examining the PDL Returned by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 129

Length1:
contains the length of the user ID.

Flags1:

Setting Meaning

0... The user ID is not present.
1... The user ID is present.
.xxx xxxx Reserved bits.

Pointer to the password:
contains a pointer to the beginning of the password. Contains zero if the
password is omitted.

Length2:
contains the length of the password, excluding the slash.

Flags2:

Setting Meaning

0... The password is not present.
1... The password is present.
.xxx xxxx Reserved bits.

UID2PSWD
The parse service routine builds a six-word PDE to describe a UID2PSWD operand.
It has the following format:

Offset Decimal Meaning

0 A pointer to the user ID
4 Length1
6 Flags1
7 Reserved
8 A pointer to password1
12 Length2
14 Flags2
15 Reserved
16 A pointer to password2
20 Length3
22 Flag3
23 Reserved

Pointer to the user ID:
contains a pointer to the beginning of the user ID. It contains zero if the user ID
was omitted.

Length1:
contains the length of the user ID.

Examining the PDL Returned by the Parse Service Routine

130 z/OS V1R4.0 TSO/E Programming Services

Flags1:

Setting Meaning

0... The user ID is not present.
1... The user ID is present.
.xxx xxxx Reserved bits.

Pointer to password1:
contains a pointer to the beginning of password1. It contains zero if the
password1 is omitted.

Length2:
contains the length of password1, excluding the slash.

Flags2:

Setting Meaning

0... Password1 is not present.
1... Password1 is present.
.xxx xxxx Reserved bits.

Pointer to password2:
contains a pointer to the beginning of password2. It contains zero if password2
is omitted.

Length3:
contains the length of password2, excluding the slash.

Flags3:

Setting Meaning

0... Password2 is not present.
1... Password2 is present.
.xxx xxxx Reserved bits.

PDEs Created for Positional Operands Described by IKJTERM

CONSTANT
The parse service routine builds a five-word PDE to describe a CONSTANT
operand. The PDE has the following format:

Offset Decimal Meaning

0 Length1
1 Length2
2 Reserved
4 Reserved Word Number
6 Flags
8 A pointer to the string of digits
12 A pointer to the exponent
16 A pointer to the decimal point

Examining the PDL Returned by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 131

Length1:
contains the length of the term entered, depending on the type of operand
entered as follows:

v For a fixed-point numeric literal, the length includes the digits but not the sign
or decimal point.

v For a floating-point numeric literal, the length includes the mantissa (string of
digits preceding the letter E) but not the sign or decimal point.

v For a non-numeric literal, the length includes the string of characters but not
the apostrophes.

Length2:
For a floating-point numeric literal, length2 contains the length of the string of
digits following the letter E but not the sign.

Reserved Word Number:
The reserved word number contains the number of the IKJNAME macro that
corresponds to the entered name.

Note: The possible names of reserved words are given by coding a list of
IKJNAME macros following an IKJRSVWD macro. One IKJNAME macro
is needed for each possible name. If the name entered does not
correspond to one of the names in the IKJNAME macro list then parse
sets this field to zero.

Flags:
Byte 1:

Setting Meaning

0... The operand is missing.
1... The operand is present.
.1.. Constant.
..1. Variable.
...1 Statement number.
.... 1... Fixed-point numeric literal.
.... .1.. Non-numeric literal.
.... ..1. Figurative constant.
.... ...1 Floating-point numeric literal.

Byte 2:

Setting Meaning

0... Sign on constant is either plus or omitted.
1... Sign on constant is minus.
.0.. Sign on exponent of floating-point numeric literal is either plus or

omitted.
.1.. Sign on exponent of floating-point numeric literal is minus.
..1. Decimal point is present.
...x xxxx Reserved bits.

Pointer to the string of digits:
contains a pointer to the string of digits, not including the sign if entered.
Contains zero if a constant type of operand is not entered.

Examining the PDL Returned by the Parse Service Routine

132 z/OS V1R4.0 TSO/E Programming Services

Pointer to the exponent:
contains a pointer to the string of digits in a floating-point numeric literal
following the letter E, not including the sign if entered.

Pointer to the decimal point:
contains a pointer to the decimal point in a fixed-point or floating-point numeric
literal. If a decimal point is not entered, this field is zero.

STATEMENT NUMBER
The parse service routine builds a five-word PDE to describe a STATEMENT
NUMBER operand. The PDE has the following format:

Offset Decimal Meaning

0 Length1
1 Length2
2 Length3
3 Reserved
4 Reserved
6 Flags
8 A pointer to the program-id
12 A pointer to the line number
16 A pointer to the verb number

Length1:
contains the length of the program-id specified but does not include the
following period. Contains zero if the program-id is not present.

Length2:
contains the length of the line number entered but does not include the
delimiting periods. Contains zero if the line number is not present.

Length3:
contains the length of the verb number entered but does not include the
preceding period. Contains zero if the verb number is not present.

Flags:
Byte 1:

Setting Meaning

0... The operand is missing.
1... The operand is present.
.1.. Constant.
..1. Variable.
...1 Statement number.
.... xxxx Reserved.

Byte 2:
Reserved.

Pointer to the program-id:
contains a pointer to the program-id, if entered. Contains zero if not present.

Pointer to the line number:
contains a pointer to the line number, if entered. Contains zero if not present.

Pointer to the verb number:
contains a pointer to the verb number, if entered. Contains zero if not present.

Examining the PDL Returned by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 133

VARIABLE
The parse service routine builds a five-word PDE to describe a VARIABLE operand.
The PDE has the following format:

Offset Decimal Meaning

0 A pointer to the data-name
4 Length1
5 Reserved
6 Flags
7 Reserved
8 A pointer to the PDE for the first qualifier
12 A pointer to the program-id name
16 Length2
17 Number of Qualifiers
18 Number of Subscripts
19 Reserved

Pointer to the data-name:
contains a pointer to the data-name. If a program-id qualifier precedes the
data-name, this pointer points to the first character after the period of the
program-id qualifier.

Length1:
contains the length of the data-name.

Flags:
Byte 1:

Setting Meaning

0... The operand is missing.
1... The operand is present.
.1.. Constant.
..1. Variable.
...1 Statement number.
.... xxxx Reserved.

Pointer to the PDE for the first qualifier:
contains a pointer to the PDE describing the first qualifier of the data-name, if
any. This field contains X'FF000000' if no qualifiers are entered.

Note: The format of the PDE for a data-name qualifier follows this description.

Pointer to the program-id name:
contains a pointer to the program-id name, if entered. This field contains zero if
the optional program-id name is not present.

Length2:
contains the length of the program-id name, if entered. Contains zero if the
optional program-id name is not present.

Number of Qualifiers:
contains the number of qualifiers entered for this data-name. (For example, if
data-name A of B is entered, this field would contain 1.)

Number of Subscripts:
contains the number of subscripts entered for this data-name. (For example, if
data-name A(1,2) is entered, this field would contain 2.)

Examining the PDL Returned by the Parse Service Routine

134 z/OS V1R4.0 TSO/E Programming Services

The format of a data-name qualifier is:

Offset Decimal Meaning

0 A pointer to the data-name qualifier
4 Length
5 Reserved
6 Reserved
7 Reserved
8 A pointer to the PDE for the next qualifier

Pointer to the data-name qualifier:
contains a pointer to the data-name qualifier.

Length:
contains the length of the data-name qualifier.

Pointer to the PDE for the next qualifier:
contains a pointer to the PDE describing the next qualifier, if any. This field
contains X'FF000000' for the last qualifier.

The PDE Created for Expression Operands Described by IKJOPER
The parse service routine builds a two-word PDE to describe an EXPRESSION
operand. The PDE has the following format:

Offset Decimal Meaning

0 Reserved
4 Reserved
6 Flags
7 Reserved

Flags:

Setting Meaning

0... The entire operand (expression) is missing.
1... The entire operand (expression) is present.
.xxx xxxx Reserved.

The PDE Created for Reserved Word Operands Described by
IKJRSVWD

The parse service routine builds a two-word PDE to describe a RESERVED WORD
operand. The PDE has the following format:

Offset Decimal Meaning

0 Reserved
2 Reserved-word number
4 Reserved
6 Flags
7 Reserved

Examining the PDL Returned by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 135

Note: This PDE is not used when the IKJRSVWD macro instruction is chained
from an IKJTERM macro instruction. In this case, the reserved-word number
is returned in the CONSTANT parameter PDE built by the IKJTERM macro
instruction.

Reserved-word number:
The reserved-word number contains the number of the IKJNAME macro
instruction that corresponds to the entered name.

Note: You indicate the possible names of reserved words by coding a list of
IKJNAME macros following an IKJRSVWD macro. One IKJNAME macro
is needed for each possible name. If the name entered does not
correspond to one of the names in the IKJNAME macro list, parse sets
this field to zero.

Flags:
Byte1:

Setting Meaning

0... The operand is missing.
1... The operand is present.
.xxx xxxx Reserved.

The PDE Created for Positional Operands Described by IKJIDENT
The parse service routine builds a two-word PDE to describe a
non-delimiter-dependent positional operand; it has the following format:

Offset Decimal Meaning

0 A pointer to the positional operand
4 Length
6 Flags
7 Reserved

Pointer to the positional operand:
contains a pointer to the beginning of the positional operand. If INTEG was
specified on the IKJIDENT macro instruction, this will contain a pointer to a
fullword binary value.

Contains zero if the positional operand is omitted.

Length:
contains the length of the positional operand.

Flags:

Setting Meaning

0... The operand is not present.
1... The operand is present.
.xxx xxxx Reserved bits.

The PDE Created for Keyword Operands Described by IKJKEYWD
Parse builds a halfword (2-byte) PDE to describe a keyword operand; it has the
following format:

Examining the PDL Returned by the Parse Service Routine

136 z/OS V1R4.0 TSO/E Programming Services

Offset Decimal Meaning

0 Number

Number:
You describe the possible names for a keyword operand to the parse service
routine by coding a list of IKJNAME macro instructions directly following the
IKJKEYWD macro instruction. One IKJNAME macro instruction must be
executed for each possible name.

The parse service routine places into the PDE a number that relates the
keyword name entered to the position of the corresponding IKJNAME macro
instruction in the list of IKJNAME macro instructions. For example, if two
IKJNAME macro instructions follow the IKJKEYWD macro instruction, and the
user has entered the second keyword operand, the parse service routine places
a 2 into the PDE.

If the keyword is not entered, and you did not specify a default in the
IKJKEYWD macro instruction, the parse service routine places a zero into the
PDE.

The PDE Created for Keyword Operands Described by IKJUNFLD
The parse service routine builds a halfword (2-byte) PDE for an unidentified
keyword operand. Parse does not place a value into the PDE. Because all checking
for an unidentified keyword operand is performed in the verify exit routine that is
specified on the VERIFCK= operand in the IKJUNFLD macro instruction, all
processing is complete by the time parse returns control to its caller.

How the List and Range Options Affect PDE Formats
Several factors affect the formats of the IKJPARMD mapping DSECT and the PDEs
built by the parse service routine:
v The options you specify in the parse macro instructions
v The type of operand that the user enters.

If you specify the LIST or the RANGE options in the parse macro instructions
describing positional operands, the IKJPARMD DSECT and the PDEs returned by
the parse service routine are modified to reflect these options.

LIST
The LIST option can be used with the following positional operand types: USERID,
DSNAME, DSTHING, ADDRESS, VALUE, CONSTANT, VARIABLE, STATEMENT
NUMBER, HEX, INTEG, CHAR, and any non-delimiter-dependent positional
operand.

If you specify the LIST option in the parse macro instructions describing the
positional operand types listed above, the parse service routine allocates an
additional word for the PDE created to describe the positional operand. This word is
allocated even though the terminal user cannot actually enter a list. If a list is not
entered, this word is set to X'FF000000'. If a list is entered, the additional word is
used to chain the PDEs created for each element found in the list.

Each additional PDE has a format identical to the one described for that operand
type within the IKJPARMD DSECT. Because the number of elements in a list is
variable, the number of PDEs created by the parse service routine is also variable.
The chain word of the PDE created for the last element of the list is set to
X'FF000000'.

Examining the PDL Returned by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 137

Figure 40 shows the PDL returned by the parse service routine after three positional
operands have been entered. In this case, the first two operands, a USERID and a
STRING operand, had been defined as not accepting lists. The third operand, a
VALUE operand, had the LIST option coded in the IKJPOSIT macro instruction that
defined the operand syntax. The VALUE operand was entered as a two-element list.

RANGE
The RANGE option can be used with the following positional operand types: HEX
(X'' only), ADDRESS, VALUE, CONSTANT, VARIABLE, STATEMENT NUMBER,
INTEG, and any non-delimiter-dependent positional operand.

If you specify the RANGE option in the parse macro instructions describing the
positional operand types listed above, the parse service routine builds two identical,
sequential PDEs within the PDL returned to the calling routine. Parse allocates
space for the second PDE even though the terminal user cannot actually specify a
range. If a range is not supplied, the second PDE is set to zero. The flag bit which
is normally set for a missing parameter will also be zero in the second PDE.

Figure 41 on page 139 shows the PDL returned by the parse service routine after
two positional operands have been entered. In this case, the first operand is a
USERID operand and the second operand is a VALUE operand that had the
RANGE option coded in the IKJPOSIT macro instruction that defined the operand

PDL - Mapped by IKJPARMD DSECT

Chain Word

PDL Header

USERID PDE

STRING PDE

VALUE PDE

(First element of a two element list)

VALUE PDE

(Last element of a two

element list)

F F 0 0 0 0 0 0

Figure 40. A PDL Showing PDEs that Describe a List

Examining the PDL Returned by the Parse Service Routine

138 z/OS V1R4.0 TSO/E Programming Services

syntax. For this example, the VALUE operand was not entered as a range, and,
consequently, parse sets the second PDE to zero.

How Combining the LIST and RANGE Options Affects PDE
Formats
If you specify both the LIST and RANGE options in a parse macro instruction
describing a positional operand, the parse service routine builds two identical PDEs
within the PDL returned to the calling routine. Both of these PDEs are formatted
according to the type of positional operand described. These two PDEs describe
the RANGE. Parse appends an additional word to the second PDE to chain any
additional PDEs built to describe the LIST.

Figure 42 on page 140 shows this general format.

PDL - Mapped by IKJPARMD DSECT

PDL Header

USERID PDE

0 0

0 0 0 0 0 0

VALUE PDE

(May be entered as a Range)

VALUE PDE built to receive second element of Range.

(Parameter was not entered as a Range)

Figure 41. A PDL Showing PDEs Describing a Range

Examining the PDL Returned by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 139

If you have specified both the LIST and the RANGE options in the parse macro
instruction describing a positional operand, the user at the terminal has the option
of supplying a single operand, a single range, a list of operands, or a list of ranges.
The construction of the PDL returned by the parse service routine can reflect each
of these conditions.

Figure 43 on page 141 shows the PDL returned by the parse service routine if the
user enters a single operand.

Chain Word

PDL - Mapped by IKJPARMD DSECT

PDL Header

PDE

Identical PDE

(Parameter may be entered as a range)

(Parameter may be entered as a list)

PDE

Identical PDE

Chain Word

Figure 42. A PDL Showing PDEs that Describe LIST and RANGE Options

Examining the PDL Returned by the Parse Service Routine

140 z/OS V1R4.0 TSO/E Programming Services

As Figure 43 shows, the parse service routine sets both the second PDE and the
chain word to zero when the LIST and RANGE options were coded in the macro
instruction describing the operand, but the user entered a single operand.

Figure 44 shows the PDL returned by the parse service routine if the user enters a
single range of the form:
operand:operand

As Figure 44 shows, the parse service routine fills in both PDEs to describe the
single RANGE operand entered by the user. The chain word is set to X'FF000000'
to indicate that there are no elements chained to this one. (That is, the operand
was not entered in the form of a list).

Figure 45 on page 142 shows the format of the PDL returned by the parse service
routine if the user enters a list of operands in the form:
(operand,operand,...)

0 0

0 0 0 0 0 0

PDL - Mapped by IKJPARMD DSECT

F F 0 0 0 0 0 0

PDL Header

PDE - Filled in

Identical PDE - Zeroed

Chain Word

Figure 43. PDL - LIST and RANGE Acceptable, Single Operand Entered

PDL - Mapped by IKJPARMD DSECT

F F 0 0 0 0 0 0

PDL Header

PDE - Filled in

Chain Word

Identical PDE - Filled in

Figure 44. PDL - LIST and RANGE Acceptable, Single Range Entered

Examining the PDL Returned by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 141

As Figure 45 shows, the parse service routine fills in each of the first PDEs and the
chain word pointers to describe the list of operands entered by the user. The
second, identical PDEs are set to zero to indicate that the operand was not entered
in the form of a range.

The last set of PDEs on the chain contain X'FF000000' in the chain word to indicate
that there are no more PDEs on that particular chain.

The PDL created by the parse service routine to describe an operand entered as a
list of ranges is similar to the one created to describe a list. The difference is that
the parse service routine fills in the second, identical PDEs to describe the ranges
entered.

PDL - Mapped by IKJPARMD DSECT

PDL Header

PDE - Filled in

Identical PDE - Zeroed

0 0

0 0 0 0 0 0

Chain Word

0 0

0 0 0 0 0 0

Chain Word

PDE - Filled in

Identical PDE - Zeroed

Figure 45. PDL - LIST and RANGE Acceptable, LIST Entered

Examining the PDL Returned by the Parse Service Routine

142 z/OS V1R4.0 TSO/E Programming Services

Figure 46 shows the format of the PDL returned by the parse service routine if the
user enters a list of ranges in the form:
(operand:operand, operand:operand,...)

As Figure 46 shows, the parse service routine fills in each of the second, identical
PDEs to describe the ranges entered. The chain words are also filled in to point
down through the list of parameters entered.

The last set of PDEs on the chain contain X'FF000000' in the chain word to indicate
that there are no more PDEs on that particular chain.

PDL - Mapped by IKJPARMD DSECT

PDL Header

PDE - Filled in

Chain Word

Chain Word

PDE - Filled in

Identical PDE - Filled in

Identical PDE - Filled in

Figure 46. PDL - LIST and RANGE Acceptable, List of Ranges Entered

Examining the PDL Returned by the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 143

Examples Using the Parse Service Routine

Example 1: Describing a PROCESS Command Syntax
This example expands upon “Example 1: Describing a PROCESS Command
Syntax” on page 107. This example shows how the parse macro instructions could
be used within a command processor to describe the syntax of a PROCESS
command to the parse service routine. A sample command processor that includes
the parse macros used in this example is shown in z/OS TSO/E Programming
Guide.

The sample PROCESS command we are describing to the parse service routine
has the following format:

Figure 47 shows the sequence of parse macro instructions that describe the syntax
of this PROCESS command to the parse service routine. The parse macro
instructions used in this example build the parameter control list (PCL) describing
the syntax of the PROCESS command operands. The macro instructions also
create the DSECT that you use to map the parameter descriptor list returned by the
parse service routine. In this example, the name of the DSECT is PRDSECT.

Figure 48 shows the IKJPARMD DSECT created by the expansion of the parse
macro instructions.

If a terminal user entered the PROCESS command described in this example in the
form:
process myid.data noation

the parse service routine would prompt the terminal user with:

PROCESS dsname [ACTION]
[NOACTION]

PCLDEFS IKJPARM DSECT=PRDSECT
DSNPCE IKJPOSIT DSNAME, X

PROMPT=’THE NAME OF THE DATA SET YOU WANT TO PROCESS. X
ENTER ’’?’’ FOR HELP’, X
HELP=(’A DATA SET NAME WHICH HAS A FIRST-LEVEL QUALIFIER X
OTHER THAN ’’SYS1’’.’), X
VALIDCK=POSITCHK

ACTPCE IKJKEYWD DEFAULT=’NOACTION’
IKJNAME ’ACTION’
IKJNAME ’NOACTION’
IKJENDP

Figure 47. Example 1 - Using Parse Macros to Describe Command Operand Syntax

PRDSECT DSECT
DS 2A

DSNPCE DS 6A
ACTPCE DS H

Figure 48. Example 1 - The PRDSECT DSECT Created by Parse

Examples Using the Parse Service Routine

144 z/OS V1R4.0 TSO/E Programming Services

INVALID KEYWORD, NOATION
REENTER THIS OPERAND -

The user at the terminal might respond with:
NOACTION

The parse service routine would then complete the scan of the command
parameters, build a parameter descriptor list (PDL), place the address of the PDL
into the fullword pointed to by PPLANS, and return to the calling program.

The calling routine uses the address of the PDL as a base address for the
PRDSECT DSECT.

Figure 49 shows the PDL returned by the parse service routine. The symbolic
addresses within the PRDSECT DSECT are shown to the left of the PDL at the
points within the PDL to which they apply, and the meanings of the fields within the
PDL are explained to the right of the PDL.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

Example 2: Describing an EDIT Command Syntax
This example expands upon “Example 2: Describing an EDIT Command Syntax” on
page 108. This example shows how the parse macro instructions could be used
within a command processor to describe the syntax of an EDIT command to the
parse service routine.

PDL
Description of
Field Contents

DSNPCE

ACTPCE

Pointer to MYID.DATA

Unused

Unused

Unused

Unused

9

0

0

0

0

2

1 0

0

0

PDL Header. Used only by
IKJRLSA

Data Set Name

No member name

No Password

NOACTION

PRDSECT
DSECT

PRDSECT

Figure 49. Example 1 - The PRDSECT DSECT and the PDL

Examples Using the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 145

The sample EDIT command we are describing to the parse service routine has the
following format:

Figure 50 on page 147 shows the sequence of parse macro instructions that
describe the syntax of this EDIT command to the parse service routine. The parse
macro instructions used in this example build the parameter control list (PCL)
describing the syntax of the EDIT command operands. The macro instructions also
create the DSECT that you use to map the parameter descriptor list returned by the
parse service routine. In this example, the name of the DSECT defaults to
IKJPARMD.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

EDIT dsname
[PLI [([number [number]] [CHAR60)]]]
[[[2 [72]] [CHAR48]]]
[FORT]
[ASM]
[TEXT]
[DATA]

[SCAN]
[NOSCAN]

[NUM]
[NONUM]

[BLOCK(number)]
[BLKSIZE(number)]

LINE(number)

Examples Using the Parse Service Routine

146 z/OS V1R4.0 TSO/E Programming Services

Figure 51 shows the IKJPARMD DSECT created by the expansion of the parse
macro instructions.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

If a terminal user entered the EDIT command described in this example in the form:
edit sysfile/x pl1(3) nonum block

PARMTAB IKJPARM
DSNAME IKJPOSIT DSNAME,PROMPT=’DATA SET NAME’
TYPE IKJKEYWD

IKJNAME ’PL1’,SUBFLD=PL1FLD
IKJNAME ’FORT’
IKJNAME ’ASM’
IKJNAME ’TEXT’
IKJNAME ’DATA’

SCAN IKJKEYWD DEFAULT=’NOSCAN’
IKJNAME ’SCAN’
IKJNAME ’NOSCAN’

NUM IKJKEYWD DEFAULT=’NUM’
IKJNAME ’NUM’
IKJNAME ’NONUM’

BLOCK IKJKEYWD
IKJNAME ’BLOCK’,SUBFLD=BLOCKSUB,ALIAS=’BLKSIZE’

LINE IKJKEYWD
IKJNAME ’LINE’,SUBFLD=LINESIZE

PL1FLD IKJSUBF
PL1COL1 IKJIDENT ’NUMBER’,FIRST=NUMERIC,OTHER=NUMERIC,DEFAULT=’2’
PL1COL2 IKJIDENT ’NUMBER’,FIRST=NUMERIC,OTHER=NUMERIC,DEFAULT=’72’
PL1TYPE IKJKEYWD DEFAULT=’CHAR60’

IKJNAME ’CHAR60’
IKJNAME ’CHAR48’

BLOCKSUB IKJSUBF
BLKNUM IKJIDENT ’NUMBER’,FIRST=NUMERIC,OTHER=NUMERIC, X

PROMPT=’BLOCKSIZE’,MAXLNTH=8
LINESIZE IKJSUBF
LINNUM IKJIDENT ’NUMBER’,FIRST=NUMERIC,OTHER=NUMERIC, X

PROMPT=’LINESIZE’
IKJENDP

Figure 50. Example 2 - Using Parse Macros to Describe Command Operand Syntax

IKJPARMD DSECT
DS 2A

DSNAME DS 6A
TYPE DS H
SCAN DS H
NUM DS H
BLOCK DS H
BLKSIZE DS 0H
LINE DS H
PL1COL1 DS 2A
PL1COL2 DS 2A
PL1TYPE DS H
BLKNUM DS 2A
LINNUM DS 2A

Figure 51. Example 2 - The IKJPARMD DSECT Created by Parse

Examples Using the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 147

the parse service routine would prompt for the blocksize as follows:
ENTER BLOCKSIZE

The user at the terminal might respond with:
160

The parse service routine would then complete the scan of the command
parameters, build a parameter descriptor list (PDL), place the address of the PDL
into the fullword pointed to by PPLANS, and return to the calling program.

The calling routine uses the address of the PDL as a base address for the
IKJPARMD DSECT.

Figure 52 on page 149 shows the PDL returned by the parse service routine. The
symbolic addresses within the IKJPARMD DSECT are shown to the left of the PDL
at the points within the PDL to which they apply, and the meanings of the fields
within the PDL are explained to the right of the PDL.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

Examples Using the Parse Service Routine

148 z/OS V1R4.0 TSO/E Programming Services

Example 3: Describing an AT Command Syntax
This example expands upon “Example 3: Describing an AT Command Syntax” on
page 109. This example shows how the parse macro instructions could be used to
describe the syntax of a sample AT command that has the following syntax:

Figure 53 shows the sequence of parse macro instructions that describe this
sample AT command to the parse service routine. The parse macro instructions

IKJPARMD
DSECT

PDL
Description of
Field Contents

IKJPARMD

DSNAM

TYPE, SCAN

NUM, BLOCK

LINE

PL1COL1

PL1COL2

PL1TYPE

BLKNUM

LINNUM

Pointer to SYSFILE

Pointer to X

Pointer to 3

Pointer to 72

Pointer to 160

Unused

Unused

7

1

1

2

0

1

2

1

3

0

0

1 0

0

1

2

1

1

1

1

0

PDL Header. Used only by
IKJRLSA

Data Set Name

No member name0

0

Password

PL1, NOSCAN

NONUM, BLOCK

LINE not specified

3 was specified

72 is the default

CHAR60 is the default

160 was prompted for

LINNUM not specified

Figure 52. Example 2 - The IKJPARMD DSECT and the PDL

[stmt]
AT [(stmt-1,stmt-2,...)] (cmd chain) COUNT(integer)

[stmt-3:stmt-4]

Examples Using the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 149

used in this example build the parameter control list (PCL) describing the syntax of
the AT command operands. The macro instructions also create the DSECT that you
can use to map the parameter descriptor list returned by the parse service routine.
In this example, the name of the DSECT is PARSEAT.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

Figure 54 shows the PARSEAT DSECT created by the expansion of the parse
macro instructions.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

In this example, if the terminal user entered the AT command incorrectly as:
at 200/3 (list all) count(a)

the parse service routine would prompt the terminal user with the message:

INVALID STATEMENT NUMBER, 200/3
REENTER

The user might respond with:
200.3

The parse service routine would then prompt the user with:

INVALID COUNT, a
REENTER

The user might respond with:
3

EXAM2 IKJPARM DSECT=PARSEAT
STMTPCE IKJTERM ’STATEMENT NUMBER’,UPPERCASE,LIST,RANGE,TYPE=STMT, X

VALIDCK=CHKSTMT
POSITPCE IKJPOSIT PSTRING,HELP=’CHAIN OF COMMANDS’,VALIDCK=CHKCMD
KEYPCE IKJKEYWD
NAMEPCE IKJNAME ’COUNT’,SUBFLD=COUNTSUB
COUNTSUB IKJSUBF
IDENTPCE IKJIDENT ’COUNT’,FIRST=NUMERIC,OTHER=NUMERIC, X

VALIDCK=CHKCOUNT
IKJENDP

Figure 53. Example 3 - Using Parse Macros to Describe Command Operand Syntax

PARSEAT DSECT
DS 2A
DS 11A

POSITPCE DS 2A
KEYPCE DS H
IDENTPCE DS 2A

Figure 54. Example 3 - The PARSEAT DSECT Created by Parse

Examples Using the Parse Service Routine

150 z/OS V1R4.0 TSO/E Programming Services

This sequence resulted in the syntactically correct command of:
at 200.3 (list all) count(3)

The parse service routine would then build a parameter descriptor list (PDL) and
place the address of the PDL into PPLANS.

The parse service routine then returns to the caller and the caller uses the address
of the PDL as a base address for the PARSEAT DSECT.

Figure 55 on page 152 shows the PDL returned by the parse routine. The symbolic
addresses of the PARSEAT DSECT are shown to the left of the PDL at the points
within the PDL to which they apply. A description of the fields within the PDL is
shown on the right.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

Examples Using the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 151

Example 4: Describing a LIST Command Syntax
This example expands upon “Example 4: Describing a LIST Command Syntax” on
page 110. This example shows how the parse macro instructions could be used to
describe the syntax of a sample LIST command that has the following syntax:

Figure 56 on page 153 shows the sequence of parse macro instructions that
describe this sample LIST command to the parse service routine. The parse macro
instructions used in this example build the parameter control list (PCL) describing

PDL
Description of
Field Contents

PDL Header. Used only by
IKJRLSA

PARSEAT
DSECT

PARSEAT

POSITPCE

KEYPCE

IDENTPCE

0

2

4

0 3 1 -

-- X'90'

0

Pointer to 200

Pointer to 3

0 0 0 0

- X'00' -

0

0

0

X'FF000000'

Pointer to LIST in string

8 - X'80' -

1 -

Pointer to 3

1 X'80' -

Lengths (program - id, line number
and verb number)

Parameter is present

No program - id

Line number

Verb number

Double PDE for RANGE option,
but not entered

LIST option not entered

First character after (

Length, parameter is present

First keyword

Subfield

Length, parameter is present

PDE Offset

Figure 55. Example 3 - The PARSEAT DSECT and the PDL

LIST symbol PRINT(symbol)

Examples Using the Parse Service Routine

152 z/OS V1R4.0 TSO/E Programming Services

the syntax of the LIST command operands. The macro instructions also create the
DSECT that you use to map the parameter descriptor list returned by the parse
service routine. In this example, the name of the DSECT is PARSELST.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

Figure 57 shows the PARSELST DSECT created by the expansion of the parse
macro instructions.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

In this example, if the terminal user entered the LIST command incorrectly as:
list a of 1 in 3(1) print(d)

the parse service routine would prompt the terminal user with:
INVALID SYMBOL, a...1 in 3(1)
REENTER

The user might respond with:
a of b in 3(1)

The parse service routine would then prompt with:
INVALID SYMBOL, a...3(1)
REENTER

The user might respond with:
a of b in c(1)

This sequence resulted in the syntactically correct command of:
list a of b in c(1) print(d)

EXAM3 IKJPARM DSECT=PARSELST
VARPCE IKJTERM ’SYMBOL’,UPPERCASE,PROMPT=’SYMBOL’,TYPE=VAR, X

VALIDCK=CHECK,SBSCRPT=SUBPCE
SUBPCE IKJTERM ’SUBSCRIPT’,SBSCRPT,TYPE=CNST,PROMPT=’SUBSCRIPT’
KEYPCE IKJKEYWD
NAMEPCE IKJNAME ’PRINT’,SUBFLD=PRINTSUB
PRINTSUB IKJSUBF

IKJTERM ’SYMBOL-2’,UPPERCASE,PROMPT=’SYMBOL-2’,TYPE=VAR
IKJENDP

Figure 56. Example 4 - Using Parse Macros to Describe Command Operand Syntax

PARSELST DSECT
DS 2A
DS 5A
DS 15A

KEYPCE DS H
DS 11A

Figure 57. Example 4 - The PARSELST DSECT

Examples Using the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 153

The parse service routine would then build a parameter descriptor list (PDL) and
place the address of the PDL into the fullword pointed to by PPLANS.

The parse service routine then returns to the caller and the caller uses the address
of the PDL as a base address for the PARSELST DSECT.

Figure 58 on page 155 shows the PDL returned by the parse service routine. The
symbolic addresses of the PARSELST DSECT are shown to the left of the PDL at
the points within the PDL to which they apply. A description of the fields within the
PDL is shown on the right.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

Examples Using the Parse Service Routine

154 z/OS V1R4.0 TSO/E Programming Services

PDL
Description of
Field Contents

PARSELST
DSECT

KEYPCE

PDL Header. Used only by
IKJRLSA

Data-name

Length, parameter is present

Qualifier

No program-id

Length, qualifier, subscript

Length

Flags, CNST

Subscript

No exponent

No decimal point

2nd element in subscript -
(Not entered)

3rd element in subscript -
(Not entered)

First keyword

Data-name

Length, parameter, variable

No qualifiers

No program-id

No length, qualifier, or subscript

First qualifier

Length, parameter, variable

Next qualifier

Second qualifier

Length, parameter, variable

End of qualifiers

*Note: May not be contiguous in storage at this point.

Pointer to a

Pointer to first qualifier

Pointer to 1

1 - X'A0' -

0 2 1 -

1 0 - -

0 X'C800'

0 X'0000'

0 0 0 -

1 - X'A0' -

0 0 0 -

0 0 0 -

1 - X'00' -

1 - X'00' -

Pointer to d

Pointer to b

Pointer to next qualifier

Pointer to c

X'FF000000'

0

0

0

0

0

0

0

0

0

0

0

0 X'0000'

*

*

(First
Qualifier)

(Next
Qualifier)

1 -

PARSELST

Figure 58. Example 4 - The PARSELST DSECT and the PDL

Examples Using the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 155

Example 5: Describing a WHEN Command Syntax
This example expands upon “Example 5: Describing a WHEN Command Syntax” on
page 111. This example shows how the parse macro instructions could be used to
describe the syntax of a sample WHEN command that has the following syntax:

Figure 59 shows the sequence of parse macro instructions that describe this
sample WHEN command to the parse service routine. The parse macro instructions
used in this example build the parameter control list (PCL) describing the syntax of
the WHEN command operands. The macro instructions also create the DSECT that
you use to map the parameter descriptor list returned by the parse service routine.
In this example, the name of the DSECT is PARSEWHN.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

Figure 60 shows the PARSELST DSECT created by the expansion of the parse
macro instructions.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

In this example, if the terminal user entered the WHEN command incorrectly as:
when (a) (list b)

the parse service routine would prompt the terminal user with:

WHEN {addr } (subcommand chain)
{expression}

EXAM4 IKJPARM DSECT=PARSEWHN
OPER IKJOPER ’EXPRESSION’,OPERND1=SYMBOL1,OPERND2=SYMBOL2, X

RSVWD=OPERATOR,CHAIN=ADDR1,PROMPT=’TERM’,VALICHK=CHECK
SYMBOL1 IKJTERM ’SYMBOL1’,UPPERCASE,TYPE=VAR,PROMPT=’SYMBOL2’
OPERATOR IKJRSVWD ’OPERATOR’,PROMPT=’OPERATOR’

IKJNAME ’EQ’
IKJNAME ’NEQ’

SYMBOL2 IKJTERM ’SYMBOL2’,TYPE=VAR
ADDR1 IKJTERM ’ADDRESS’,TYPE=VAR,VALIDCK=CHECK1
LASTONE IKJPOSIT PSTRING,VALIDCK=CHECK2

IKJENDP

Figure 59. Example 5 - Using Parse Macros to Describe Command Operand Syntax

PARSEWHN DSECT
DS 2A
DS 2A
DS 5A
DS 2A
DS 5A
DS 5A

LASTONE DS 2A

Figure 60. Example 5 - The PARSEWHN DSECT

Examples Using the Parse Service Routine

156 z/OS V1R4.0 TSO/E Programming Services

ENTER OPERATOR

The user might then respond:
eq

The parse service routine would then prompt with:
INVALID EXPRESSION, (a eq)
REENTER

The user might respond then with:
(a eq b)

This sequence resulted in a syntactically correct command of:
when (a eq b) (list b)

The parse service routine would then build a parameter descriptor list (PDL) and
place the address of the PDL into the fullword pointed to by PPLANS.

The parse service routine then returns to the caller and the caller uses the address
of the PDL as a base address for the PARSEWHN DSECT.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

Figure 61 on page 158 shows the PDL returned by the parse service routine. The
symbolic addresses of the PARSEWHN DSECT are shown to the left of the PDL at
the points within the PDL to which they apply. A description of the fields within the
PDL is shown on the right.

Note: Only the macros IKJIDENT, IKJKEYWD, and IKJPOSIT return a label in the
DSECT.

Examples Using the Parse Service Routine

Chapter 6. Verifying Command and Subcommand Operands with Parse 157

PDL
Description of

Field Contents
PARSEWHN

DSECT

PDL Header. Used only by

IKJRLSA

LASTONE

Parameter is present

First operand

Length, parameter is present

No qualifiers

No program-id

No lengths for program-id,

subscripts, or qualifiers

First keyword entered

Parameter is present

Second operand

Length, parameter, variable

No qualifiers

No program-id

No lengths for program-id,

subscripts or qualifiers

(Address-Not entered)

Subcommand

Length, parameter is present

-

- X'80' -

Pointer to a

1 - X'A0' -

X'FF000000'

0

0 0 0 -

- 1

- X'80' -

Pointer to b

1 - X'A0' -

X'FF000000'

0

0 0 0 -

0 - X'00' -

0 0 0 -

0

0

0

Pointer to LIST

6 X'80' -

PARSEWHN

ABC

Figure 61. Example 5 - The PARSEWHN DSECT and PDL

Examples Using the Parse Service Routine

158 z/OS V1R4.0 TSO/E Programming Services

Chapter 7. Using the Terminal Control Macro Instructions

Functions of the Terminal Control Macro Instructions 159
GTDEVSIZ — Get Device Size 160
GTSIZE — Get Terminal Line Size 160
GTTERM — Get Terminal Attributes. 161
RTAUTOPT — Restart Automatic Line Numbering or Character Prompting 164
SPAUTOPT — Stop Automatic Line Numbering or Character Prompting . . . 165
STAUTOCP — Start Automatic Character Prompting 166
STAUTOLN — Start Automatic Line Numbering 167
STFSMODE — Set Full-Screen Mode 168
STLINENO — Set Line Number 170
STSIZE — Set Terminal Line Size 171
STTMPMD — Set Terminal Display Manager Options 172
TCLEARQ — Clear Buffers . 173
STATTN — Set Attention Simulation 175
STBREAK — Set Break . 176
STCC — Specify Terminal Control Characters 178
STCLEAR — Set Display Clear Character String 180
STCOM — Set Inter-Terminal Communication 180
STTIMEOU — Set Time Out Feature 181
STTRAN — Set Character Translation 182

Functions of the Terminal Control Macro Instructions
Use the following macro instructions in your command processor to control terminal
functions and attributes.

Macro
Instruction

Function Issue in 24-bit
Addressing Mode

GTDEVSIZ Get device size x

GTSIZE Get terminal line size

GTTERM Get terminal attributes x

RTAUTOPT Restart automatic line numbering or character
prompting

SPAUTOPT Stop automatic line numbering or character
prompting

STAUTOCP Start automatic character prompting

STAUTOLN Set automatic line numbering x

STFSMODE Set full-screen mode x

STLINENO Set line number x

STSIZE Set terminal line size x

STTMPMD Set terminal display manager options x

TCLEARQ Clear buffers x

Except for the GTSIZE, RTAUTOPT, SPAUTOPT, and STAUTOCP macros, all
terminal control macros must be issued in 24-bit addressing mode.

© Copyright IBM Corp. 1988, 2002 159

GTDEVSIZ — Get Device Size
Use the GTDEVSIZ macro instruction to determine the current logical line size and
the number of lines of a user’s terminal. This macro returns both values regardless
of whether the terminal type is display or non-display. See the description of the
GTSIZE macro, which you can use to obtain the screen length for display stations
only.

When GTDEVSIZ is issued in a time-sharing environment, the logical line size of
the user’s terminal, which is the maximum number of characters per line, is
returned in register 1. The logical screen length, which is the number of lines per
display, is returned in register 0. If there is no maximum number of lines, register 0
contains all zeros.

The GTDEVSIZ macro is applicable only in a VTAM time-sharing environment. It is
ignored if VTAM is not active when the macro instruction is issued.

Figure 62 shows the format of the GTDEVSIZ macro instruction.

When control is returned to the user, register 15 contains one of the following return
codes:

Table 34. Return Codes from GTDEVSIZ

Return Code
Dec(Hex)

Meaning

0(0) Successful. The contents of registers 0 and 1 are described above.

4(4) A parameter was specified. No parameter should be specified.

GTSIZE — Get Terminal Line Size
Use the GTSIZE macro instruction to determine the current logical line size of the
user’s terminal. When GTSIZE is executed in the background, it returns a line size
of 132 characters and a screen size of 0 lines. If the terminal is a display station,
use the GTSIZE macro instruction to determine the size of the display screen. See
the description of the GTDEVSIZ macro, which you can use to obtain the screen
length for both display and non-display stations.

When the GTSIZE macro instruction is issued in a time sharing environment, the
logical line size of the user’s terminal, which is the maximum number of characters
per line, is returned in register 1. If the terminal is a display station, the line size is
returned in register 1 and the screen length, which is the maximum number of lines
per display, is returned in register 0. If the terminal is an LU1 device type, register 0
contains all zeros. The GTSIZE macro instruction is ignored if TSO/E is not active
when the macro instruction is issued.

Figure 63 on page 161 shows the format of the GTSIZE macro instruction.

[symbol] GTDEVSIZ

Figure 62. The GTDEVSIZ Macro Instruction

GTDEVSIZ — Get Device Size

160 z/OS V1R4.0 TSO/E Programming Services

When control is returned to the user, register 15 contains one of the following return
codes:

Table 35. Return Codes from GTSIZE

Return Code
Dec(Hex)

Meaning

0(0) Successful. The contents of registers 0 and 1 are described above.

4(4) A parameter was specified. No parameter should be specified.

GTTERM — Get Terminal Attributes
Use the GTTERM macro instruction to determine the primary (default) and the
alternate screen sizes for a 3270 display terminal. Use the ERASE/WRITE
command (X'F5') to erase the screen, to set the screen size mode to primary mode,
and optionally to write data to the screen. Use the ERASE/WRITE ALTERNATE
command (X'7E') to erase the screen, to set the screen size mode to the alternate
mode, and optionally to write data to the screen. Figure 64 shows the format of the
GTTERM macro instruction.

PRMSZE=addr
specifies the address of a 2-byte area into which GTTERM returns the primary
row value in the high-order byte and the primary column value in the low-order
byte.

ALTSZE=addr
specifies the address of a 2-byte area into which GTTERM returns the alternate
row value in the high-order byte and the alternate column value in the low-order
byte.

ATTRIB=addr
specifies the address of a 1-word field into which GTTERM returns terminal
attributes. The contents of this field are described below:

Byte Setting Meaning

0 xxxx xxxx Reserved.

1 0... The terminal does not support double-byte character set
(DBCS).

1 1... The terminal supports DBCS.

1 .000 0000 American English (default).

1 .000 0001 American English.

1 .001 0001 Katakana.

[symbol] GTSIZE

Figure 63. The GTSIZE Macro Instruction

symbol GTTERM PRMSZE=addr [,ALTSZE=addr] [,MF= {L }]
[{(E,ctraddr) }]

[,ATTRIB=addr] [,TERMID=addr]

Figure 64. The GTTERM Macro Instruction

GTSIZE — Get Terminal Line Size

Chapter 7. Using the Terminal Control Macro Instructions 161

Byte Setting Meaning

2 xxxx Reserved.

2 00.. The ASCII-7 device code identifier.

2 01.. The ASCII-8 device code identifier.

2xx Reserved.

3 1... This is a VTAM TSB1.

3 .1.. Break features are not allowed1.

3 ..1. The translate table is in use1.

3 ...1 The default translate table is in use1.

3 1... Display in full-screen mode1.

3x.. Reserved.

30. The device supports EBCDIC code.

31. The device supports ASCII code.

30 The Read Partition (Query) is not supported.

31 The Read Partition (Query) is supported.
1 These bits are returned only for VTAM applications.

Note: For TCAM: If ATTRIB is specified, you do not have to code PRMSZE or
ALTSZE. For VTAM: PRMSZE is required.

MF=L | (E,ctrl addr)
indicates the form of the GTTERM macro instruction.

L specifies the list form.

(E,ctrl addr)
specifies the execute form and the address of the list form.

TERMID=addr
addr specifies the address of a 16-byte field into which GTTERM returns the
terminal name in the first eight bytes and the network ID in the second eight
bytes. If TCAM, the second eight bytes will not be changed.

The user program can request the return of IP address and port number for
Telnet sessions on GTTERM macro by specifying the keyword IPADDR in the
first six bytes of the terminal ID area.

In this case, addr specifies the address of a field at least 22 bytes in length.
GTTERM returns the information as follows:

Offset
In

Decimal

Type Length
in

Bytes

Description

0 Character 8 Terminal name

8 Character 8 Network ID

16 Character 4 IP address in hex

20 Character 2 Port number in hex

This is true for all TSO with Telnet sessions. GTTERM clears the IP address
and port number area if it was not a Telnet session.

GTTERM — Get Terminal Attributes

162 z/OS V1R4.0 TSO/E Programming Services

The user program can request the return of domain name, IP address and port
number for Telnet sessions on GTTERM macro by specifying the keyword
DOMAIN in the first six bytes of the terminal ID area.

In this case, addr specifies the address of a field at least 281 bytes in length.
GTTERM returns the information as follows:

Offset
In

Decimal

Type Length
in

Bytes

Description

0 Character 8 Terminal name

8 Character 8 Network ID

16 Character 4 IP address in hex

20 Character 2 Port number in hex

22 Character
1...

.111 1111

1 Flag byte 1
On - truncated domain name
Off - complete domain name
Not used

23 Character 1 Flag byte 2 (not used)

24 Character 2 Length of domain name

26 Character 255 Domain name

Note: The length of the domain name will be zero if the domain name is not
available.

This is true for all TSO with Telnet sessions. GTTERM clears the IP address,
port number, and domain name area if it was not a Telnet session.

If you use the list form of the GTTERM macro, the coded parameters expand into
the parameter list shown in Table 36.

Table 36. Parameter List Expansion for the List Form of GTTERM

Offset
Dec(Hex)

Number of
Bytes

Meaning

0(0) 4 Address of halfword to receive primary screen size.
4(4) 4 Address of halfword to receive alternate screen size.
8(8) 4 Address of word to receive Device Query supported flag.

12(C) 4 Address of one of following:

v 16-byte field to receive terminal name

v 22-byte field to receive terminal name, IP address, and port
number if requested

v 281-byte field to receive terminal name, IP address, port
number, and the domain name if requested

When control is returned to the user, register 15 contains one of the following return
codes:

GTTERM — Get Terminal Attributes

Chapter 7. Using the Terminal Control Macro Instructions 163

Table 37. Return Codes from GTTERM

Return Code
Dec(Hex)

Meaning

0(0) Successful.

8(8) The terminal in use is not a display terminal.

12(C) The PRMSZE parameter, which is required, was not specified.

RTAUTOPT — Restart Automatic Line Numbering or Character
Prompting

Use the RTAUTOPT macro instruction to restart either the automatic line numbering
feature or the automatic character prompting feature. These features are suspended
when the terminal user causes an attention interruption or enters a null line of input.
Because only one of these features can be used at a time, the restarted feature is
the one that was suspended. See “STAUTOLN — Start Automatic Line Numbering”
on page 167. for a description of the automatic line numbering feature and
“STAUTOCP — Start Automatic Character Prompting” on page 166 for a description
of the automatic character prompting feature.

When this macro instruction is used to restart automatic line numbering, the first
line number assigned after line numbering is restarted is the same line number that
would have been assigned to the next line of terminal input if automatic line
numbering had not been suspended.

If your application program is creating a line numbered data set, use of the
STAUTOLN macro to specify the starting number is recommended when restarting
automatic line numbering. This will insure that the application’s numbers are still in
synchronization with the system’s.

The RTAUTOPT macro instruction can be used only in a time sharing environment.
If you issue this macro when TSO/E is not active or when your program is running
under Session Manager, it is ignored.

Figure 65 shows the format of the RTAUTOPT macro instruction.

When control is returned to the user, register 15 contains one of the following return
codes:

Table 38. Return Codes from RTAUTOPT

Return Code
Dec(Hex)

Meaning

0(0) Successful. Either automatic line numbering or automatic character
prompting has been restarted.

4(4) A parameter was specified. No parameter should be specified.

[symbol] RTAUTOPT

Figure 65. The RTAUTOPT Macro Instruction

GTTERM — Get Terminal Attributes

164 z/OS V1R4.0 TSO/E Programming Services

Table 38. Return Codes from RTAUTOPT (continued)

Return Code
Dec(Hex)

Meaning

8(8) The request is not valid because one of the following has occurred:

v Automatic line numbering or automatic character prompting was
never started or never suspended.

v An SPAUTOPT macro instruction has been issued to stop automatic
line numbering or automatic character prompting.

SPAUTOPT — Stop Automatic Line Numbering or Character Prompting
Use the SPAUTOPT macro instruction to stop either the automatic line numbering
feature or the automatic character prompting feature. Because only one of these
features can be used at a time, the active feature is the feature that is stopped. See
“STAUTOLN — Start Automatic Line Numbering” on page 167 for a description of
the automatic line numbering feature, and “STAUTOCP — Start Automatic
Character Prompting” on page 166 for a description of the automatic character
prompting feature.

The system can suspend automatic prompting when the terminal user causes an
attention interruption or enters a null line of input. Your application program should
then issue this macro instruction in its attention exit, or when it receives a zero
length input line from a TGET macro instruction. When the SPAUTOPT macro is
used to stop prompting, you cannot use the RTAUTOPT macro to restart it. You
must restart prompting by issuing either the STAUTOLN or STAUTOCP macro
instruction.

The SPAUTOPT macro instruction can be used only in a time sharing environment.
If you issue this macro when TSO/E is not active or when your program is running
under Session Manager, it is ignored.

Figure 66 shows the format of the SPAUTOPT macro instruction.

When control is returned to the user, register 15 contains one of the following return
codes:

Table 39. Return Codes from SPAUTOPT

Return Code
Dec(Hex)

Meaning

0(0) Successful. Either automatic line numbering or automatic character
prompting has been stopped.

4(4) A parameter was specified. No parameter should be specified.

8(8) The request is not valid. Either automatic line numbering or automatic
character prompting was never started.

[symbol] SPAUTOPT

Figure 66. The SPAUTOPT Macro Instruction

RTAUTOPT — Restart Automatic ...

Chapter 7. Using the Terminal Control Macro Instructions 165

STAUTOCP — Start Automatic Character Prompting
Use the STAUTOCP macro instruction to start automatic character prompting.
Automatic character prompting signals the terminal user when the system is ready
to accept input from the terminal. This signal consists of displaying at the terminal
either an underscore and a backspace or a period and a carriage return, depending
on the type of terminal being used. The STAUTOCP macro has no effect with a
display station, because the terminal user is always prompted for input by the
start-of-message symbol.

This macro instruction can be used to cause the system to automatically prompt the
user for input.

Once started, automatic prompting is handled as follows: When the system has
received a line of input, it immediately sends back to the terminal the next character
prompt. If the program should send output while automatic prompting is in effect,
the prompt will be repeated after all output has been sent to the terminal. For
example:
line of input
OUTPUT MSG FROM PROGRAM

Automatic prompting is designed to be used by a program operating in input mode
(that is, issuing successive TGET macros).

The system suspends automatic prompting when the terminal user causes an
attention interruption or enters a null (nonprinting) line of input. The application
program then takes appropriate action in an attention exit routine, or after receiving
a zero length input from the TGET macro instruction. The application program can
stop the prompting or line numbering function by using SPAUTOPT, or can restart
the function via STAUTOCP.

The STAUTOCP macro instruction can be used only in a time sharing environment.
It is ignored if issued by a batch task or if the program is running under Session
Manager.

Figure 67 shows the format of the STAUTOCP macro instruction.

When control is returned to the user, register 15 contains one of the following return
codes:

Table 40. Return Codes from STAUTOCP

Return Code
Dec(Hex)

Meaning

0(0) Successful.

4(4) A parameter was specified. No parameter should be specified.

[symbol] STAUTOCP

Figure 67. The STAUTOCP Macro Instruction

STAUTOCP — Start Automatic ...

166 z/OS V1R4.0 TSO/E Programming Services

STAUTOLN — Start Automatic Line Numbering
Use the STAUTOLN macro instruction to start automatic line numbering. Automatic
line numbering displays a line number at the beginning of each line.

This macro instruction can be used to cause the system to automatically prompt the
user for input.

Once started, automatic line numbering is handled as follows: when the system has
received a line of input, it immediately sends back to the terminal the next line
number. If the program should send output while automatic line numbering is in
effect, the line number will be repeated after all output has been sent to the
terminal. For example:
00030 line of input
00040 OUTPUT MSG FROM PROGRAM
00040

Automatic line numbering is designed to be used by a program operating in input
mode (that is, issuing successive TGET macros).

The system displays a new line number for each line of input received. The current
line number maintained by the system is decreased appropriately whenever the
input queue is cleared by a TCLEARQ macro or as the result of an attention
interruption. Your application program is responsible for numbering the lines
independently if it is creating a line numbered data set. The system line number is
not available to the application program.

The system suspends automatic line numbering when the terminal user causes an
attention interruption enters a null (nonprinting) line of input. The application
program can then take appropriate action in an attention exit routine, or after
receiving a zero length input from the TGET macro instruction. The application
program can stop the line numbering function by using the SPAUTOPT macro
instruction, or can restart the function by using either STAUTOLN or RTAUTOPT.
You should use STAUTOLN rather than RTAUTOPT to restart automatic line
numbering if the application program is numbering the input lines it receives. This
choice will insure that the program’s numbers are still in synchronization with the
system’s numbers.

The STAUTOLN macro instruction can be used only in a time sharing environment.
It is ignored if issued by a batch task or if your program is running under Session
Manager.

Figure 68 shows the format of the STAUTOLN macro instruction. Each of the
operands is explained following the figure.

S=address
indicates the address of a fullword that contains the number to be assigned to
the first line of terminal input. This number can be any integer from 0 to
99,999,999.

[symbol] STAUTOLN S=address, I=address

Figure 68. The STAUTOLN Macro Instruction

STAUTOLN — Start Automatic Line Numbering

Chapter 7. Using the Terminal Control Macro Instructions 167

I=address
indicates the address of a fullword that contains the increment value to be used
when assigning line numbers to lines of terminal input. This number can be any
integer from 0 to 99,999,999.

When control is returned to the user, register 15 contains one of the following return
codes:

Table 41. Return Codes from STAUTOLN

Return Code
Dec(Hex)

Meaning

0(0) Successful. A line number will be printed at the beginning of each line of
input.

4(4) A parameter is not valid because the specified value is out of range.

STFSMODE — Set Full-Screen Mode
Use the STFSMODE macro instruction under VTAM to specify whether an IBM
3270 display terminal is to operate in full-screen mode. Operating in full-screen
mode provides screen protection by preventing the screen from being overlaid by
non-full-screen messages, and allowing the terminal user to read non-full-screen
messages before they are overlaid by full-screen messages. If full-screen mode is
set off, full-screen TPUT requests (that is, TPUT requests that specify the
FULLSCR operand) can result in certain problems at the terminal. A message not
expected by the terminal user or the command processor, such as a broadcast
message or password request, might not be noticed by the terminal user and might
be quickly overlaid by a full-screen display. An unexpected message might overlay
part of a full-screen display, which could result in incorrect input to the command
processor.

See z/OS TSO/E Programming Guide for complete information about writing a
full-screen command processor and examples of using the STFSMODE macro.

The STFSMODE macro instruction can be used only in a VTAM time-sharing
environment and is ignored if issued when VTAM is not active.

Figure 69 shows the format of the STFSMODE macro instruction.

ON | OFF

ON indicates that full-screen mode is in operation. If neither ON nor OFF is
specified, ON is assumed. When a terminal operating in full-screen
mode is to receive a non-full-screen message (TPUT without
FULLSCR), the display screen is cleared, the alarm is sounded (if the
Audible Alarm special feature is installed), and the message is
displayed on the screen. If several such messages occur one after the
other, the screen is cleared once, the alarm is sounded, and the
messages are displayed in sequence. When the next full-screen TPUT
message (TPUT with FULLSCR) is issued by the application, the

[symbol] STFSMODE [ON] [,INITIAL=YES] [,NOEDIT=YES] [,RSHWKEY=n] [,PARTION=YES]
[OFF] [,INITIAL=NO] [,NOEDIT=NO] [,PARTION=NO]

Figure 69. The STFSMODE Macro Instruction

STAUTOLN — Start Automatic Line Numbering

168 z/OS V1R4.0 TSO/E Programming Services

terminal user will be required to acknowledge the messages on the
screen before the TPUT FULLSCR can be displayed. Three asterisks
(***) displayed at the current line indicate that acknowledgment is
required. To continue, the user must press the Enter key.

OFF indicates that full-screen mode is not in operation. When a terminal that
is not operating in full-screen mode receives a message, the
RSHWKEY is reset to the default, and the message is sent to the
terminal according to the options specified in the TPUT macro, possibly
overlaying the current screen contents.

INITIAL=YES | NO

YES indicates that this is the first time during the execution of a command
processor that the command processor has entered full-screen mode.
This operand prevents the first TPUT FULLSCR issued by the
command processor from forcing a paging condition when the last
transaction at the terminal was input. For example, after a user logs on
and the READY message is displayed and the user types in the name
of a command processor, a paging condition is not forced if
INITIAL=YES was specified. INITIAL=YES is ignored if OFF is
specified.

Note that the first TPUT FULLSCR issued by the command processor
forces a normal paging condition if INITIAL=YES is specified when the
last transaction at the terminal was non-full-screen output.

NO indicates that forced paging is to occur normally whenever a TPUT with
FULLSCR follows a TPUT without FULLSCR. If neither INITIAL=YES
nor INITIAL=NO is specified, INITIAL=NO is assumed.

NOEDIT=YES | NO

YES indicates that input from the terminal will be added to the input queue
without being modified, regardless of the options specified on the TGET
macro instruction.

TSO/VTAM supports 3270 extended data stream functions via TGET in
unedited input mode and TPUT NOEDIT. For more information about
TPUT NOEDIT, refer to “Using the TPUT Macro Instruction to Write a
Line to the Terminal” on page 285.

NO indicates that input from the terminal will be handled according to the
options specified on the TGET macro instruction before it is added to
the input queue. If neither NOEDIT=NO nor NOEDIT=YES is specified,
NOEDIT=NO is assumed.

RSHWKEY
specifies as a decimal digit the program function (PF) key to be used as the
reshow key. If RSHWKEY is not specified, the default value for the PA2 key
(X'6E') is used.

PARTION=YES | NO

YES indicates to TSO/VTAM that partitions are being used and the buffer
address of the terminal screen is either a 14 or a 16-bit address.

NO indicates to TSO/VTAM that partitions are not being used and the buffer
address of the terminal screen is a 12-bit address.

When control is returned to the user, register 15 contains one of the following return
codes:

STFSMODE — Set Full-Screen Mode

Chapter 7. Using the Terminal Control Macro Instructions 169

Table 42. Return Codes from STFSMODE

Return Code
Dec(Hex)

Meaning

0(0) Successful.

4(4) An incorrect parameter was specified.

8(8) The terminal type is not valid. This macro instruction is valid only for
IBM 3270 display terminals that use VTAM.

STLINENO — Set Line Number
Use the STLINENO macro instruction under VTAM to specify the number of the
screen line on an IBM 3270 display terminal on which the next non-full-screen
message should appear. (A non-full-screen message results from issuing a TPUT
macro instruction without the FULLSCR operand.) The STLINENO macro instruction
can also be used to specify whether the 3270 terminal is to operate in full-screen
mode.

See z/OS TSO/E Programming Guide for complete information about writing a
full-screen command processor and examples of using the STLINENO macro.

The STLINENO macro instruction can be used only in a VTAM time-sharing
environment and is ignored if issued when VTAM is not active.

Figure 70 shows the format of the STLINENO macro instruction.

LINE=number
specifies in decimal the line number on which the next non-full-screen message
is to appear. The line number must be a value from 1 to n where n is the
maximum number of lines allowed for the terminal in use. Either the actual line
number or a register (2-12, enclosed in parentheses) containing the line number
in the low-order byte can be specified.

Note: LINE=1 clears the screen with the next output and sets full-screen mode
to off.

LINELOC=address
specifies the address of a fullword whose low-order byte contains the number of
the screen line on which the next non-full-screen message is to appear. Either
an actual address (RX-type) or a register (2–12, enclosed in parentheses)
containing the address may be specified.

MODE=ON | OFF
specifies whether full-screen mode is to be set ON or OFF. If MODE is not
specified, MODE=OFF is assumed.

When control is returned to the user, register 15 contains one of the following return
codes:

[symbol] STLINENO {LINE=number }[,MODE=ON]
{LINELOC=address }[,MODE=OFF]

Figure 70. The STLINENO Macro Instruction

STFSMODE — Set Full-Screen Mode

170 z/OS V1R4.0 TSO/E Programming Services

Table 43. Return Codes from STLINENO

Return Code
Dec(Hex)

Meaning

0(0) Successful.

4(4) An incorrect parameter was specified.

8(8) The terminal type is not valid. This macro instruction is valid only for
IBM 3270 display terminals that use VTAM.

12(C) The line number specified was 0 or it was greater than the maximum
number of lines allowed for the terminal in use.

STSIZE — Set Terminal Line Size
Use the STSIZE macro instruction to set the logical line size of the time sharing
terminal.

If the terminal is a display station, the STSIZE macro instruction is used to set the
screen size. The STSIZE macro changes only the logical screen size of a terminal.
In non-full-screen processing, the logical and physical screen sizes are the same.
However, in full-screen processing they are not necessarily the same and when
they are not the same, this macro does not change the physical screen size of the
terminal. Full-screen applications can change the physical screen size using the
appropriate WRITE command.

The STSIZE macro instruction can be used only in a time sharing environment. If
you issue this macro when TSO/E is not active or when your program is running
under Session Manager, it is ignored.

Figure 71 shows the format of the STSIZE macro instruction. Each of the operands
is explained following the figure.

SIZE=number
Specify the logical line size of the terminal in characters. If the logical line size
requested is greater than the physical line size of the terminal, the last
character in the line may be repeatedly typed over. Specifying a size greater
than 255 gives unpredictable results.

SIZELOC=address
Specify the address of a word containing the logical line size of the terminal in
characters.

LINE=number
Specify the number of lines that can appear on the screen of a display station
terminal.

LINELOC=address
Specify the address of a word containing the number of lines that can appear
on the screen of a display station terminal.

[symbol] STSIZE {SIZE=number }[,LINE=number]
{SIZELOC=address }[,LINELOC=address]

Figure 71. The STSIZE Macro Instruction

STLINENO — Set Line Number

Chapter 7. Using the Terminal Control Macro Instructions 171

Note: If the terminal is a display station, either the LINE or LINELOC operand must
be specified. If the terminal is not a display station, neither operand should
be specified.

Defaults by terminal type are as follows:

Terminal Type Line Size, Number of Lines, or Screen Size

2741 120

1050 120

33/35 Teletype 72

2260, 2265 12x80, 12x40, 6x40, 15x64 - as specified by the installation in
the TCAM message control program.

3270 12x40 or 24x80

3267 132

3770 132

When control is returned to the user, register 15 contains one of the following return
codes:

Table 44. Return Codes from STSIZE

Return Code
Dec(Hex)

Meaning

0(0) Successful.

4(4) An incorrect parameter was specified.

8(8) The LINE, LINELOC, SIZE, or SIZELOC operands are not valid for one
of the following reasons:

v The LINE or LINELOC operand was specified for a terminal that is
not a display station. (An operand value of zero is not an error, and
has the same effect as omitting the operand.)

v The LINE or LINELOC operand was omitted, or specified as zero, for
a display station.

v The SIZE or SIZELOC operand was omitted, or specified as zero, for
any terminal type.

12(C) The dimensions specified for a display station do not correspond to a
known, existing screen size. Incorrect screen management can result.

STTMPMD — Set Terminal Display Manager Options
Use the STTMPMD macro instruction to specify whether a Display Terminal
Manager is active or whether the PA1 and CLEAR key indications are to be passed
through to the application program.

The STTMPMD macro instruction can be issued only in a time-sharing environment.
It is ignored if issued for a non-TSO/E task. The STTMPMD macro is valid for
display terminals operating in both the TCAM and VTAM environments.

See z/OS TSO/E Programming Guide for complete information about using the
STTMPMD macro in a full-screen command processor.

STSIZE — Set Terminal Line Size

172 z/OS V1R4.0 TSO/E Programming Services

Figure 72 shows the format of the STTMPMD instruction. Each of the operands is
explained following the figure.

ON | OFF

ON
indicates that a Display Terminal Manager is in control. If neither ON nor
OFF is specified, ON is the default.

OFF
indicates that a Display Terminal Manager is not in control.

KEYS=NO | ALL

NO
indicates that the PA1 and CLEAR key indications are not to be returned to
the application program. This is the default if the KEYS operand is omitted.

ALL
indicates that the PA1 and CLEAR key indications are to be returned to the
application program.

When control is returned to the user, register 15 contains one of the following return
codes:

Table 45. Return Codes from STTMPMD

Return Code
Dec(Hex)

Meaning

0(0) Successful.

4(4) An incorrect parameter was specified.

8(8) The terminal type is not valid because it is not a display terminal.

TCLEARQ — Clear Buffers
TCLEARQ enables your program to throw away “typed ahead” input or unsent
output. This clearing of the buffers lets the command processor resynchronize with
the terminal user.

For example, when a command processor analyzes the specified operands in a line
of input and discovers missing or incorrect parameters, it issues a TCLEARQ
INPUT before sending a prompting message to the user. This ensures that the
command processor will receive a line of input entered after the terminal user has
seen the prompting message.

When the TCLEARQ macro instruction is issued to clear the input buffers, all the
input that has been entered at the terminal, but has not yet been processed by the
program, is purged. To ensure synchronization, the terminal keyboard on a TCAM
terminal is locked until the next TGET macro is issued. Keyboards on terminals that
use VTAM do not lock.

[symbol] STTMPMD [ON] [,KEYS{=NO}]
[OFF] [{ALL}]

Figure 72. The STTMPMD Macro Instruction

STTMPMD — Set Terminal Display Manager Options

Chapter 7. Using the Terminal Control Macro Instructions 173

When the TCLEARQ macro instruction is issued to clear the output buffers, all the
output that has been processed by the program but not yet displayed at the
terminal is purged.

The TCLEARQ macro instruction can be used only in a time sharing environment. It
is ignored if TSO/E is not active when the macro instruction is issued.

Figure 73 shows the format of the TCLEARQ macro instruction; each of the
operands is described following the figure.

INPUT
indicates that all input currently in the terminal’s input buffer queue will be lost,
including the input line currently being entered, if any. If neither INPUT nor
OUTPUT is specified, INPUT is assumed.

OUTPUT
indicates that all the output for this terminal that is currently in the terminal’s
output buffer queue will be purged, except for output messages that have
begun to appear at the terminal, or messages from other terminals or the
system operator.

When control is returned to the user, register 15 contains one of the following return
codes:

Table 46. Return Codes from TCLEARQ

Return Code
Dec(Hex)

Meaning

0(0) Successful.

4(4) An incorrect parameter was specified.

The following terminal control macro instructions are intended for system use, and
are not recommended for use in user-written command processors. Inappropriate
use of these macro instructions can cause terminal errors.

Macro Instruction Function Issue in 24-bit Addressing
Mode

STATTN Set attention simulation x

STBREAK Set break x

STCC Specify line-deletion and
character-deletion characters

x

STCLEAR Set display clear character string x

STCOM Set interterminal communication x

STTIMEOU Set timeout feature x

STTRAN Set character translation x

[symbol] TCLEARQ [INPUT]
[OUTPUT]

Figure 73. The TCLEARQ Macro Instruction

TCLEARQ — Clear Buffers

174 z/OS V1R4.0 TSO/E Programming Services

STATTN — Set Attention Simulation
Use the STATTN macro instruction to specify how a terminal user can interrupt the
execution of the program without using an attention key.

When the STATTN macro instruction assigns a value to an operand, that value
remains in effect until another STATTN macro instruction assigns a new value to the
operand, or until the terminal user logs off. Issuing the STATTN macro instruction
without specifying any operands results in a NOP instruction.

The STATTN macro instruction can be used only in a time sharing environment with
terminals that use TSO/E through TCAM. It is ignored if TSO/E is not active when
the macro instruction is issued.

Figure 74 shows the format of the STATTN macro instruction. Each of the operands
is explained following the figure. If an operand is not specified, its current status is
not changed.

LINES=integer | 0
indicates the output line count (if any) that determines when a terminal user can
interrupt the execution of his program.

integer
specifies an integer from 1 to 255. This integer indicates the number of
consecutive lines of output that can be directed to the terminal before the
keyboard will unlock to let the terminal user interrupt the execution of his
program.

0 indicates that output line count will not be used to determine when the
terminal user can interrupt the execution of his program.

The LINES operand applies only to terminals that are not display stations.
However, the display user can cause a simulated attention interruption at
the bottom of the screen (that is, after every 6, 12, or 15 lines of
consecutive output, depending on screen size).

TENS=integer | 0
indicates whether locked keyboard time will be used to determine when a
terminal user can interrupt the execution of his program.

integer
specifies an integer from 1 to 255. This integer indicates the tens of
seconds (that is, from 10 to 2550 seconds) of locked keyboard time that
can elapse before the keyboard will unlock to let the terminal user interrupt
the execution of his program.

0 indicates that locked keyboard time will not be used to determine when the
terminal user can interrupt the execution of his program.

[symbol] STATTN [LINES= {integer}] [,TENS={integer}]
[{ 0 }] [{ 0 }]
[,INPUT={address}]
[{ 0 }]

Figure 74. The STATTN Macro Instruction

STATTN — Set Attention Simulation

Chapter 7. Using the Terminal Control Macro Instructions 175

INPUT=address | 0
indicates whether a character string will be used to determine when a terminal
user can interrupt the execution of his program.

address
specifies the address of a character string from one to four EBCDIC
characters long, left-justified and padded to the right with blanks if less than
four characters long. When this character string is encountered as the only
data in a line, input processing is interrupted to let the program take an
attention exit. For information on attention exits routines, see Chapter 12,
“Using the STAX Service Routine to Handle Attention Interrupts” on
page 317. This string will not be recognized if it is preceded by any other
character, including line-delete or character-delete control characters.

0 indicates that no character string will be used to determine when the
terminal user can interrupt the execution of his program.

When control is returned to the user, register 15 contains one of the following return
code:

Table 47. Return Codes from STATTN

Return Code
Dec(Hex)

Meaning

0(0) Successful

8(8) The terminal type is not valid. This macro instruction should not be
issued for terminals that use VTAM.

STBREAK — Set Break
Use the STBREAK macro instruction to indicate whether the transmit interrupt
feature on an IBM 1050, 2741, 3270, 3767, or 3770 terminal will be used or
suppressed. The transmit interrupt feature lets terminal output processing interrupt
terminal input processing.

The transmit interrupt feature is a special feature on 1050 and 2741 terminals; it is
a standard feature on the 3767, 3770, and 3270 display terminals. Specifying
STBREAK YES for a 1050 without the transmit interrupt feature could result in loss
of output or a permanent error at the terminal.

When the transmit interrupt feature is being used by the system, the terminal user
can enter the next line while the previous one is being processed. All 33/35
Teletypes and IBM 3270, 3767, and 3770 terminals are handled this way. 1050s
and 2741s that have been defined in the TCAM message control program as
having the transmit interrupt feature will be handled this way unless STBREAK NO
is specified.

Note: For 2741s, 3767s, 3770s, TWX, and WTTY devices supported by VTAM, the
keyboard will remain unlocked when STBREAK NO is specified.

When the feature is in use, terminal handling of input and output is as follows: if no
output is available for the terminal, and if there are sufficient TSO/E terminal buffers
available, the keyboard will be unlocked to allow the user to enter input. If the
user’s program generates output (TPUT) before he has started to enter data, the
read operation is halted and the break (transmit interrupt) feature can be used to
lock the keyboard and condition the communications line to transmit output. If the
user has already started to type when the TPUT is issued, the output will not be

STATTN — Set Attention Simulation

176 z/OS V1R4.0 TSO/E Programming Services

sent until he has finished that line of input. If, however, the TPUT had specified the
BREAKIN option, the output message would interrupt any input in progress. If the
application does not issue a TCLEARQ macro to erase the contents the input buffer
queue then,

v The interrupted input from a 1050 or a 2741 terminal will be printed out again
after the output is sent, to let the user continue to type from the point where he
had been interrupted.

v The interrupted input from a 3767, 3270, or a 3770 terminal is received by the
application program but is not printed at the terminal.

When the transmit interrupt feature is not being used by the system, a 1050 or
2741 terminal keyboard is unlocked only after the user’s program has issued a
TGET request for input. (A 3270, 3767, or 3770 terminal keyboard’s normal state is
unlocked.) In this mode of operation, the terminal user cannot type ahead of his
program. A TPUT with the BREAKIN option cannot interrupt input. The output will
not be sent until the terminal user has completed entering his current input line. All
display stations are handled in this way. All 1050s and 2741s that have been
defined in the TCAM message control program as not having the transmit interrupt
feature are handled this way.

The STBREAK macro instruction can be used only in a time sharing environment. It
is ignored if TSO/E is not active when the macro instruction is issued.

Figure 75 shows the format of the STBREAK macro instruction.

YES | NO

YES
indicates that the transmit interrupt feature will be used. YES is the default.

NO
indicates that the transmit interrupt feature not be used.

When control is returned to the user, register 15 will contain one of the following
return codes:

Table 48. Return Codes from STBREAK

Return Code
Dec(Hex)

Meaning

0(0) Successful.

4(4) An incorrect parameter was specified.

8(8) The terminal type is not valid. This macro instruction should be issued
only for the IBM 1050, 2741, 3270, 3767, or 3770 terminal.

STCC — Specify Terminal Control Characters
Use the STCC macro instruction to specify what control characters will be used to
delete a character or a line of terminal input.

[symbol] STBREAK [YES]
[NO]

Figure 75. The STBREAK Macro Instruction

STBREAK — Set Break

Chapter 7. Using the Terminal Control Macro Instructions 177

When the line-delete control character specified in the STCC macro instruction is
encountered within a line of terminal input, the line control character and all the
preceding characters in that line are deleted. When the character-delete control
character specified in the STCC macro instruction is encountered within a line of
terminal input, the character-delete control character and the character immediately
preceding it are deleted from the line.

When the user is logging on, he can delete a line or character by using the
system-supplied defaults. The defaults, according to the type of terminal, are as
follows:

Type of Terminal Desired Action Key(s) to be Pressed

1050 and 2741 Line deletion or character deletion Attention key and
backspace

33/35 Teletype Line deletion or character deletion CTRL and X key (X'18.'),
back arrow (<-), or
underscore (_), depending
on keyboard. (Either key
results in X'6D'.)

3767/3770 Line deletion or character deletion Attention key and
backspace

No defaults are defined for the display stations, because the terminal user can use
cursor control keys more effectively to delete characters or lines before the input is
transmitted to the system.

The STCC macro instruction is valid in a time sharing environment with terminals
(other than LU_T1 devices) that use TSO/E with the exception that ATTN/NATN is
not supported in a VTAM environment. STCC is ignored if TSO/E is not active when
the macro instruction is issued.

Figure 76 shows the format of the STCC macro instruction; each of the operands is
explained following the figure.

ATTN | NATN

ATTN
When this operand is in effect, pressing the ATTENTION key after having
typed data will only delete the current line. System response is !D.
Automatic prompting is not turned off. The ATTENTION key can then be
pressed again, without typing any input, to interrupt the program and turn
off prompting. When this operand is not in effect, the attention key will both
delete a line of terminal input and interrupt the execution of the user’s
program. System response is ! or !I.

NATN
indicates that the attention key will not be used to delete a line of terminal
input.

[symbol] STCC [ATTN] [,LD={X’n’}] [CD={X’n’}]
[NATN] [{C’c’}] [{C’c }]

Figure 76. The STCC Macro Instruction

STCC — Specify Terminal Control Characters

178 z/OS V1R4.0 TSO/E Programming Services

LD=
indicates what character will be used for the line delete control character:

X'n'
where X'n' is the hexadecimal representation of any EBCDIC character on
the terminal keyboard, except the new line (NL) and carrier return (CR)
control characters. If X'00' is specified, the previously used line-delete
control character is retained. If X'FF' is specified, no character will be used
for the line-delete control character. If an incorrect character is specified,
that character is rejected and no character is used to delete a line of
terminal input.

C‘c’
where c is the character representation of any EBCDIC character on the
terminal keyboard.

CD=
indicates what character will be used for the character-delete control character:

X'n'
where X'n' is the hexadecimal representation of any EBCDIC character on
the terminal keyboard except the new line (NL) and carrier return (CR)
control characters. If X'00' is specified, the previously used character-delete
control character is retained. If X'FF' is specified, no character will be used
for the character- delete control character. If an incorrect character is
specified, that character is rejected and no character is used to delete a
character from a line of terminal input.

C‘c’
where c is the character representation of any EBCDIC character on the
terminal keyboard.

When control is returned to the user, the low-order byte of register 0 contains the
former line-delete control character. If X'FF' appears in the low-order byte of register
0, there is no former line-delete control character. If X'80' appears in the high-order
byte of register 0, ATTN was in effect for line deletion prior to the issuance of the
STCC macro.

The low-order byte of register 1 contains the former character-delete control
character. If X'FF' appears in the low-order byte of register 1, there is no former
character-delete control character.

Register 15 contains one of the following return codes:

Table 49. Return Codes From STCC

Return Code
Dec(Hex)

Meaning

0(0) Successful.

4(4) Incorrect parameters were specified to the SVC.

8(8) The request is not valid because either the specified character does not
appear on the terminal keyboard, or ATTN was specified for a terminal
that does not have an attention key.

12(C) The terminal type is not valid.

STCC — Specify Terminal Control Characters

Chapter 7. Using the Terminal Control Macro Instructions 179

STCLEAR — Set Display Clear Character String
Use the STCLEAR macro instruction to specify the character string that will be used
to request that a 2260 or 2265 display station screen be erased.

The STCLEAR macro instruction can be used only in a time sharing environment. It
is ignored if TSO/E is not active when the macro instruction is issued.

Figure 77 shows the format of the STCLEAR macro instruction. Each of the
operands is explained following the figure.

STRING=address | 0
indicates the address of a one- to four-character string that will be used to
request that the display station screen be erased. This character string must be
left-justified and padded on the right with blanks, if necessary. If 0 is specified,
no character string will be used to erase the screen.

When control is returned to the user, register 15 contains one of the following return
codes:

Table 50. Return Codes from STCLEAR

Return Code
Dec(Hex)

Meaning

0(0) Successful.

4(4) An incorrect parameter was specified.

8(8) The terminal type is not valid because it is not a display station.

STCOM — Set Inter-Terminal Communication
Use the STCOM macro instruction to specify whether a terminal will accept
messages from other terminals or low priority messages from the system operator.
High priority operator messages are always sent to the terminal.

The STCOM macro instruction can be used only in a time sharing environment. It is
ignored if TSO/E is not active when the macro instruction is issued.

Figure 78 shows the format of the STCOM macro instruction.

YES | NO

[symbol] STCLEAR STRING={address}
{ 0 }

Figure 77. The STCLEAR Macro Instruction

[symbol] STCOM [YES]
[NO]

Figure 78. The STCOM Macro Instruction

STCLEAR — Set Display Clear Character String

180 z/OS V1R4.0 TSO/E Programming Services

YES
indicates that the terminal will accept messages from other terminals. If
neither YES nor NO is specified, YES is assumed.

NO
indicates that the terminal will not accept messages from other terminals.

When control is returned to the user, register 15 contains one of the following return
codes:

Table 51. Return Codes from STCOM

Return Code
Dec(Hex)

Meaning

0(0) Successful.

4(4) An incorrect parameter was specified.

STTIMEOU — Set Time Out Feature
Use the STTIMEOU macro instruction to specify whether the 1050 terminal has the
optional text time out suppression feature. The macro instruction allows a 1050
terminal, with or without the feature, to call in using the same switched line, and to
be handled initially as if it did not have the feature.

A 1050 without the text time out suppression feature operates as follows: When the
PROCEED light is on and the keyboard is unlocked, the terminal will time out; that
is, the keyboard will lock if the user does not type input for approximately 20
seconds. The system subsequently responds to the time out by restoring the
keyboard so that the user may continue. The user can prevent the time out by
periodically pressing the SHIFT key.

A 1050 with the text time out suppression feature operates as follows: The
keyboard does not lock if the user does not type input within 20 seconds. The
system can therefore use the read inhibit channel command, which does not time
out within 28 seconds, in contrast to the read channel command that does time out.
(Note: If the system is directed to use the read inhibit channel command for a 1050
that does time out, the terminal may be locked out of the system.)

Until the STTIMEOU macro instruction is issued, 1050 terminals are handled
according to the definition provided in the TCAM message control program. If the
currently connected terminal has the text time out suppression feature, STTIMEOU
NO can be issued to direct the system to use read inhibit rather than read channel
commands. (STTIMEOU NO should not be issued for a 1050 that does not have
the text time out suppression feature. This specification could cause the terminal to
be locked out of the system.)

The STTIMEOU macro instruction should be issued only when an IBM 1050
terminal is being used. Terminals which are equivalent to the one explicitly
supported may also function satisfactorily. The customer is responsible for
establishing equivalency. IBM assumes no responsibility for the impact that any
changes to the IBM-supplied products or programs may have on such terminals.

The STTIMEOU macro instruction can be used only in a time sharing environment.
It is ignored if TSO/E is not active when the macro instruction is issued.

STCOM — Set Inter-Terminal Communication

Chapter 7. Using the Terminal Control Macro Instructions 181

Figure 79 shows the format of the STTIMEOU macro instruction.

YES | NO

YES
indicates that IBM 1050 terminal does time out. It does not have the text
time out suppression feature. If the operand is omitted, the default is YES.

NO
indicates that the IBM 1050 terminal does not time out. The 1050 does
have the text time out suppression feature.

When control is returned to the user, register 15 contains one of the following return
codes:

Table 52. Return Codes from STTIMEOU

Return Code
Dec(Hex)

Meaning

0(0) Successful.

4(4) An incorrect parameter was specified.

8(8) The terminal type is not valid. This macro instruction applies to the IBM
1050 terminal only.

STTRAN — Set Character Translation
Use the STTRAN macro instruction to initiate the use of user-specified translation
tables, to modify specific character translations in active translation tables, to
remove character modifications made to user-specified translation tables, and to
terminate the use of user-specified translation tables. Translation tables allow
characters entered at the terminal to be interpreted as other characters when they
are received by TSO/E, and characters sent by TSO/E to be interpreted as other
characters when they are received at the terminal.

Translation tables are built and used in pairs: one for input and one for output. Each
pair is a control section consisting of a fullword containing the address of the output
table, followed by a 256-byte EBCDIC table for translating the inbound characters,
followed by a 256-byte EBCDIC table for translating the outbound characters. Each
character in an input table must have a counterpart in its companion output table,
and the characters must have the same relative position in both tables. See z/OS
TSO/E Customization for instructions on building translation tables.

A translation table translates inbound data after the system translates the line code
to EBCDIC characters. A translation table translates outbound data before the
system translates EBCDIC characters to line code.

The STTRAN macro instruction can be used only in a VTAM time-sharing
environment. It is ignored if VTAM is not active when the macro instruction is
issued.

[symbol] STTIMEOU [YES]
[NO]

Figure 79. The STTIMEOU Macro Instruction

STTIMEOU — Set Time Out Feature

182 z/OS V1R4.0 TSO/E Programming Services

Figure 80 shows the format of the STTRAN macro instruction. Each of the operands
is explained following the figure.

TABLE=address
specifies the address of a pair of user-written translation tables.

NAME=address
specifies the address of an 8-byte area containing an EBCDIC character string.
(The string is left-justified and padded to the right with blanks if it is less than
eight characters long.) The character string consists of the name of a member
in a load module that contains user-written translation tables.

When NAME is used with NOCHAR, the STTRAN macro instruction causes the
command processor to store the member name in the 8-byte area.

NOTRAN
specifies that the use of user-written translation tables be discontinued.

TCHAR=address
specifies the address of a 1-byte area containing the EBCDIC representation of
a character as it appears at the terminal.

SCHAR=address
specifies the address of a 1-byte area containing the EBCDIC representation of
a character as it appears to the system.

NOCHAR
specifies that current TCHAR and SCHAR values are no longer in effect.

MF=L | (E,ctrl addr)
indicates the form of the STTRAN macro instruction.

L specifies the list form.

(E,ctrl addr)
specifies the execute form and the address of the list form.

When control is returned to the user, register 15 contains one of the following return
codes:

Table 53. Return Codes from STTRAN

Return Code
Dec(Hex)

Meaning

0(0) Successful.

4(4) NOTRAN or NOCHAR was specified but translation was not in effect.

8(8) TABLE or NOCHAR was specified but the NAME operand did not
specify an address.

[symbol] STTRAN [{ {TABLE=address,NAME=address }}]
[{ {NOTRAN }}]
[{ }]
[{ {TCHAR=address,SCHAR=address}}]
[{ {NOCHAR,NAME=address }}]

[MF={L }]
[{(E,ctrl addr)}]

Figure 80. The STTRAN Macro Instruction

STTRAN — Set Character Translation

Chapter 7. Using the Terminal Control Macro Instructions 183

Table 53. Return Codes from STTRAN (continued)

Return Code
Dec(Hex)

Meaning

12(C) An internal error occurred - an unidentifiable flag was set in input
register 0.

STTRAN — Set Character Translation

184 z/OS V1R4.0 TSO/E Programming Services

Chapter 8. Using BSAM or QSAM for Terminal I/O

Overview of the BSAM and QSAM Macro Instructions 185
The SAM Terminal Routines 186

GET . 187
PUT and PUTX . 187
READ. 187
WRITE . 187
CHECK . 187

Record Formats, Buffering Techniques, and Processing Modes. 188
Specifying Terminal Line Size 188
End-of-File (EOF) for Input Processing. 188
Modifying DD Statements for Batch or TSO/E Processing. 188

This chapter describes how to use the basic sequential access method (BSAM) and
the queued sequential access method (QSAM) to provide terminal I/O support for
programs that run under TSO/E. For a complete discussion of the use of BSAM and
QSAM, see MVS/DFP Managing Non-VSAM Data Sets.

The major benefit of using BSAM or QSAM to process terminal I/O under TSO/E is
that programs using these access methods do not become TSO/E dependent or
device dependent and may execute either under TSO/E or in the batch
environment. Therefore, your existing programs that use BSAM or QSAM for I/O
may be used under TSO/E without modification or recompilation.

Overview of the BSAM and QSAM Macro Instructions

Some of the BSAM and QSAM access method routines have been modified to
provide special services under TSO/E; others provide the same function that is
provided in a batch environment. Those BSAM and QSAM macro instructions that
are not relevant to terminal I/O act as no-ops. All of the BSAM and QSAM macro
instructions, when executed in the batch environment, provide the non-terminal
functions as explained in z/OS DFSMS Macro Instructions for Data Sets.

The BSAM and QSAM macro instructions must be issued in 24-bit addressing
mode.

Table 54 shows the functions performed by the BSAM and QSAM macro
instructions when used for terminal I/O. Following the table are more detailed
explanations of the GET, PUT, PUTX, READ, WRITE, and CHECK macro
instructions.

Table 54. BSAM and QSAM Macro Functions Under TSO/E

SAM Macro
Instruction

BSAM QSAM Terminal Interpretation

BSP X X NOP

BUILD X X As in batch processing, the BUILD macro instruction
causes a buffer pool to be constructed in a
user-provided storage area.

CHECK X Takes an EODAD exit after a READ EOF. NOP after
a WRITE.

© Copyright IBM Corp. 1988, 2002 185

Table 54. BSAM and QSAM Macro Functions Under TSO/E (continued)

SAM Macro
Instruction

BSAM QSAM Terminal Interpretation

CLOSE X X The CLOSE macro instruction frees the control
blocks built to handle I/O and deletes the loaded
SAM terminal routines.

CNTRL X X NOP

REOV X X NOP

FREEBUF X As in batch processing, the FREEBUF macro
instruction causes the control program to return a
buffer to the buffer pool assigned to the specified
data control block.

FREEPOOL X X As in batch processing, the FREEPOOL macro
instruction causes an area of virtual storage,
previously assigned as a buffer pool for a specified
data control block, to be released.

GET X The GET macro instruction obtains data from the
terminal.

GETBUF X As in batch processing, the GETBUF macro
instruction causes the control program to obtain a
buffer from the buffer pool assigned to the specified
data control block, and to return the address of the
buffer in a designated register.

GETPOOL X X As in batch processing, the GETPOOL macro
instruction causes a buffer pool to be constructed in
a storage area provided by the control program.

NOTE X NOP

OPEN X X The OPEN macro instruction loads the proper SAM
terminal I/O routines and constructs the necessary
control blocks.

POINT X NOP

PRTOV X X NOP

PUT X The PUT macro instruction routes data to the
terminal.

PUTX X The PUTX macro instruction routes data to the
terminal.

READ X The READ macro instruction obtains data from the
terminal.

RELSE X NOP

SETPRT X X NOP

TRUNC X NOP

WRITE X The WRITE macro instruction routes data to the
terminal.

The SAM Terminal Routines
The GET, PUT, PUTX, READ, WRITE, and CHECK macro instructions perform
differently in terminal I/O than they do in the batch environment. Descriptions of
these differences are presented here, but for a detailed explanation of how to use
the macro instructions, see z/OS DFSMS Macro Instructions for Data Sets.

Overview of the BSAM and QSAM Macro Instructions

186 z/OS V1R4.0 TSO/E Programming Services

GET
The GET macro instruction causes a record to be retrieved from the terminal and
placed in either the first buffer of the buffer pool control block (locate mode) or in a
user specified area (substitute or move mode). In either case, the address of the
record is returned in register 1.

The input to the GET macro instruction consists of the DCB address and the user’s
area address, which is omitted for locate mode. The output is edited, which means
that specially-indicated characters are deleted from the message. Also, lowercase
characters are folded to uppercase characters.

When the terminal user types /*, end-of-file is indicated and control is passed to
the problem program’s EODAD routine. If no EODAD routine is specified, the job
will ABEND with a system code of 337.

PUT and PUTX
Both the PUT and the PUTX macro instructions cause a record to be written to a
terminal.

In locate mode, the first use of PUT or PUTX causes an address pointing to a
buffer to be returned in register 1. The first record is placed in this buffer by the
problem program and is written out when the next PUT or PUTX for the same data
control block (DCB) is issued. Succeeding records are written in the same manner.
The last record is written at CLOSE time.

In move or substitute mode, the PUT or PUTX macro instruction moves a record
from the user-specified work area to the terminal. You must supply the work area
address to the PUT macro instruction.

The input to the PUT and PUTX macro instruction consists of the DCB address and
the user’s area address, which is omitted for locate mode.

READ
The READ macro instruction causes a block of data to be retrieved from the
terminal and placed in a user-designated area in storage. The data is folded to
uppercase.

For a description of the input parameters for the READ macro instruction, see the
discussion in z/OS DFSMS Macro Instructions for Data Sets.

WRITE
The WRITE macro instruction causes a block of data to be written from the
user-specified area to the terminal.

For a description of the input parameters for the WRITE macro instruction, see the
discussion in z/OS DFSMS Macro Instructions for Data Sets.

CHECK
The CHECK macro instruction, when used after a WRITE macro instruction, results
in a NOP. When it is used after a READ macro instruction, it performs as a NOP
unless an end of file (EOF) condition is encountered. The end of file signal from the
terminal is /*. When end of file is encountered, CHECK takes the EODAD exit

The SAM Terminal Routines

Chapter 8. Using BSAM or QSAM for Terminal I/O 187

specified in the data control block. If no EODAD exit is specified, CHECK will cause
the job to abend with a system code of 337.

The input to the CHECK macro instruction is the address of the problem program’s
data event control block (DECB).

Record Formats, Buffering Techniques, and Processing Modes
All record formats, fixed (F), variable (V), linear, and undefined (U), are supported
under TSO/E. Before passing the data to the problem program, TSO/E
automatically generates the first four bytes of control information for V format
records coming in from the terminal. When you send V format records to the
terminal, TSO/E automatically removes the control information before writing the
line.

Control characters (ASCII or machine) are not supported under TSO/E. On output,
they are removed before the data is sent to the terminal. On input, they are ignored.

Both simple and exchange buffering techniques are supported, as are all four
processing modes for the queued access method.

Specifying Terminal Line Size
If the LRECL and BLKSIZE fields are not specified in the DCB, the terminal line
size default, or the line size the terminal user has specified using the TERMINAL
command, is merged into the data control block fields as if it came from the label of
the data set.

For BSAM, BLKSIZE is used by TSO/E to determine the length of the text line it is
to process. For both BSAM and QSAM, if the text entered from the terminal is
shorter than the value specified for LRECL, and if F format is used, blanks are
supplied on the right. For either access technique, if the text entered is longer than
BLKSIZE or LRECL, the next GET or READ retrieves the remainder of the
message. If the record generated by the problem program is longer than the
specified line size, multiple lines are displayed at the terminal.

End-of-File (EOF) for Input Processing
The sequential access method GET and CHECK terminal routines recognize /*
from the terminal as an end-of-file (EOF). The EODAD exit in the data control block
is taken for the EOF condition. If no EODAD exit has been specified, and an EOF
has been signaled from the terminal, the job abends with a system code of 337.

Modifying DD Statements for Batch or TSO/E Processing
TERM=TS, when added to a DD statement defining an input or an output data set,
is ignored in the batch processing environment, but under TSO/E indicates to the
system that the unit to which I/O is being addressed is a time sharing terminal.
Therefore, if you want a job to run in either the foreground or the background,
provide a DD statement as follows:

//DD1 DD TERM=TS,SYSOUT=A

The SAM Terminal Routines

188 z/OS V1R4.0 TSO/E Programming Services

In this example the output device is defined as a terminal under TSO/E processing,
and as the SYSOUT device during batch processing. For a complete description of
the TERM=TS parameter, see z/OS MVS JCL Reference.

Modifying DD Statements for Batch or TSO/E Processing

Chapter 8. Using BSAM or QSAM for Terminal I/O 189

Modifying DD Statements for Batch or TSO/E Processing

190 z/OS V1R4.0 TSO/E Programming Services

Chapter 9. Using the TSO/E I/O Service Routines for Terminal
I/O

Functions of the I/O Service Routines 191
Passing Control to the I/O Service Routines. 192

Addressing Mode Considerations. 192
Considerations for Using I/O Service Routines by a Multitasking Application 193
The Input/Output Parameter List 193

Using the I/O Service Routine Macro Instructions 195
Using STACK to Change the Source of Input 195
STACK Macro Effects on the REXX Data Stack 196
The List Form of the STACK Macro Instruction. 196
The Execute Form of the STACK Macro Instruction 201
The Sources of Input . 207
Building the STACK Parameter Block (STPB) 208
Building the List Source Descriptor (LSD). 210
Return Codes from STACK 211
Examples Using STACK . 215
Example 1 . 215
Example 2 . 215
Example 3 . 217
Using GETLINE to Get a Line of Input 218
Sources of Input . 224
End of Data Processing . 226
Building the GETLINE Parameter Block 226
Input Line Format - The Input Buffer 228
Return Codes from GETLINE 229
Examples Using GETLINE 230
Using PUTLINE to Put a Line Out to the Terminal 232
The List Form of the PUTLINE Macro Instruction 232
The Execute Form of the PUTLINE Macro Instruction 236
Building the PUTLINE Parameter Block 240
Types and Formats of Output Lines 242
Passing the Message Lines to PUTLINE 247
PUTLINE Message Line Processing 250
Return Codes from PUTLINE 255
Using PUTGET to Put a Message Out to the Terminal and Obtain a Line of

Input in Response . 258

This chapter describes how to use the TSO/E I/O service routines, STACK,
GETLINE, PUTLINE, and PUTGET, to process terminal I/O.

Functions of the I/O Service Routines
If you write your own command processors, use the I/O service routines to process
terminal I/O. Table 55 describes the function of each of the I/O service routines.

Table 55. The TSO/E I/O Service Routines

Service Routine Function

STACK Establishes and changes the source of input.
GETLINE Obtains a line of input, other than commands, subcommands, and

prompt message responses.
PUTLINE Writes a line to the terminal.

© Copyright IBM Corp. 1988, 2002 191

Table 55. The TSO/E I/O Service Routines (continued)

Service Routine Function

PUTGET Writes a message to the terminal and obtains a line of input in response.

The I/O service routines, STACK, GETLINE, PUTLINE, and PUTGET, offer the
following features:

v They write to or obtain input from a terminal.

v They provide a method of selecting sources of input other than the terminal. Your
command processor can direct requests for input to an in-storage list or data set
as well as to the terminal.

v They provide a message formatting facility that allows you to insert text segments
into a basic message format, and display or inhibit the displaying of message
identifiers.

v They process requests for more information (question-mark processing), and they
analyze processing conditions to determine if I/O requests should be disregarded
or honored.

Passing Control to the I/O Service Routines
Your command processor can pass control to the I/O service routines in the
following ways:

v By using the CALLTSSR macro instruction and specifying the entry point name of
the I/O service routine. See Chapter 4, “Invoking TSO/E Service Routines with
CALLTSSR” on page 39. Use the following entry point names to invoke the I/O
service routines:

Service Routine Entry Point Name
STACK IKJSTCK
GETLINE IKJGETL
PUTLINE IKJPUTL
PUTGET IKJPTGT

If you use the CALLTSSR macro instruction to invoke the I/O service routines,
you must first create an input/output parameter list (IOPL) and place its address
in general register 1. See “The Input/Output Parameter List” on page 193.

v By using the list and execute forms to the I/O service routine macro instructions.
These macro instructions allow you to pass control to the I/O service routines
and indicate the functions you want performed by coding the operands you
require.

Each of the I/O service routine macro instructions, STACK, GETLINE, PUTLINE,
and PUTGET, has a list and an execute form. The list form of each service
routine macro instruction initializes the parameter blocks according to the
operands you code on the macro. The execute form is used to modify the
parameter blocks and to provide linkage to the service routines, and can be used
to set up the input/output parameter list. The input/output parameter list contains
addresses required by the I/O service routines.

Addressing Mode Considerations
Your command processor can invoke the I/O service routines or issue the I/O
service routine macro instructions in either 24-bit or 31-bit addressing mode. These
routines return control to their caller in the same addressing mode with which they
were invoked. The caller’s parameters must be in the primary address space. The

Functions of the I/O Service Routines

192 z/OS V1R4.0 TSO/E Programming Services

TSO/E I/O service routines must be invoked under a program status word (PSW)
that is running key 8, problem program state.

Input can reside above or below 16 MB in virtual storage, except for the list storage
descriptor (LSD), which is used by the STACK service routine. The LSD must reside
below 16 MB in virtual storage.

The input/output parameter list (IOPL), which is needed by the I/O service routines,
can reside above or below 16 MB in virtual storage. However, if the IOPL resides
above 16 MB, then your command processor must execute in 31-bit addressing
mode.

Service routines treat input addresses according to the addressing mode in which
they are invoked. However, if you use the GETLINE macro, the addressing mode of
the STACK macro is used rather than your program’s addressing mode. Address
values are treated as 24-bit or 31-bit addressing mode, depending on the
addressing mode of the original issuer of the STACK macro for that element.

Considerations for Using I/O Service Routines by a Multitasking
Application

An MVS application executing in a multitasking environment must be aware of the
control blocks that TSO/E might be updating on the application’s behalf. It is the
application’s responsibility to ensure that only one I/O service routine operates on a
given I/O environment, specifically an ECT, at a single time. To support concurrent
use of the I/O service routines, an MVS task can pass the address of a new ECT to
the I/O service routines (STACK, GETLINE, PUTLINE, and PUTGET). To create a
new ECT, the MVS task can use the ENVIRON=CREATE operand of the STACK
service routine. Similarly, the MVS task can destroy an ECT using the
ENVIRON=DESTROY operand of the STACK service routine. For more information
about the STACK ENVIRON operand, see “Using STACK to Change the Source of
Input” on page 195.

If an application task attempts to run an I/O service routine on a given ECT while
another task is running an I/O service routine on the same ECT, the STACK service
routine issues abend code X'66D'. Similarly, an application task should not attempt
to destroy an I/O environment while another task is currently using the environment.
If the application attempts to destroy the I/O environment while another task is
using the I/O environment, the STACK service routine issues abend code X'66D'.

The Input/Output Parameter List
The I/O service routines use two of the pointers contained in the command
processor parameter list (CPPL), which is described in “Interfacing with the TSO/E
Service Routines” on page 16. These pointers are the pointer to the user profile
table and the pointer to the environment control table. Your command processor
must pass these addresses to the service routines in another parameter list, the
input/output parameter list (IOPL).

Before executing any of the TSO/E I/O macro instructions, GETLINE, PUTLINE,
PUTGET, or STACK, you must provide an IOPL and pass its address to the I/O
service routine. There are two ways you can construct an IOPL:

v You can build and initialize the IOPL within your code and place a pointer to it in
the execute form of the I/O macro instruction.

Passing Control to the I/O Service Routines

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 193

v You can provide space for an IOPL (4 fullwords), pass a pointer to it, together
with the addresses required to fill it, to the execute form of the I/O macro
instruction, and let the I/O macro instruction build the IOPL for you.

You can use the IKJIOPL DSECT, which is provided in SYS1.MACLIB to map the
fields in the IOPL. Table 56 describes the format of the IOPL.

Table 56. The Input/Output Parameter List

Number of
Bytes

Field Name Contents or Meaning

4 IOPLUPT The address of the user profile table from the CPPLUPT
field of the command processor parameter list.

4 IOPLECT The address of the environment control table from the
CPPLECT field of the CPPL.

4 IOPLECB The address of the command processor’s event control
block (ECB). The ECB is one word of storage, declared
and initialized to zero by the command processor.
Command processors with attention exits can post this
ECB after an attention interruption to cause active
service routines to exit.

4 IOPLIOPB The address of the parameter block created by the list
form of the I/O macro instruction. There are four types
of parameter blocks, one for each of the I/O service
routines:
v STACK parameter block (STPB)
v GETLINE parameter block (GTPB)
v PUTLINE parameter block (PTPB)
v PUTGET parameter block (PGPB).

The parameter block pointed to by the fourth word of the I/O parameter list
(IOPLIOPB) is created and initialized by the list form of the I/O macro instruction,
and is modified by the execute form. Therefore, you can use the same parameter
block to perform different functions. All you need to do is code different parameters
in the execute forms of the macro instructions; these parameters provide those
options not specified in the list form, and override those which were specified.

The STACK, GETLINE, PUTLINE, and PUTGET parameter blocks are described in
the separate sections on each of the I/O macro instructions.

Using the I/O Service Routine Macro Instructions
You can use the I/O service routine macro instructions to pass control to the
STACK, GETLINE, PUTLINE, and PUTGET service routines.

Each of the I/O macro instructions has a list and an execute form. The list form sets
up the parameter block required by that I/O service routine; the execute form can
be used to set up the input/output parameter list, and to modify the parameter block
created by the list form of the macro instruction.

The parameter block required by each of the I/O service routines is different, and
each one can be referenced through a DSECT which is provided in SYS1.MACLIB.
The parameter blocks and the DSECTs used to reference them are:

Passing Control to the I/O Service Routines

194 z/OS V1R4.0 TSO/E Programming Services

Service
Routine

Page # DSECT Name Parameter Block

STACK 195 IKJSTPB The STACK parameter block

GETLINE 218 IKJGTPB The GETLINE parameter block

PUTLINE 232 IKJPTPB The PUTLINE parameter block

PUTGET 258 IKJPGPB The PUTGET parameter block

Each of these blocks is explained in the section describing the I/O macro instruction
that builds it.

Using STACK to Change the Source of Input
Use the STACK macro instruction to establish and to change the source of input.
The currently active input source is described by the top element of the input stack,
an internal pushdown list, which is anchored in the environment control table (ECT)
and maintained by the I/O service routines. The first element of the input stack is
initialized to indicate that the terminal is the current input source, and cannot be
changed or deleted afterward. The STACK service routine adds an element to the
input stack or deletes one or more elements from it, and therefore changes the
source of input for the other I/O service routines.

Your command processor can divide the input stack into substacks by creating
barrier elements with the STACK macro instruction. A barrier element separates one
group of stack elements, or substack, from another group of stack elements. Each
substack can then be treated as a separate input stack. Use the barrier function of
the STACK macro with the PUTGET or GETLINE SUBSTACK=YES services to
determine when a barrier element is reached on the input stack.

Your program cannot build an input stack directly; it must invoke the STACK service
routine to create a valid input stack. If your program builds an input stack without
invoking the STACK service routine to do so, the I/O service routines issue an
ABEND code of X'66D'.

To create an alternate input stack:

v Use the ENVIRON=CREATE operand of the STACK macro to create a new I/O
environment consisting of a new ECT, input stack, and related data areas.

or

v Perform the following processing:

1. Preserve the current input stack by saving the original value of the ECTIOWA
field. The ECTIOWA field is contained in the ECT.

2. To build an alternate input stack and add an element, set the ECTIOWA
pointer to zero and invoke the STACK service routine. The STACK service
routine sets the ECTIOWA field to indicate that it has created an alternate
input stack and added the element to the stack.

3. When processing using the alternate input stack is complete, restore the
original value of the ECTIOWA field.

Use the ENVIRON=DESTROY operand of the STACK macro to destroy the I/O
environment created with the ENVIRON=CREATE operand. The system will free the
storage associated with the input stack as well as any other related data areas.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 195

The STACK service routine saves the addressing mode of the program that invoked
it. Address values are treated as 24-bit or 31-bit addressing mode, depending on
the addressing mode of the original issuer of STACK for that element.

In the sections that follow, the following topics are discussed:
v STACK Macro Effects on the REXX Data Stack
v The List Form of the STACK Macro Instruction
v The Execute Form of the STACK Macro Instruction
v The Sources of Input
v Building the STACK Parameter Block (STPB)
v Building the List Source Descriptor (LSD)
v Return Codes from STACK.

STACK Macro Effects on the REXX Data Stack
Whenever an application issues the STACK macro to add either a terminal element
or an input file name to the input stack, the STACK service routine protects the
previous contents of the REXX data stack by placing a terminal element,
MARKTERM, on the REXX data stack. Similarly, when the terminal element or input
file name is being removed from the input stack, the STACK service routine
removes the MARKTERM terminal element from the REXX data stack.

However, when you create an alternate input stack, the STACK service routine will
protect the REXX data stack through MARKTERM, but you must remove the
MARKTERM element from the REXX data stack when you have completed using
the alternate input stack. You can create an alternate input stack by clearing the
ECTIOWA field in the ECT and then invoking the STACK macro to add a terminal
element or an input file name. When you have completed using this alternate input
stack, invoke the REXX stack routine, IRXSTK, with a function call of DROPTERM
to remove the MARKTERM terminal element from the REXX data stack. By issuing
DROPTERM when the input stack is no longer in use, you will keep the REXX data
stack in synchronization with the input stack.

The List Form of the STACK Macro Instruction
The list form of the STACK macro instruction builds and initializes a STACK
parameter block (STPB), according to the operands you specify in the macro. The
STACK parameter block indicates to the STACK service routine which functions you
want performed.

In the list form of the macro instruction, only

is required. When only STACK MF=L is specified, the STPB is zeroed. The other
operands and their sublists are optional because they can be supplied by the
execute form of the macro instruction.

Figure 81 on page 197 shows the list form of the STACK macro instruction; each of
the operands is explained following the figure.

STACK MF=L

Using the I/O Service Routine Macro Instructions

196 z/OS V1R4.0 TSO/E Programming Services

TERM=*
adds a terminal element to the input stack.

Note: TERM=* is allowed by STACK to provide compatibility with existing
modules when they are recompiled.

BARRIER=
creates a barrier element, which divides the input stack into substacks, on top
of the input stack.

* CLISTs and REXX execs on opposing sides of this barrier are nested. They
are able to use command output trapping and can communicate through
global variables. Command processors can use routines IKJCT441 and
IRXEXCOM to access variables on the opposing side of the barrier.

NONEST
CLISTs and REXX execs on opposing sides of the barrier are not nested.
This type of barrier halts the effect of command output trapping and halts
the use of the routines IKJCT441 and IRXEXCOM to access variables on
the opposing side of the barrier. While CLIST global variables are not
communicated across this barrier, CLISTs on top of this barrier can begin
using global variables and communicate with further nested CLISTs through
global variables.

Note: When stacking and removing barrier elements:

v Only STACK DELETE=BARRIER or STACK ENVIRON=RESET can remove
a barrier element.

v If the application or command processor stacks a barrier element, the
application or command processor must remove the barrier element when it
is done using the task. Failure to remove the barrier element can result in

[TERM=*]
[]

[symbol] STACK [BARRIER= {* }]
[{NONEST }]
[]
[{TOP }]
[DELETE= {PROC }]
[{ALL }]
[{BARRIER}]
[]
[ENVIRON= {CREATE }]
[{DESTROY }]
[{RESET }]
[]
[INQUIRE= {ATTN }]
[{ERROR}]
[{TYPE }]
[]
[{PROCN,PROMPT}]
[STORAGE=(element address, {PROCL,PROMPT}]
[{SOURCE })],MF=L
[]
[{ * }]
[DATASET={ INDD=addr1,PROMPT,LIST}]
[{ MEMBER=addr3 }]
[{ OUTDD=addr2,CNTL,SEQ }]
[{ CLOSE }]

Figure 81. The List Form of the STACK Macro Instruction

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 197

miscommunication between the application that invoked your command
processor and other command processors and applications that use barriers
on the current input stack.

DELETE=
deletes an element or elements from the input stack. TOP, PROC, ALL, or
BARRIER further defines the element to be deleted.

TOP
deletes the topmost element (the element most recently added to the input
stack). If the top element is a barrier element, STACK DELETE=TOP is a
no-operation instruction.

PROC
deletes the current procedure element from the input stack. If the top
element is not a PROC element, deletes all elements down to, and
including, the first PROC element.

ALL
deletes all elements, except the bottom or first element, from the input
stack. If one or more barrier elements exist on the input stack, deletes all
elements down to, but not including, the first barrier element.

BARRIER
deletes all elements down to, and including, the first barrier element.

ENVIRON=
specifies one of the following operations:
v A new TSO/E I/O environment is to be created
v An existing TSO/E I/O environment is to be destroyed
v The current TSO/E I/O environment is to be reset.

A TSO/E I/O environment consists of the control blocks that describe the input
and output sources used by the I/O service routines. These control blocks
include the environment control table (ECT) and the input stack.

CREATE
specifies that a new TSO/E I/O environment is to be created. The STACK
service routine creates a new environment using a model environment
provided by your command processor. To create a new I/O environment,
follow these steps:

1. Set the IOPLECT field in the input/output parameter list (IOPL) to the
address of the ECT to be used as a model to create a new ECT. The
IOPL is described in “The Input/Output Parameter List” on page 193.
The ECT that you provide as the model is passed to your command
processor in the command processor parameter list (CPPL). For more
information on the CPPL, see “Interfacing with the TSO/E Service
Routines” on page 16.

2. Invoke the STACK service routine, specifying the ENVIRON=CREATE
operand.

When the STACK service routine returns control to your command
processor, the STPBECTA field of the STACK parameter block (STPB)
contains the address of the new ECT. The ECTIOWA field in the ECT
contains the address of the newly-created stack. The STACK service
routine initializes the first (bottom) element of the new stack. This bottom
element is the same as the bottom element of the model stack.

Using the I/O Service Routine Macro Instructions

198 z/OS V1R4.0 TSO/E Programming Services

Notes:

1. If you create a TSO/E I/O environment, and if you want to run REXX
execs in that environment, you must create a new REXX environment
by calling IRXINIT. See z/OS TSO/E REXX Reference for information on
calling IRXINIT. Similarly, before you terminate the new TSO/E
environment, you must end the new REXX environment by calling
IRXTERM.

2. The CREATE operand creates an ALTLIB environment in which only the
system CLIST library (ddname SYSPROC) and possibly the system
REXX library (ddname SYSEXEC, by default) are searched. The ALTLIB
environment in the new TSO/E I/O environment is independent of the
ALTLIB environment in the model environment.

3. When TSO/E is processing an authorized command, you cannot use an
alternate ECT for command output trapping or data stack prompting.

DESTROY
specifies that an existing TSO/E I/O environment is to be destroyed. The
environment to be destroyed must have been created by the
ENVIRON=CREATE function. To destroy an existing I/O environment, follow
these steps:

1. Set the IOPLECT field in the input/output parameter list (IOPL) to the
address of the ECT associated with the environment to be destroyed.
The IOPL is described in “The Input/Output Parameter List” on
page 193.

2. Invoke the STACK service routine, specifying the ENVIRON=DESTROY
operand.

Notes:

1. You cannot destroy an I/O environment at one task level while another
task is using the I/O environment, even at the task level that created the
I/O environment. If you attempt to do so, the STACK service routine will
issue abend code X'66D'.

2. When you destroy an I/O environment, the ECT address and the input
stack address, ECTIOWA, must be the same as when the I/O
environment was created. If you attempt to destroy an I/O environment
when the addresses are not the same, the STACK service routine
passes a return code of 76 to the application program.

RESET
specifies that all elements, including barrier elements, are to be removed
from the input stack of the current environment. However, the first element
on the input stack is not removed.

INQUIRE=
returns a code that indicates:
v Whether there is a CLIST attention routine to run
v Whether there is a CLIST error routine to run
v The type of the topmost element on the input stack.

See “Return Codes from STACK” on page 211 for the meaning of each of the
return codes.

ATTN
returns a code that indicates whether a CLIST attention routine is present
anywhere in the current substack.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 199

ERROR
returns a code that indicates whether a CLIST error routine is present in the
top element of the current substack.

TYPE
returns a code that indicates the type of the topmost element on the input
stack.

STORAGE=element address
adds an in-storage element to the input stack. The element address is the
address of the list source descriptor (LSD). The LSD is a control block, pointed
to by the STACK parameter block, which describes the in-storage list. The LSD
must reside below 16 MB in virtual storage. See “Building the List Source
Descriptor (LSD)” on page 210 for a description of the LSD.

The in-storage element must be further defined as a SOURCE, PROCN, or
PROCL list. SOURCE is the default.

PROMPT
specifies prompting by commands within a command procedure. PROMPT
is used with the keywords PROCN and PROCL, which specify that the
element to be added to the input stack is a command procedure.

PROCN
The element to be added to the input stack is a command procedure and
the NOLIST option has been specified.

PROCL
The element to be added to the input stack is a command procedure and
the LIST option has been specified. Each line read from the command
procedure is written to the terminal.

SOURCE
The element to be added to the input stack is an in-storage source data
set.

MF=L
indicates that this is the list form of the macro instruction. This operand is
required.

DATASET=
Expands the facilities of dataset I/O for TSO/E commands to include reading
from a SYSIN data set and writing to a SYSOUT dataset. To use the dataset
function, the input and output files passed to the STACK service routine must
be preallocated, either by a previously issued ALLOCATE command, a
command processor that invokes dynamic allocation, a DD statement specified
in the logon procedure, or, in the background, a user-supplied DD statement.

* specifies that STACK use the bottom element in the input stack for I/O
operations. This operand is the functional equivalent of TERM=*.

INDD=addr1
specifies the input file name.

PROMPT
allows prompting if prompting is also allowed on the bottom element of the
input stack.

LIST
lists the input from the input stream.

Using the I/O Service Routine Macro Instructions

200 z/OS V1R4.0 TSO/E Programming Services

MEMBER=addr3
specifies an 8-character member name for a partitioned data set which was
specified as the input file with the INDD operand.

OUTDD=addr2
specifies the output file name.

CNTL
The output line has its own control character.

CLOSE
closes the data control blocks (DCBs) of the input stack. These DCBs are
created by the STACK service routine. Your program cannot modify the
DCBs directly; you must invoke the STACK service routine to modify these
control blocks.

SEQ
indicates to dataset I/O that sequence numbers should not be removed.

Note: INDD and OUTDD are only valid if the associated dataset element is the
last element stacked on the TSO/E I/O stack. If any element such as a
CLIST element, or elements from invoking the TSO/E service facility are
stacked after the DATASET element, INDD and OUTDD will become
incorrect. This will cause the I/O to be routed to the bottom element on
the I/O stack. This is the functional equivalent of DATSET=*, or TERM=*,
and refers to SYSTSIN and SYSTSPRT.

The Execute Form of the STACK Macro Instruction
Use the execute form of the STACK macro instruction to perform the following
functions:

v Set up the input/output parameter list (IOPL).

v Initialize those fields of the STACK parameter block (STPB) that are not
initialized by the list form of the macro instruction, or to modify those fields
already initialized.

v Pass control to the STACK service routine, which modifies the input stack.

The operands you specify in the execute form of the STACK macro instruction are
used to set up control information used by the STACK service routine. You can use
the PARM, UPT, ECT, and ECB operands of the STACK macro instruction to
complete, build, or alter an IOPL.

In the execute form of the STACK macro instruction only the following operands are
required:

The PARM, UPT, ECT, and ECB operands are not required if you have built an
IOPL in your own code.

You are not required to specify the ENTRY operand.

The other operands and their sublists are optional because they can be supplied by
the list form of the macro instruction.

STACK MF=(E,{list address})
{ (1) }

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 201

Figure 82 shows the execute form of the STACK macro instruction; each of the
operands is explained following the figure.

PARM=parm addr
specifies the address of the 6-word STACK parameter block (STPB). It can be
the address of the list form of the STACK macro instruction. The address is any
address valid in an RX instruction, or the number of one of the general registers
2–12 enclosed in parentheses. This address will be placed in the input/output
parameter list (IOPL). Use the list form of STACK to create the STPB. If no list
options are specified, the STPB is zeroed by the list form of the STACK macro
instruction.

The STPB and IOPL (STPL) can be modified by STACK, so they should be in
reentrant storage if used in a reentrant program.

UPT=upt addr
specifies the address of the user profile table (UPT). This address can be
obtained from the command processor parameter list (CPPL) pointed to by
register 1 when the command processor is attached by the terminal monitor
program. The address can be any address valid in an RX instruction or the
number of one of the general registers 2–12 enclosed in parentheses. This
address will be placed in the input/output parameter list (IOPL).

ECT=ect addr
specifies the address of the environment control table (ECT). This address can
be obtained from the command processor parameter list (CPPL) pointed to by
register 1 when the command processor is attached by the terminal monitor
program. The address can be any address valid in an RX instruction or the
number of one of the general registers 2–12 enclosed in parentheses. This
address will be placed in the IOPL.

[symbol] STACK [[PARM=parm addr.][,UPT=upt addr.]]
[[,ECT=ect addr.][,ECB=ecb addr.]]

[TERM=*]
[BARRIER={* }]
[{NONEST}]
[{ TOP }]
[DELETE={ PROC }]
[{ ALL }]
[{ BARRIER}]
[ENVIRON= {CREATE }]
[{DESTROY }]
[{RESET }]
[INQUIRE= {ATTN }]
[{ERROR }]
[{TYPE }]
[{PROCN,PROMPT}]
[STORAGE=(element addr., {PROCL,PROMPT})]
[{SOURCE }]
[{ * }]
[{ INDD=add1,PROMPT,LIST }]
[DATASET={ MEMBER=addr3 }]
[{ OUTDD=addr2,CNTL,SEQ }]
[{ CLOSE }]
[,ENTRY= {entry addr.}],MF=(E,{list addr.})]
[{ (15) }] { (1) }]

Figure 82. The Execute Form of the STACK Macro Instruction

Using the I/O Service Routine Macro Instructions

202 z/OS V1R4.0 TSO/E Programming Services

ECB=ecb addr
specifies the address of an event control block (ECB). This address will be
placed into the IOPL. You must provide a one-word event control block and
pass its address to the STACK service routine by placing it into the IOPL. The
address can be any address valid in an RX instruction or the number of one of
the general registers 2–12 enclosed in parentheses.

TERM=*
adds a terminal element to the input stack.

Note: TERM=* is allowed by STACK to provide compatibility with existing
modules when they are recompiled.

BARRIER=
creates a barrier element, which divides the input stack into substacks, on top
of the input stack.

* CLISTs and REXX execs on opposing sides of this barrier are nested. They
are able to use command output trapping and can communicate through
global variables. Command processors can use routines IKJCT441 and
IRXEXCOM to access variables on the opposing side of the barrier.

NONEST
CLISTs and REXX execs on opposing sides of the barrier are not nested.
This type of barrier halts the effect of command output trapping and halts
the use of the routines IKJCT441 and IRXEXCOM to access variables on
the opposing side of the barrier. While CLIST global variables are not
communicated across this barrier, CLISTs on top of this barrier can begin
using global variables and communicate with further nested CLISTs through
global variables.

Note: When stacking and removing barrier elements:

1. Only STACK DELETE=BARRIER or STACK ENVIRON=RESET can
remove a barrier element.

2. If the application or command processor stacks a barrier element, the
application or command processor must remove the barrier element
when it is done using the task. Failure to remove the barrier element
can result in miscommunication between the application that invoked
your command processor and other command processors and
applications that use barriers on the current input stack.

DELETE=
deletes one or more elements from the input stack. TOP, PROC, ALL, or
BARRIER specifies which element(s).

TOP
deletes the topmost element (the element most recently added to the input
stack). If the top stack element is a barrier element, STACK DELETE=TOP
is a no-operation instruction.

PROC
deletes the current procedure element from the input stack. If the top
element is not a procedure element, deletes all elements down to and
including the first procedure element.

ALL
deletes all elements, except the bottom or first element, from the input
stack. If one or more barrier elements exist on the input stack, deletes all
elements down to, but not including, the first barrier element.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 203

BARRIER
deletes all elements on the input stack down to, and including, the first
barrier element.

ENVIRON=
specifies one of the following operations:
v A new TSO/E I/O environment is to be created
v An existing TSO/E I/O environment is to be destroyed
v The current TSO/E I/O environment is to be reset.

A TSO/E I/O environment consists of the control blocks that describe the input
and output sources used by the I/O service routines. These control blocks
include the environment control table (ECT) and the input stack.

CREATE
specifies that a new TSO/E I/O environment is to be created. The STACK
service routine creates a new environment using a model environment
provided by your command processor. To create a new I/O environment,
follow these steps:

1. Set the IOPLECT field in the input/output parameter list (IOPL) to the
address of the ECT to be used as a model to create a new ECT. The
IOPL is described in “The Input/Output Parameter List” on page 193.
The ECT that you provide as the model is passed to your command
processor in the command processor parameter list (CPPL). For more
information on the CPPL, see “Interfacing with the TSO/E Service
Routines” on page 16.

2. Invoke the STACK service routine, specifying the ENVIRON=CREATE
operand.

When the STACK service routine returns control to your command
processor, the STPBECTA field of the STACK parameter block (STPB)
contains the address of the new ECT. The ECTIOWA field in the ECT
contains the address of the newly created stack. The STACK service
routine initializes the first (bottom) element of the new stack. This bottom
element is the same as the bottom element of the model stack.

Notes:

1. If you create a TSO/E I/O environment, and if you want to run REXX
execs in that environment, you must create a new REXX environment
by calling IRXINIT. See z/OS TSO/E REXX Reference for information on
calling IRXINIT. Similarly, before you terminate the new TSO/E
environment, you must end the new REXX environment by calling
IRXTERM.

2. The CREATE operand creates an ALTLIB environment in which only the
system CLIST library (ddname SYSPROC) and possibly the system
REXX library (ddname SYSEXEC, by default) are searched. The ALTLIB
environment in the new TSO/E I/O environment is independent of the
ALTLIB environment in the model environment.

DESTROY
specifies that an existing TSO/E I/O environment is to be destroyed. The
environment to be destroyed must have been created by the
ENVIRON=CREATE function. To destroy an existing I/O environment, follow
these steps:

Using the I/O Service Routine Macro Instructions

204 z/OS V1R4.0 TSO/E Programming Services

1. Set the IOPLECT field in the input/output parameter list (IOPL) to the
address of the ECT associated with the environment to be destroyed.
The IOPL is described in “The Input/Output Parameter List” on
page 193.

2. Invoke the STACK service routine, specifying the ENVIRON=DESTROY
operand.

Notes:

1. You cannot destroy an I/O environment at one task level while another
task is using the I/O environment, even at the task level that created the
I/O environment. If you attempt to do so, the STACK service routine will
issue abend code X'66D'.

2. When you destroy an I/O environment, the ECT address and the input
stack address, ECTIOWA, must be the same as when the I/O
environment was created. If you attempt to destroy an I/O environment
when the addresses are not the same, the STACK service routine
passes a return code of 76 to the application program.

3. When TSO/E is processing an authorized command, you cannot use an
alternate ECT for command output trapping or data stack prompting.

RESET
specifies that all elements, including barrier elements, are to be removed
from the input stack of the current environment. However, the first element
on the input stack is not removed. Use this function only when a severe
error condition requires your program to terminate all processing and cause
the READY mode message to be issued.

INQUIRE=
returns a code that indicates:
v Whether there is a CLIST attention routine to run
v Whether there is a CLIST error routine to run
v The type of the topmost element on the input stack.

See “Return Codes from STACK” on page 211 for the meaning of each of the
return codes.

ATTN
returns a code that indicates whether a CLIST attention routine is present
anywhere in the current substack. Issue the STACK macro in the form:
(symbol) STACK INQUIRE=ATTN,MF=(E,ABC)

ERROR
returns a code that indicates whether a CLIST error routine is present in the
top element of the current substack. Issue the STACK macro in the form:
(symbol) STACK INQUIRE=ERROR,MF=(E,(ABC))

TYPE
returns a code that indicates the type of the topmost element on the input
stack.

STORAGE=element address
adds an in-storage element to the input stack. The element address is the
address of the list source descriptor (LSD). The LSD is a control block, pointed
to by the stack parameter block, which describes the in-storage list. See
“Building the List Source Descriptor (LSD)” on page 210 for a description of the
LSD. The in-storage list must be further defined as a SOURCE, PROCN, or
PROCL list. SOURCE is the default.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 205

SOURCE
The element to be added to the input stack is an in-storage source data
set.

PROCN
The element to be added to the input stack is a command procedure and
the NOLIST option has been specified.

PROCL
The element to be added to the input stack is a command procedure and
the LIST option has been specified. Each line read from the command
procedure is written to the terminal.

PROMPT
specifies prompting by commands within a command procedure. PROMPT
is used with the keywords PROCN and PROCL, which specify that the
element to be added to the input stack is a command procedure.

DATASET=
Expands the facilities of dataset I/O for TSO/E commands to include
reading from a SYSIN data set and writing to a SYSOUT dataset. To use
the dataset function, the input and output files passed to the STACK service
routine must be preallocated, either by a previously issued ALLOCATE
command, a command processor that invokes dynamic allocation, a DD
statement specified in the logon procedure, or, in the background, a
user-supplied DD statement.

* specifies that STACK use the bottom element in the input stack for I/O
operations. This operand is the functional equivalent of TERM=*.

INDD=addr1
specifies the input file name.

PROMPT
allows prompting if prompting is also allowed on the bottom element of
the input stack.

LIST
lists the input from the input stream.

MEMBER=addr3
specifies an 8-character member name for a partitioned data set which
was specified as the input file with the INDD operand.

OUTDD=addr2
specifies the output file name.

CNTL
The output line has its own control character.

CLOSE
closes the data control blocks (DCBs) of the input stack. These DCBs
are created by the STACK service routine. Your program cannot modify
the DCBs directly; you must invoke the STACK service routine to
modify these control blocks.

SEQ
indicates to dataset I/O that sequence numbers should not be removed.

Note: INDD and OUTDD are only valid if the associated dataset element is
the last element stacked on the TSO/E I/O stack. If any element
such as a CLIST element, or elements from invoking the TSO/E

Using the I/O Service Routine Macro Instructions

206 z/OS V1R4.0 TSO/E Programming Services

service facility are stacked after the DATASET element, INDD and
OUTDD will become incorrect. This will cause the I/O to be routed to
the bottom element on the I/O stack. This is the functional equivalent
of DATSET=*, or TERM=*, and refers to SYSTSIN and SYSTSPRT.

ENTRY=entry address | (15)
specifies the entry point of the STACK service routine. The address can be any
address valid in an RX instruction or (15) if the entry point address has been
loaded into general register 15. If ENTRY is omitted, a LINK macro instruction
will be generated to invoke the STACK service routine.

MF=E
indicates that this is the execute form of the macro instruction.

listaddr | (1)
The address of the four-word input/output parameter list (IOPL). This can be a
completed IOPL that you have built, or it can be 4 words of declared storage
that will be filled from the PARM, UPT, ECT, and ECB operands of this execute
form of the STACK macro instruction. The address is any address valid in an
RX instruction or (1) if the parameter list address has been loaded into general
register 1.

The Sources of Input
There are two types of input sources you can add to the input stack: the terminal
and an in-storage list.

Terminal
If the terminal is specified in the STACK macro instruction as the input source, all
input and output requests through GETLINE, PUTLINE, and PUTGET are read from
the terminal and written to the terminal. The user at the terminal controls TSO/E by
entering commands; the system processes these commands as they are entered
and returns to the user for another command.

When an on-line job is running, the first element in the input stack is a terminal
element.

In-Storage List
An in-storage list can be either a list of commands or a source data set. It can
contain variable-length records (with a length header) or fixed-length records (no
header and all records the same length). In either case, no one record on an
in-storage list can exceed 256 characters.

When a job is running in the background, the first element in the input stack is a
data set element.

Specify an in-storage list and its processing by setting the STORAGE operand type
to PROCN, PROCL, or SOURCE.

v PROCN or PROCL - Indicates that the in-storage list is a command procedure,
which is a list of commands to be executed in the order specified.

If you specify PROCN, requests through GETLINE are read from the in-storage
list, but PROMPT requests from the executing command processor are
suppressed. MODE messages, those messages normally sent to the terminal
requesting entry of a command or a sub-command, are not sent; instead, a
command is obtained from the in-storage list.

If the PROCL option is specified, the command is displayed at the terminal as it
is read from the list.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 207

v SOURCE - Indicates that the in-storage list is a source data set. Requests
through GETLINE are read from the in-storage list, but PROMPT requests from
the executing command processor are honored if prompting is allowed, and a
line is requested from the terminal. MODE messages are handled the same way
as with PROCN or PROCL. No LIST facility is provided with SOURCE records.

If your command processor uses the STACK service routine to specify an in-storage
list as the input source, you should create the in-storage list in subpool 78.
However, if your command processor uses the STACK service routine to place
either a data set or an in-storage list that is not in subpool 78 on the input stack,
the command processor must remove the stack element before termination. To
remove the stack element, your command processor should either:

v Issue the STACK macro instruction with the DELETE=TOP operand specified.

v Use the GETLINE or PUTGET service routine to process input until end-of-input
is reached.

To add an in-storage list element to the input stack, you must build a list storage
descriptor (LSD), which contains a description of the in-storage list, and pass its
address to the STACK service routine. The STACK service routine then adds the
in-storage list element to the input stack. The LSD is described in “Building the List
Source Descriptor (LSD)” on page 210.

For an example showing how to use the STACK service routine to specify an
in-storage list as the input source, see Figure 86 on page 216.

Building the STACK Parameter Block (STPB)
When the list form of the STACK macro instruction expands, it builds a 5-word
STACK parameter block (STPB). The list form of the macro instruction initializes this
STPB according to the operands you have coded. This initialized block, which you
can later modify with the execute form of the macro instruction, indicates to the I/O
service routine the functions you want performed.

By using the list form of the macro instruction to initialize the block, and the execute
form to modify it, you can use the same STPB to perform different STACK
functions. Keep in mind, however, that if you specify an operand in the execute
form of the macro instruction, and that operand has a sublist as a value, the default
values of the sublist will be coded into the STPB for any of the sublist values not
coded. If you do not want the default values, you must code each of the values you
require, each time you change any one of them.

For example, if you coded the list form of the STACK macro instruction as follows:

and then overrode it with the execute form of the macro instruction as follows:

STACK STORAGE=(element address,PROCN),MF=L

STACK STORAGE=(new element address),
MF=(E,list address)

Using the I/O Service Routine Macro Instructions

208 z/OS V1R4.0 TSO/E Programming Services

The element code in the STACK parameter block would default to SOURCE, the
default value. If the new in-storage list was another PROCN list, you would have to
respecify PROCN in the execute form of the macro instruction.

The STACK parameter block is defined by the IKJSTPB DSECT, which is provided
in SYS1.MACLIB. Table 57 describes the contents of the STPB.

Table 57. The STACK Parameter Block

Number of
Bytes

Field Name Contents or Meaning

1 none Operation code. A flag byte which describes the
operation to be performed:
1... One element is to be added to the top

of the input stack.
.1.. The top element is to be deleted from

the input stack.
..1. The current procedure is to be deleted

from the input stack. If the top element
is not a PROC element, all elements
down to and including the first PROC
element encountered are deleted,
except the bottom element.

...1 All elements except the bottom one
(the first element) are to be deleted.

.... 1... A barrier element is to be deleted from
the input stack.

.... .1.. Determine whether there is a CLIST
attention routine to run.

.... ..1. Determine whether there is a CLIST
error routine to run.

.... ...1 Determine the type of the topmost
element on the input stack.

1 none Element code. A flag byte describing the element to be
added to the input stack:
1... A terminal element.
.1.. An in-storage element.
..1. Input ddname present.
...1 Output ddname present.
.... 1... The in-storage element is an EXEC

command element.
.... .1.. Prompting is allowed from the PROC

element.
.... ..0. The in-storage element is a source

element.
.... ..1. The in-storage element is a procedure

element.
.... ...1 The list option (PROCL) has been

specified.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 209

Table 57. The STACK Parameter Block (continued)

Number of
Bytes

Field Name Contents or Meaning

1 none A flag byte describing the operation to be performed:
1... A barrier element is to be added to the

input stack.
.1.. Create a new I/O environment.
..1. Destroy the current I/O environment or

the one requested by the caller.
...1 Reset the input stack of the current

environment.
.... xxxx Reserved.

1 none DATASET operation:
xxxx Reserved.
.... 1... Use BPAM with member.
.... .1.. Do not remove sequence numbers.
.... ..1. User-specified CNTL.
.... ...1 Close option.

4 STPBALSD The address of the list source descriptor (LSD). An LSD
describes an in-storage list. If the input source is the
terminal, or if DELETE has been specified, this field will
contain zeros.

4 STPBINDD Pointer to input ddname.
4 STPBODDN Pointer to output ddname.
4 STPBMBRN Pointer to membername.
4 STPBECTA Pointer to the environment control table (ECT) created

by the STACK service routine when
ENVIRON=CREATE is specified.

If the DATASET or DELETE operands have been coded in the STACK macro
instruction, the second word of the stack parameter block, the STPBALSD field, will
contain zeroes and the control block structure will end with the STPB. Figure 83 on
page 213 describes this condition.

To add an in-storage list element to the input stack, you must describe the
in-storage list and pass a pointer to it to the STACK I/O service routine. You do this
by building a list source descriptor (LSD).

Building the List Source Descriptor (LSD)
A list source descriptor (LSD) is a four-word control block that describes the
in-storage list pointed to by the new element you are adding to the input stack. Note
that the LSD must reside below 16 MB in virtual storage.

If you are designating the terminal as the input source, no LSD is necessary and
the second word of the STPB will be zero. If you specify STORAGE as the input
source in the STACK macro instruction, your code must build an LSD, and place a
pointer to it as a sublist of the STORAGE operand.

The LSD must begin on a doubleword boundary, and must be created in subpool
78. Your command processor cannot modify the LSD after it is passed to the
STACK service routine.

Using the I/O Service Routine Macro Instructions

210 z/OS V1R4.0 TSO/E Programming Services

The LSD is defined by the IKJLSD DSECT, which is provided in SYS1.MACLIB.
Table 58 describes the contents of the LSD.

Table 58. The List Source Descriptor

Number of
Bytes

Field Name Contents or Meaning

4 LSDADATA The address of the in-storage list.
2 LSDRCLEN The record length if the in-storage list contains

fixed-length records. Zero if the record lengths are
variable.

2 LSDTOTLN The total length of the in-storage list; the sum of the
lengths of all records in the list.

4 LSDANEXT Pointer to the next record to be processed. Initialize this
field to the address of the first record in the list. The
field is updated by the GETLINE and PUTGET service
routines.

4 LSDRSVRD Reserved.

If you have provided an LSD, and specified the STORAGE operand in the STACK
macro instruction, the second word of the stack parameter block will contain the
address of the LSD, and the STACK control block structure will be as shown in
Figure 84 on page 214.

Return Codes from STACK
When the STACK service routine returns to the program that invoked it, STACK
provides one of the following return codes in general register 15:

Table 59. Return Codes from the STACK Service Routine

Return Code
Dec(Hex)

Meaning

0(0) STACK has completed successfully.

4(4) One or more of the parameters passed to STACK were not valid.

8(8) INDD was specified and the file could not be opened.

12(C) OUTDD was specified and the file could not be opened.

16(10) MEMBER was specified but was not in the partitioned data set specified
by INDD.

20(14) GETMAIN failure (only possible if MEMBER is specified).

24(18) One of the following occurred:

v The INQUIRE=ATTN operand was specified and a CLIST attention
routine is present in the current substack.

v The INQUIRE=ERROR operand was specified and a CLIST error
routine is present in the top element of the current substack.

28(1C) One of the following occurred:

v The INQUIRE=ATTN operand was specified and a CLIST attention
routine is not present in the current substack.

v The INQUIRE=ERROR operand was specified and a CLIST error
routine is not present in the top element of the current substack.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 211

Table 59. Return Codes from the STACK Service Routine (continued)

Return Code
Dec(Hex)

Meaning

32(20) The INQUIRE=TYPE operand was specified and the topmost stack
element is a terminal element.

36(24) The INQUIRE=TYPE operand was specified and the topmost stack
element is an in-storage list.

40(28) The INQUIRE=TYPE operand was specified and the topmost stack
element is a command procedure.

44(2C) The INQUIRE=TYPE operand was specified and the topmost stack
element is a BARRIER=* element.

48(30) The INQUIRE=TYPE operand was specified and the topmost stack
element is an input file name.

52(34) The INQUIRE=TYPE operand was specified and the topmost stack
element is an output file name.

56(38) The INQUIRE=TYPE operand was specified and the topmost stack
element has both an input file name and an output file name specified.

60(3C) The INQUIRE=TYPE operand was specified and the topmost stack
element is a TERMIN or TERMING element.

64(40) The INQUIRE=TYPE operand was specified and the topmost stack
element is an unknown element.

68(44) The INQUIRE=TYPE operand was specified and the topmost stack
element is a REXX element.

72(48) A request to add a barrier element to the input stack contains a not valid
STACK parameter block. This is a probable user error caused when the
STACK macro is not used to invoke the STACK service. To correct the
error, the terminal element bit in the element code byte of the STACK
parameter block (described above) must be ON when requesting to add
a barrier element to the input stack.

76(4C) The ENVIRON option was specified, but an error occurred when
creating or destroying an I/O environment.

80(50) The INQUIRE=TYPE operand was specified and the topmost stack
element is a BARRIER=NONEST element.

Using the I/O Service Routine Macro Instructions

212 z/OS V1R4.0 TSO/E Programming Services

Terminal

Monitor

Program

Command

Processor

STACK

Service

Routine

Reg. 1 Reg. 1

0 0 0 0 0 0 0 0

0

0

CPPL IOPL

STPB

ATTACH LINK

Figure 83. STACK Control Blocks: No In-Storage List

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 213

Terminal

Monitor

Program

Command

Processor

STACK

Service

Routine

Reg. 1 Reg. 1

CPPL IOPL

ATTACH LINK

STPB

LSD

In-Storage List

Figure 84. STACK Control Blocks: In-Storage List Specified

Using the I/O Service Routine Macro Instructions

214 z/OS V1R4.0 TSO/E Programming Services

Examples Using STACK

Example 1
Figure 85 is an example of the code required to add the terminal to the input stack
as the current input source. In this example, the execute form of the STACK macro
instruction is used to build the input/output parameter list for you. The list form of
the STACK macro instruction expands into a STACK parameter block, and its
address is passed to the execute form of the macro instruction as the PARM
operand address.

Note: This sequence of code does not make use of the IKJCPPL DSECT to
access the command processor parameter list, nor does it provide reentrant
code.

Example 2
Figure 86 on page 216 is an example of the code required to use the STACK macro
instruction to place a pointer to an in-storage list on the input stack.

In the example, the GETMAIN macro instruction is used to obtain storage in
subpool 78 for the list source descriptor and the in-storage list itself. The execute
form of the STACK macro instruction initializes the input/output parameter list
required by the STACK service routine. The list form of the STACK macro

* ENTRY FROM THE TMP - REGISTER ONE CONTAINS A POINTER TO THE CPPL
*
* SET UP ADDRESSABILITY
* PERFORM SAVE AREA CHAINING
* .
* .
* .
*

LR 2,1 SAVE THE ADDRESS OF THE CPPL
L 3,4(2) PLACE THE UPT ADDRESS INTO A

* REGISTER
L 4,12(2) PLACE THE ECT ADDRESS INTO A

* REGISTER
L 5,ECB PLACE THE ECB ADDRESS INTO A

* REGISTER
* ISSUE THE EXECUTE FORM OF THE STACK MACRO INSTRUCTION, SPECIFY
* THE TERMINAL AS THE INPUT SOURCE AND BUILD THE IOPL WITH THE
* STACK MACRO INSTRUCTION.
*

STACK PARM STAKBLOK,UPT=(3),ECT=(4),ECB=(5),TERM=*,MF=(E,IOPL)
*
* PROCESSING
* STORAGE DECLARATIONS
* .
* .
* .
IOPL DC 4F’0’ SPACE FOR THE INPUT/OUTPUT
* PARAMETER LIST
ECB DC F’0’ SPACE FOR THE EVENT CONTROL
* BLOCK
STAKBLOK STACK MF=L THE LIST FORM OF THE STACK MACRO

INSTRUCTION, WHICH WILL EXPAND
INTO A STACK PARAMETER BLOCK

END

Figure 85. Example of STACK Specifying the Terminal as the Input Source

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 215

instruction expands into a STACK parameter block, and its address is passed to the
STACK service routine via the PARM operand in the execute form of the STACK
macro instruction.

* THIS CODE ASSUMES ENTRY FROM THE TMP - REGISTER ONE CONTAINS THE
* ADDRESS OF THE COMMAND PROCESSOR PARAMETER LIST.
*
* SET UP ADDRESSABILITY
* PERFORM SAVE AREA CHAINING
* .
* .
* .
*

LR 2,1 SAVE THE ADDRESS OF THE CPPL
USING CPPL,2 SET UP ADDRESSABILITY FOR THE

* CPPL
L 3,CPPLUPT PLACE THE ECT ADDRESS INTO A

* REGISTER
L 4,CPPLECT PLACE THE ECB ADDRESS INTO A

* REGISTER
* ISSUE A GETMAIN FOR SUBPOOL 78. THE LIST SOURCE DESCRIPTOR AND THE
* IN-STORAGE LIST ITSELF MUST BE LOCATED IN SUBPOOL 78.
*

GETMAIN LU,LA=REQUEST,A=ANSWER,SP=78,LOC=BELOW
*
* OBTAIN THE ADDRESS IN SUBPOOL 78 FOR THE LIST SOURCE DESCRIPTOR
* AND MOVE THE LSD INTO THAT AREA.
*

L 5,ANSWER
MVC 0(16,5),ANLSD

*
* OBTAIN THE ADDRESS IN SUBPOOL 78 FOR THE IN-STORAGE LIST AND MOVE
* THE IN-STORAGE LIST INTO THAT AREA
*

L 6,ANSWER+4
ST 6,0(5) STORE THE ADDRESS OF THE IN-
ST 6,8(5) STORAGE LIST INTO TWO FIELDS

* IN THE LIST SOURCE DESCRIPTOR
MVC 0(100,6),INLIST

*
* ISSUE AN EXECUTE FORM OF THE STACK MACRO INSTRUCTION TO PUT A
* POINTER TO THE IN-STORAGE LIST ON THE INPUT STACK.
*

STACK PARM=STCKLST,UPT=(3),ECT=(4),ECB=ECBADS, X
STORAGE=((5),PROCN),MF=(E,IOPLADS)

*
* TEST THE RETURN CODE FOR SUCCESSFUL COMPLETION OF THE STACK
* SERVICE ROUTINE.
*

LTR 15,15
BNZ ERRTN

Figure 86. Example of STACK Specifying an In-storage List as the Input Source (Part 1 of 2)

Using the I/O Service Routine Macro Instructions

216 z/OS V1R4.0 TSO/E Programming Services

Example 3
Figure 87 on page 218 is an example of the code required to use the STACK macro
instruction to create a new TSO/E I/O environment.

* .
* .
ERRTN
* .
* .
* .
* STORAGE DECLARATIONS
*
ANLSD DS A THE TOTAL LENGTH OF THE LIST

DC X’0000’ SOURCE DESCRIPTOR, ANLSD, IS
DC X’0064’ 16 BYTES (DECIMAL).
DS A
DC F’0’

*
INLIST DC X’00140000’

DC C’EDIT OPA OPB OPC’
DC X’00180000’
DC C’TEST OPTA OPTB OPTC ’
DC X’00240000’
DC C’PROFILE NOMSGID NOPROMPT’
DC X’00140000’
DC C’EXEC MYPROG LIST’

*

* THE TOTAL LENGTH OF THE IN-STORAGE LIST, INLIST, IS 100 DECIMAL
* BYTES.
*
* SET UP THE LIST OF STORAGE AMOUNTS REQUIRED. THE ADDRESS OF THIS
* LIST IS CODED AS THE LA= OPERAND ON THE GETMAIN MACRO INSTRUCTION.
*
REQUEST DC F’16’ SIXTEEN BYTES FOR THE LSD.

DC X’80’ END OF LIST INDICATOR
DC AL3(104) 100 BYTES FOR THE IN-STORAGE LIST

* SINCE THE GETMAIN MACRO REQUIRES
* THAT THE REQUEST BE DIVISIBLE BY
* 8, WE REQUEST 104 BYTES.
*

* SET ASIDE 2 FULLWORDS TO RECEIVE THE ADDRESS RETURNED BY THE GETMAIN
* MACRO INSTRUCTION.
*
ANSWER DC 2F’0’
*
STCKLST STACK MF=L THIS LIST FORM OF THE STACK
* MACRO INSTRUCTION PROVIDES SPACE
* FOR THE STACK PARAMETER BLOCK
*
ECBADS DC F’0’ EVENT CONTROL BLOCK
IOPLADS DC 4F’0’ INPUT/OUTPUT PARAMETER LIST

IKJCPPL DSECT FOR THE COMMAND PROCESSOR
* PARAMETER LIST

END

Figure 86. Example of STACK Specifying an In-storage List as the Input Source (Part 2 of 2)

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 217

Using GETLINE to Get a Line of Input
Use the GETLINE macro instruction to obtain all input lines other than commands,
subcommands, and prompt message responses. Commands, subcommands, and
prompt message responses should be obtained with the PUTGET macro
instruction.

* Instructions
MAINLINE DS OH

USING CPPL,R1
L R10,CPPLUPT
ST R10,UPTP Store caller UPT pointer in

* dynamic area
L R10,CPPLPSCB
ST R10,PSCBP Store caller PSCB pointer in

* dynamic area
L R10,CPPLECT
ST R10,ECTP Store caller ECT pointer in

* dynamic area

* Create a new ECT *

LA R10,STCKLSTD
ST R10,STPBPTR Basing for the STPB mapping
USING STPB,R10
L R2,UPTP R2 points to UPT for STACK macro
L R3,ECTP R3 points to ECT for STACK macro
XC ECBSTCK,ECBSTCK Clear fullword containing ECB
LA R4,ECBSTCK R4 points to ECB for STACK macro
L R14,STCKLST1L Move the
BCTR R14,0 static copy of
EX R14,MVCTARGT STACK to the dynamic copy
LA R6,STCKLSTD R6 points to dynamic copy of

* STACK
STACK PARM=(R6),UPT=(R2),ECT=(R3),ECB=(R4), +

ENVIRON=CREATE, +
MF=(E,STCKIOPL)

L R9,STPBECTA
ST R9,ECTP Store new ECT pointer in

* dynamic area
DROP R10

* Static Storage Declarations
STCKLST1 STACK MF=L
STCKLST1L DC A(*-STCKLST1)
MVCTARGT MVC STCKLSTD(0),STCKLST1

* Dynamic Storage Declarations
UPTP DS AL4 Address of the UPT
PSCBP DS AL4 Address of the PSCB
ECTP DS AL4 Address of the ECT
STPBPTR DS AL4 Pointer to STACK parameter block
STCKLSTD STACK MF=L Dynamic form of STACK

DS OF Reach a fullword boundary for ECB
ECBSTCK DS BL32 STACK ECB

* Control Block Mappings
IKJCPPL CPPL mapping
IKJSTPB STACK Parameter Block mapping

Figure 87. Example of STACK Creating a New TSO/E I/O Environment

Using the I/O Service Routine Macro Instructions

218 z/OS V1R4.0 TSO/E Programming Services

When you issue a GETLINE macro instruction, the GETLINE service routine obtains
a line of input from either:
v The terminal or the REXX data stack
v An in-storage list (including a command procedure)

The processing of the input line varies according to several factors. Included in
these factors are the source of input, and the options you specify for logical or
physical processing of the input line. The GETLINE service routine determines the
type of processing to be performed from the operands coded on the GETLINE
macro instruction, and returns a line of input.

The sections that follow describe the following topics:
v The list and execute forms of the GETLINE macro instruction
v The sources of input
v The GETLINE parameter block
v The input line format
v Return codes from GETLINE

The List Form of the GETLINE Macro Instruction
The list form of the GETLINE macro instruction builds and initializes a GETLINE
parameter block (GTPB), according to the operands you specify in the GETLINE
macro. The GETLINE parameter block indicates to the GETLINE service routine
which functions you want performed.

In the list form of the macro instruction, only
is required. The other operands and their sublists are optional because they can be

supplied by the execute form of the macro instruction, or automatically supplied if
you want the default values.

The operands you specify in the list form of the GETLINE macro instruction set up
control information used by the GETLINE service routine. The INPUT and
TERMGET operands set bits in the GETLINE parameter block to indicate to the
GETLINE service routine which options you want performed.

Figure 88 shows the list form of the GETLINE macro instruction; each of the
operands is explained following the figure.

INPUT=
indicates that an input line is to be obtained. This input line is further described
by the INPUT sublist operands ISTACK, TERM, LOGICAL, and PHYSICAL.
ISTACK and LOGICAL are the default values.

GETLINE MF=L

[symbol] GETLINE [INPUT=({ISTACK} {,LOGICAL})]
[{TERM } {,PHYSICAL}]

[,TERMGET=({EDIT} {,WAIT })]
[{ASIS} {,NOWAIT}],MF=L

[,SUBSTACK=({NO })]
[{YES}]

Figure 88. The List Form of the GETLINE Macro Instruction

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 219

ISTACK | TERM

ISTACK
Obtain an input line from the currently active input source indicated by
the input stack.

TERM
indicates to GETLINE that the current source of input, indicated by the
top element of the input stack, is to be ignored. Input is to be returned
from the REXX data stack (if elements exist), from a CLIST
DATA-ENDDATA group, or from the terminal. For more information
about how GETLINE determines the source of input, refer to “Sources
of Input” on page 224.

LOGICAL | PHYSICAL

LOGICAL
The input line to be obtained is a logical line; the GETLINE service
routine is to perform logical line processing.

PHYSICAL
The input line to be obtained is a physical line. The GETLINE service
routine need not inspect the input line.

Note: If the input line you are requesting is a logical line coming from
the input source indicated by the input stack, you need not code
the INPUT operand or its sub-list operands. The input line
description defaults to ISTACK, LOGICAL.

TERMGET=
specifies the options requested. The options are EDIT or ASIS, and WAIT or
NOWAIT. The default values are EDIT and WAIT.

EDIT | ASIS

EDIT
specifies that in addition to minimal editing (see ASIS), the buffer is to
be padded with trailing blanks.

ASIS
specifies that minimal editing is to be done as follows:
v Transmission control characters are removed.
v The line of input is translated from terminal code to EBCDIC.
v Line-deletion and character-deletion editing is performed.
v Line feed and carrier return characters, if present, are removed.

No line continuation checking is done.

WAIT | NOWAIT

WAIT
specifies that control is to be returned to the routine that issued the
GETLINE macro instruction only after an input message has been read.

NOWAIT
specifies that control is to be returned to the routine that issued the
GETLINE macro instruction whether a line of input is available. If a line
of input is not available, a return code of 12 decimal is returned in
register 15 to the command processor.

MF=L
indicates that this is the list form of the macro instruction.

Using the I/O Service Routine Macro Instructions

220 z/OS V1R4.0 TSO/E Programming Services

SUBSTACK=
SUBSTACK=YES indicates that normal stack operations continue until
GETLINE reaches a barrier element. GETLINE then passes the caller a return
code indicating that a barrier element was reached. The barrier element
remains on the stack until the caller explicitly deletes it. SUBSTACK=NO is the
default value and indicates that the barrier feature is not used.

Note: If your command processor issues GETLINE without SUBSTACK=YES,
and a barrier element exists on the input stack, normal stack operations
continue until GETLINE reaches a barrier element. In foreground mode,
GETLINE then treats the barrier element as a terminal element. In
background mode, GETLINE passes an end-of-data return code to the
caller. Processing continues in this manner until your command
processor explicitly deletes the barrier element.

The Execute Form of the GETLINE Macro Instruction
Use the execute form of the GETLINE macro instruction to perform the following
functions:

v Set up the input/output parameter list (IOPL).

v Initialize those fields of the GETLINE parameter block (GTPB) that are not
initialized by the list form of the macro instruction, or to modify those fields
already initialized.

v Pass control to the GETLINE service routine, which gets the line of input.

In the execute form of the GETLINE macro instruction only the following is required:

The PARM, UPT, ECT, and ECB operands are not required if you have built your
IOPL in your own code. The other operands and their sublists are optional because
you can supply them in the list form of the macro instruction or in a previous
execution of GETLINE, or because you are using the default values.

The operands you specify in the execute form of the GETLINE macro instruction
are used to set up control information used by the GETLINE service routine. You
can use the PARM, UPT, ECT, and ECB operands of the GETLINE macro
instruction to build, complete, or modify an IOPL. The INPUT and TERMGET
operands set bits in the GETLINE parameter block. These bit settings indicate to
the GETLINE service routine which options you want performed.

Figure 89 shows the execute form of the GETLINE macro instruction; each of the
operands is explained following the figure.

GETLINE MF=(E,{list address})
{ (1) }

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 221

PARM=parameter address
specifies the address of the 2-word GETLINE parameter block (GTPB). It can
be the address of a list form GETLINE macro instruction. The address is any
address valid in an RX instruction, or the number of one of the general registers
2–12 enclosed in parentheses. This address will be placed in the input/output
parameter list (IOPL).

UPT=upt address
specifies the address of the user profile table (UPT). You can obtain this
address from the command processor parameter list pointed to by register 1
when the command processor is attached by the terminal monitor program. The
address can be any address valid in an RX instruction or the number of one of
the general registers 2–12 enclosed in parentheses. This address will be placed
in the IOPL.

ECT=ect address
specifies the address of the environment control table (ECT). You can obtain
this address from the CPPL pointed to by register 1 when the command
processor is attached by the terminal monitor program. The address can be any
address valid in an RX instruction or the number of one of the general registers
2–12 enclosed in parentheses. This address will be placed into the IOPL.

ECB=ecb address
specifies the address of an event control block (ECB). You must provide a
one-word event control block and pass its address to the GETLINE service
routine by placing it into the IOPL. The address can be any address valid in an
RX instruction or the number of one of the general registers 2–12 enclosed in
parentheses. This address will be placed into the IOPL.

INPUT=
indicates that an input line is to be obtained. This input line is further described
by the INPUT sublist operands ISTACK, TERM, LOGICAL, and PHYSICAL.
ISTACK and LOGICAL are the default values.

ISTACK | TERM

ISTACK
obtains an input line from the currently active input source indicated by
the input stack.

TERM
indicates to GETLINE that the current source of input, indicated by the
top element of the input stack, is to be ignored. Input is to be returned

[symbol] GETLINE [PARM=parameter address] [,UPT=upt address)
[,ECT=ect address][,ECB=ecb address)

[,INPUT=({ISTACK} {,LOGICAL })]
[{TERM } {,PHYSICAL}]

[,TERMGET=({ EDIT} {,WAIT })]
[{ ASIS} {,NOWAIT}]

[,ENTRY={entry address}],MF=(E,{list address })
[{ (15) }] { (1) }

[,SUBSTACK=({ NO })]
[{ YES}]

Figure 89. The Execute Form of the GETLINE Macro Instruction

Using the I/O Service Routine Macro Instructions

222 z/OS V1R4.0 TSO/E Programming Services

from the REXX data stack (if elements exist), from a CLIST
DATA-ENDDATA group, or from the terminal. For more information
about how GETLINE determines the source of input, refer to “Sources
of Input” on page 224.

LOGICAL | PHYSICAL

LOGICAL
The input line to be obtained is a logical line; the GETLINE service
routine is to perform logical line processing. A logical line is a line that
has additional processing performed by the GETLINE service routine
before it is returned to the requesting program.

PHYSICAL
The input line to be obtained is a physical line. A physical line is a line
that is returned to the requesting program exactly as it is received from
the input source.

Note: If the input line you are requesting is a logical line coming from
the input source indicated by the input stack, you do not need to
code the INPUT operand or its sublist operands. The input line
description defaults to ISTACK, LOGICAL.

TERMGET=
specifies the options requested. The options are EDIT or ASIS, and WAIT or
NOWAIT. The default values are EDIT and WAIT.

EDIT | ASIS

EDIT
specifies that in addition to minimal editing (see ASIS), the input buffer
is to be padded with trailing blanks. All station control characters are
suppressed from the data.

ASIS
specifies that minimal editing is to be done. The following editing
functions will be performed:
v Station control characters remain in the data.
v The line of input is translated from terminal code to EBCDIC.
v Line-deletion and character-deletion editing are performed.
v Line feed and carrier return characters, if present, are removed.

No line continuation checking is done.

WAIT | NOWAIT

WAIT
specifies that control is to be returned to the routine that issued the
GETLINE macro instruction, only after an input message has been
read.

NOWAIT
specifies that control is to be returned to the routine that issued the
GETLINE macro instruction whether a line of input is available. If a line
of input is not available, a return code of 12 decimal is returned in
register 15 to the command processor.

ENTRY=entry address | (15)
specifies the entry point of the GETLINE service routine. The address can be
any address valid in an RX instruction or (15) if the entry point address has

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 223

been loaded into general register 15. The ENTRY operand need not be coded
in the macro instruction. If it is not, a LINK macro instruction will be generated
to invoke the I/O service routine.

MF=E
indicates that this is the execute form of the macro instruction.

listaddr | (1)
The address of the four-word input/output parameter list (IOPL). This can be
a completed IOPL that you have built, or it can be 4 words of declared
storage that will be filled from the PARM, UPT, ECB, and ECT operands of
this execute form of the GETLINE macro instruction. The address is any
address valid in an RX instruction or (1) if the parameter list address has
been loaded into general register 1.

SUBSTACK=
SUBSTACK=YES indicates that normal stack operations continue until
GETLINE reaches a barrier element. GETLINE then passes the caller a return
code indicating that a barrier element was reached. The barrier element
remains on the stack until your command processor explicitly deletes it.
SUBSTACK=NO is the default value and indicates that the barrier feature is not
used.

Note: If your command processor issues GETLINE without SUBSTACK=YES,
and a barrier element exists on the input stack, normal stack operations
continue until GETLINE reaches a barrier element. In foreground mode,
GETLINE then treats the barrier element as a terminal element. In
background mode, GETLINE passes an end-of-data return code to the
caller. Processing continues in this manner until the caller explicitly
deletes the barrier element.

Sources of Input
The GETLINE service routine obtains a line of input from either:
v The terminal or REXX data stack
v The input source described by the topmost element of the input stack

A command processor can determine the source of input with which GETLINE will
satisfy an input request according to the following procedure:

1. If you specify GETLINE INPUT=TERM, the input is either from the REXX data
stack (if elements exist on the REXX data stack), or the terminal. To determine
if elements exist on the REXX data stack, use step 3 on page 225.

2. Before you specify GETLINE INPUT=ISTACK, first invoke the STACK macro
with the INQUIRE=TYPE operand to determine the type of element on the top
of the input stack.

a. If the top element of the input stack is an in-storage list (for example, a
command procedure), the source indicated by the in-storage list is the
current source of input.

b. If the top element of the input stack is a barrier element that is not a
NONEST barrier element (indicated by a decimal return code of 44 from
STACK), the end of the substack has been reached. GETLINE returns a
return code or considers the barrier a terminal element, depending on what
was specified on the SUBSTACK operand. For more information on the
SUBSTACK operand, see page 224.

c. If the top element of the input stack is a NONEST barrier element (indicated
by a decimal return code 80 from STACK) and if there are elements on the
REXX data stack, the current source of input is the REXX data stack.

Using the I/O Service Routine Macro Instructions

224 z/OS V1R4.0 TSO/E Programming Services

Otherwise, the NONEST barrier acts as a BARRIER=* element as described
in step 2b on page 224. To determine if elements exist on the REXX data
stack, use step 3.

d. If the top element of the input stack is a terminal element, the input is either
from the REXX data stack (if elements exist on the REXX data stack), or the
terminal. To determine if elements exist on the REXX data stack, use step 3.

3. To determine if elements exist on the REXX data stack, invoke the REXX data
stack replaceable routine, IRXSTK, with the QUEUED function. If the number of
queued elements is greater than zero, elements exist on the REXX data stack.

Note: If the current source of input might be the REXX data stack, and if the
command processor is invoked by a CLIST and a CLIST
DATA-ENDDATA group exists, input is from the CLIST DATA-ENDDATA
group.

The REXX Data Stack
A command processor invoked by a REXX exec can receive input through the
REXX data stack using GETLINE. GETLINE selects the source of input depending
on:
v The value of the INPUT parameter, stated explicitly or by default
v Whether elements are present on the data stack
v The state of the input stack when the command processor invokes GETLINE.

When you specify GETLINE INPUT=ISTACK, either explicitly or by default,
GETLINE obtains input from the REXX data stack first, if there are elements on the
REXX data stack and if the topmost element on the input stack is either a terminal
element or a NONEST-type barrier element. A NONEST-type barrier element is
indicated by a return code of decimal 80 from the STACK service routine. When
GETLINE has processed all lines of input on the data stack, it then obtains input
from the terminal.

When the topmost element on the input stack is an in-storage list element (including
a command procedure), GETLINE obtains input from the source indicated by the
in-storage list element. This ensures compatibility with applications that are not
sensitive to the REXX data stack (for example, a CLIST invoked from within a
REXX exec).

When you specify GETLINE INPUT=TERM, GETLINE obtains input from the REXX
data stack first if there are elements on the REXX data stack. If there are no
elements on the REXX data stack, GETLINE returns input from a CLIST
DATA-ENDDATA group, if present, or from the terminal.

The Input Stack
There are two sources of input: the terminal and an in-storage list (including a
command procedure).

Terminal: GETLINE obtains input from the terminal under either of the following
conditions:

v You specify GETLINE with the TERM operand and the GETLINE service routine
determined that there are no elements on the REXX data stack or the REXX
data stack is not available for the current environment.

v You specify GETLINE with the ISTACK operand and the current source of input
is either a terminal element or a NONEST-type barrier element, and the current
data stack is either empty or not available. STACK indicates a NONEST-type
barrier element with a return code of decimal 80.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 225

When GETLINE obtains input from the terminal, you can process the input either as
a logical line by including the LOGICAL operand or as a physical line by including
the PHYSICAL operand. LOGICAL is the default value.

v Physical Line Processing: A physical line is a line that is returned to the
requesting program exactly as it is received from the input source. The contents
of the line are not inspected by the GETLINE service routine.

v Logical Line Processing: A logical line is a line that has undergone additional
processing by the GETLINE service routine before it is returned to the requesting
program. If logical line processing is requested, each line returned to the routine
that issued the GETLINE is inspected to see if the last character of the line is a
continuation mark (a dash ‘-’ or a plus ‘+’). A continuation mark signals GETLINE
to get another line from the terminal and to concatenate that line with the line
previously obtained. The continuation mark is overlaid with the first character of
the new line. However, when ASIS is specified, GETLINE does not recognize line
continuation.

In-Storage List: If the top element of the input stack is an in-storage list, and you
do not specify TERM in the GETLINE macro instruction, the line will be obtained
from the in-storage list. The in-storage list is a resident data set that has been
previously made available to the I/O service routines with the STACK service
routine.

The STACK service routine saves the addressing mode of the program that invoked
it. Address values will be treated as 24-bit or 31-bit addressing mode depending on
the original issuer of STACK for that element.

No logical line processing is performed on the lines because it is assumed that
each line in the in-storage list is a logical line. It is also assumed that no single
record has a length greater than 256 bytes.

End of Data Processing
If you issue a GETLINE macro against an in-storage list from which all the records
have already been read, GETLINE senses an end of data (EOD) condition.
GETLINE deletes the top element from the input stack and passes a return code of
16 in register 15. Return code 16 indicates that no line of input has been returned
by the GETLINE service routine. You can use this EOD code (16) as an indication
that all input from a particular source has been exhausted and no more GETLINE
macro instructions should be issued against this input source.

If you reissue a GETLINE macro instruction against the input stack after a return
code of 16, a record will be returned from the next input source indicated by the
input stack. You can identify the source of this record by the return code (0 =
terminal, 4 = in-storage). See “Return Codes from GETLINE” on page 229 for a list
of the return codes.

Building the GETLINE Parameter Block
When the list form of the GETLINE macro instruction expands, it builds a two word
GETLINE parameter block (GTPB). The list form of the macro instruction initializes
this GTPB according to the operands you have coded in the macro instruction. This
initialized block, which you can later modify with the execute form of the macro
instruction, indicates to the GETLINE service routine the function you want
performed.

You must supply the address of the GTPB to the execute form of the GETLINE
macro instruction. For non-reentrant programs you can do this simply by placing a

Using the I/O Service Routine Macro Instructions

226 z/OS V1R4.0 TSO/E Programming Services

symbolic name in the symbol field of the list form of the macro instruction, and
passing this symbolic name to the execute form of the macro instruction as the
PARM value. The GETLINE parameter block is defined by the IKJGTPB DSECT,
which is provided in SYS1.MACLIB. Table 60 describes the contents of the GTPB.

Table 60. The GETLINE Parameter Block

Number of
Bytes

Field Name Contents or Meaning

2 Control flags. These bits describe the requested input
line to the GETLINE service routine.

Byte 1:
..0. The input line is a logical line.
..1. The input line is a physical line.
...0 The input line is to be obtained from

the current input source indicated by
the input stack.

...1 The input line is to be obtained from
the terminal.

xx.. xxxx Reserved bits.

Byte 2:
1... SUBSTACK=YES is specified.
.xxx xxxx Reserved.

2 GET options field. These bits indicate to the GETLINE
service routine which of the options you want to use for
GET.

Byte 1:
1... Always set to 1.
...0 WAIT processing has been requested.

Control will be returned to the issuer
of GETLINE only after an input
message has been read.

...1 NOWAIT processing has been
requested. Control will be returned to
the issuer of the GETLINE macro
instruction whether a line of input is
available.

.... ..00 EDIT processing has been requested.
In addition to the editing provided by
ASIS processing, the input buffer is to
be filled out with trailing blanks to the
next doubleword boundary.

.... ..01 ASIS processing has been requested.
(See the ASIS operand of the
GETLINE macro instruction
description.)

.xx. xx.. Reserved bits.

Byte 2:
xxxx xxxx Reserved.

4 GTPBIBUF The address of the input buffer. The GETLINE service
routine fills this field with the address of the input buffer
in which the input line has been placed.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 227

Input Line Format - The Input Buffer
The second word of the GETLINE parameter block contains zeros until the
GETLINE service routine returns a line of input. The service routine places the
requested input line into an input buffer beginning on a doubleword boundary
located in subpool 1. It then places the address of this input buffer into the second
word of the GTPB.

Note: The application that invoked GETLINE should release the input buffer’s
storage to prevent the accumulation of unused storage. The application can
free the storage with the FREEMAIN macro instruction after the application
has processed or copied an input line.

For commands not running on a command invocation platform:

v Input buffer storage returned by GETLINE is automatically freed when the
command processor relinquishes control.

v The application should free the input buffer’s storage after it uses the storage.
This prevents unused storage from accumulating while the application is running.

For commands running on a command invocation platform:

v Input buffer storage returned by GETLINE is not freed when the command
processor relinquishes control.

v It is important to free the input buffer’s storage after use to prevent the unused
storage from accumulating during a TSO/E session.

v The storage cannot be freed after the application ends because the storage
addresses are not known to new applications.

For more information on commands that are eligible to execute on a command
invocation platform, see z/OS TSO/E Customization.

Regardless of the source of input, an in-storage list or the terminal, the input line
returned to the command processor by the GETLINE service routine is in a
standard format. All input lines are in a variable-length record format with a fullword
header followed by the text returned by GETLINE. Figure 90 shows the format of
the input buffer returned by the GETLINE service routine.

The two-byte length field contains the length of the input line including the header
length (4 bytes). You can use the length field to determine the length of the input
line to be processed, and later, to free the input buffer with the R-form of the
FREEMAIN macro instruction.

The two-byte offset field is always set to zero on return from the GETLINE service
routine.

Length Offset Text

2 Bytes 2 Bytes

Length

Figure 90. Format of the GETLINE Input Buffer

Using the I/O Service Routine Macro Instructions

228 z/OS V1R4.0 TSO/E Programming Services

Figure 91 on page 230 shows the GETLINE control block structure after the
GETLINE service routine has returned an input line.

Return Codes from GETLINE
When the GETLINE service routine returns to the program that invoked returns one
of the following codes in general register 15:

Table 61. Return Codes from the GETLINE Service Routine

Return Code
Dec(Hex)

Meaning

0(0) GETLINE has completed successfully. The line was obtained from either
the REXX data stack, a command procedure DATA-ENDDATA group, or
the terminal.

4(4) GETLINE has completed successfully. The line was obtained from an
in-storage list or command procedure.

8(8) The GETLINE function was not completed. An attention interruption
occurred during GETLINE processing, and the user’s attention routine
turned on the completion bit in the communications ECB.

12(C) The NOWAIT option was specified and no line was obtained.

16(10) An EOD condition occurred. An attempt was made to get a line from an
in-storage list but the list had been exhausted.

20(14) Incorrect parameters were passed to the GETLINE service routine.

24(18) GETLINE was unable to obtain sufficient storage to satisfy the request
for input buffers.

28(1C) The terminal has been disconnected.

32(20) An attempt to obtain a line from a command procedure DATA-ENDDATA
group failed.

40(28) A barrier element is on the top of the stack and SUBSTACK=YES was
specified. No command buffer is passed back.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 229

Examples Using GETLINE
Figure 92 on page 231 is an example of the code required to execute the GETLINE
macro instruction. In this example two execute forms of the GETLINE macro
instruction are issued. The first one builds the IOPL, and uses the parameters
initialized by the list form of the macro instruction to get a physical line from the
terminal with the NOWAIT and ASIS options.

In the second execution of the GETLINE macro instruction, the same IOPL is used,
but the GETLINE options are changed explicitly from TERM to ISTACK and from
NOWAIT to WAIT, and by default from PHYSICAL to LOGICAL and from ASIS to
EDIT.

Notice also that the IKJCPPL DSECT is used to map the command processor
parameter list, and the IKJGTPB DSECT is used to map the GETLINE parameter
block.

Terminal

Monitor

Program

Command

Processor

Reg. 1 Reg. 1

CPPL IOPL

ATTACH LINK

GTPB

Input Buffer

GETLINE

Service

Routine

Data

Figure 91. GETLINE Control Blocks - Input Line Returned

Using the I/O Service Routine Macro Instructions

230 z/OS V1R4.0 TSO/E Programming Services

* ON ENTRY FROM THE TMP, REGISTER 1 CONTAINS A POINTER TO THE COMMAND
* PROCESSOR PARAMETER LIST.
*
* SET UP ADDRESSABILITY
* SAVE AREA CHAINING
*

LR 2,1 SAVE THE ADDRESS OF THE CPPL.
USING CPPL,2 ADDRESSABILITY FOR THE CPPL

*
* ISSUE AN EXECUTE FORM OF THE GETLINE MACRO INSTRUCTION TO GET A
* PHYSICAL LINE FROM THE TERMINAL. THIS EXECUTE FORM BUILDS AND
* INITIALIZES THE INPUT/OUTPUT PARAMETER LIST.
*

L 3,CPPLUPT PLACE THE ADDRESS OF THE UPT
* INTO A REGISTER.

L 4,CPPLECT PLACE THE ADDRESS OF THE ECT
* INTO A REGISTER.

GETLINE PARM=GETBLOCK,UPT=(3),ECT=(4),ECB=ECBADS, X
MF=(E,IOPLADS)

*
* THIS EXECUTE FORM OF THE GETLINE MACRO INSTRUCTION USES THE TERM,
* PHYSICAL, ASIS, AND NOWAIT OPERANDS CODED IN THE LIST FORM OF
* THE GETLINE MACRO INSTRUCTION.
*
* GET THE ADDRESS OF THE RETURNED LINE FROM THE GETLINE PARAMETER
* BLOCK.
*

LA 6,GETBLOCK SET UP ADDRESSABILITY FOR
USING GTPB,6 THE GTPB.
L 5,GTPBIBUF GET THE ADDRESS OF THE LINE.

*
* PROCESS THE LINE
*
* ISSUE ANOTHER EXECUTE FORM OF THE GETLINE MACRO INSTRUCTION.
* THIS ONE GETS A LINE FROM THE CURRENTLY ACTIVE INPUT SOURCE - IT
* USES THE IOPL CONSTRUCTED BY THE FIRST EXECUTION OF THE GETLINE
* MACRO INSTRUCTION AND MODIFIES THE GTPB CREATED BY THE LIST FORM
* OF THE GETLINE MACRO INSTRUCTION.

GETLINE INPUT=(ISTACK),TERMGET=(WAIT),MF=(E,IOPLADS)
*
* THIS EXECUTE FORM OF THE GETLINE MACRO INSTRUCTION CHANGES TERM
* TO ISTACK, DEFAULTS TO LOGICAL, CHANGES NOWAIT TO WAIT, AND TAKES
* THE DEFAULT VALUE EDIT.
*
*

Figure 92. Example Showing Two Executions of GETLINE (Part 1 of 2)

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 231

Using PUTLINE to Put a Line Out to the Terminal
Use the PUTLINE macro instruction to prepare a line and write it to the terminal.
Use PUTLINE to put out lines that do not require immediate response from the
terminal; use PUTGET to put out lines that require immediate response. The types
of lines which do not require response from the terminal are defined as data lines
and informational message lines.

The PUTLINE service routine prepares a line for output according to the operands
you code into the list and execute forms of the PUTLINE macro instruction. The
operands of the macro instruction indicate to the PUTLINE service routine the type
of line being put out (data line or informational message line), the type of
processing to be performed on the line (format only, second level informational
message chaining, text insertion), and the options requested.

This topic describes:
v The list and execute forms of the PUTLINE macro instruction
v The PUTLINE parameter block
v The types and formats of output lines
v PUTLINE message processing
v Return codes from PUTLINE

The List Form of the PUTLINE Macro Instruction
The list form of the PUTLINE macro instruction builds and initializes a PUTLINE
parameter block (PTPB), according to the operands you specify in the macro
instruction. The PUTLINE parameter block indicates to the PUTLINE service routine
which functions you want performed.

In the list form of the macro instruction, only

* GET THE ADDRESS OF THE RETURNED BLOCK FROM THE GETLINE PARAMETER
* BLOCK.
*

L 5,GTPBIBUF
*
* PROCESS THE LINE
* STORAGE DECLARATIONS
IOPLADS DC 4F’0’ SPACE FOR THE INPUT/OUTPUT
* PARAMETER LIST

* THE LIST FORM OF THE GETLINE MACRO INSTRUCTION EXPANDS INTO AN
* INITIALIZED GTPB.
*

GETLINE INPUT=(TERM,PHYSICAL),TERMGET=(ASIS,NOWAIT),MF=L
ECBADS DC F’0’ SPACE FOR AN EVENT CONTROL BLOCK.

IKJCPPL DSECT FOR THE COMMAND PROCESSOR
* PARAMETER LIST. THIS EXPANDS WITH
* THE SYMBOLIC ADDRESS, CPPL.

IKJGTPB DSECT FOR THE GETLINE PARAMETER
* BLOCK. THIS EXPANDS WITH THE
* SYMBOLIC ADDRESS GTPB.

END

Figure 92. Example Showing Two Executions of GETLINE (Part 2 of 2)

Using the I/O Service Routine Macro Instructions

232 z/OS V1R4.0 TSO/E Programming Services

is required. The output line address is required for each issuance of the PUTLINE
macro instruction, but it can be supplied in the execute form of the macro
instruction.

The other operands and sublists are optional because you can supply them in the
execute form of the macro instruction, or they will be supplied by the macro
expansion if you want the default values. Figure 93 shows the list form of the
PUTLINE macro instruction each of the operands is explained following the figure.

OUTPUT=output address
indicates that an output line is to be written to the terminal. The type of line
provided and the processing to be performed on that line by the PUTLINE
service routine are described by the OUTPUT sublist operands TERM,
FORMAT, SINGLE, MULTI, MULTLIN, INFOR, DATA, NOTRANS, and TRANS.
The default values are TERM, SINGLE, INFOR, and NOTRANS.

The output address differs depending upon whether the output line is an
informational message or a data line. For DATA requests, it is the address of
the beginning (the fullword header) of a data record to be written to the
terminal. For informational message requests (INFOR), it is the address of the
output line descriptor. The output line descriptor (OLD) describes the message
to be put out, and contains the address of the beginning (the fullword header) of
the message or messages to be written to the terminal by the PUTLINE service
routine.

When a barrier element is the top stack element, and PUTLINE is operating in
the foreground, PUTLINE displays the output at the terminal; if PUTLINE is
operating in the background, it places the output in the SYSTSOUT data set.

TERM | FORMAT

TERM
Write the line out to the terminal.

FORMAT
The output request is only to format a single message and not to put
the message out to the terminal. The PUTLINE service routine returns
the address of the formatted line by placing it in the third word of the
PUTLINE parameter block.

SINGLE | MULTLVL | MULTLIN

PUTLINE MF=L

[symbol] PUTLINE [{,SINGLE }]
[OUTPUT=(output address {,TERM } {,MULTLVL} {,INFOR} {,NOTRANS})]
[{FORMAT} {,MULTLIN} {,DATA } {,TRANS }]

[{EDIT }]
[,TERMPUT=({ASIS } {,WAIT } {,NOHOLD} {,NOBREAK})]
[{CONTROL} {,NOWAIT} {,HOLD } {,BREAKIN}]

,MF=L

Figure 93. The List Form of the PUTLINE Macro Instruction

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 233

SINGLE
The output line is a single line.

MULTLVL
The output message consists of multiple levels. INFOR must be
specified.

MULTLIN
The output data consists of multiple lines. DATA must be specified.

INFOR | DATA

INFOR
The output line is an informational message.

DATA
The output line is a data line.

NOTRANS | TRANS

NOTRANS
specifies that the output line is not to be translated.

TRANS
specifies that the output line is to be written in the language specified in
the user profile table (UPT). INFOR must be specified if TRANS is
specified.

Note: For more information about providing translated messages, see
“PUTLINE Message Line Processing” on page 250.

TERMPUT=
specifies the options requested. The options are EDIT, ASIS, or CONTROL,
WAIT or NOWAIT, NOHOLD or HOLD, and NOBREAK or BREAKIN. The
default values are EDIT, WAIT, NOHOLD, and NOBREAK.

EDIT | ASIS | CONTROL

EDIT
specifies that in addition to minimal editing (see ASIS), the following
functions are requested:

1. Any trailing blanks are removed before the line is written to the
terminal. If a blank line is sent, the terminal vertically spaces one
line.

2. Control characters are added to the end of the output line to
position the cursor to the beginning of the next line.

3. All terminal control characters (for example: bypass, restore,
horizontal tab, new line) are replaced with a printable character.
Backspace is an exception; see item 4 under ASIS.

ASIS
specifies that minimal editing is to be performed as follows:

1. The line of output is translated from EBCDIC to terminal code.
Incorrect characters are converted to a printable character to
prevent program-caused I/O errors. This does not mean that all
unprintable characters are eliminated. Restore, upper case, lower
case, bypass, and bell ring, for example, might be valid but
nonprinting characters at some terminals. (See CONTROL.)

2. Transmission control characters are added.

Using the I/O Service Routine Macro Instructions

234 z/OS V1R4.0 TSO/E Programming Services

3. EBCDIC NL, placed at the end of the message, indicates that the
cursor is to be returned at the end of the line. NL is replaced with
whatever is necessary for that particular terminal type to cause the
cursor to return. This NL processing occurs only if you specify ASIS,
and the NL is the last character in your message.

If you specify EDIT, NL is handled as described by item 3 under
EDIT.

If the NL is embedded in your message, a semicolon or colon may
be substituted for NL and sent to the terminal. No idle characters
are added (see item 6 below). This can cause overprinting,
particularly on terminals that require a line-feed character to position
the carrier on a new line.

4. If you have used backspace in your output message, but the
backspace character does not exist on the terminal type to which
the message is being routed, the PUTLINE service routine attempts
alternate methods to accomplish the backspace.

5. Control characters are added as needed to cause the message to
occur on several lines if the output line is longer than the terminal
line size.

6. Idle characters are sent at the end of each line to prevent typing as
the carrier returns.

CONTROL
specifies that the output line is composed of terminal control characters
and will not print or move the carrier on the terminal. This option should
be used for transmission of characters such as bypass, restore, or bell
ring.

WAIT | NOWAIT

WAIT
specifies that control will not be returned until the output line has been
placed into a terminal output buffer.

NOWAIT
specifies that control should be returned whether a terminal output
buffer is available. If no buffer is available, a return code of 8 (decimal)
will be returned in register 15 to the command processor.

NOHOLD | HOLD

NOHOLD
specifies that control is to be returned to the routine that issued the
PUTLINE macro instruction, and that the routine can continue
processing as soon as the output line has been placed on the output
queue.

HOLD
specifies that the routine that issued the PUTLINE macro instruction
cannot continue its processing until this output line has been put out to
the terminal or deleted.

NOBREAK | BREAKIN

NOBREAK
specifies that if the terminal user has started to enter input, the user is
not to be interrupted. The output message is placed on the output
queue to be printed after the terminal user has completed the line.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 235

BREAKIN
specifies that output has precedence over input. If the user at the
terminal is transmitting, transmission is interrupted, and this output line
is sent. Any data that was received before the interruption is kept and
displayed at the terminal following this output line.

MF=L
indicates that this is the list form of the macro instruction.

The Execute Form of the PUTLINE Macro Instruction
Use the execute form of the PUTLINE macro instruction to put a line or lines out to
the terminal, to chain second-level messages, and to format a line and return the
address of the formatted line to the code that issued the PUTLINE macro
instruction. Use the execute form of the PUTLINE macro instruction to perform the
following functions:

v Set up the input/output parameter list (IOPL).

v Initialize those fields of the PUTLINE parameter block (PTPB) not initialized by
the list form of the macro instruction, or to modify those fields already initialized.

v Pass control to the PUTLINE service routine.

The operands you specify in the execute form of the PUTLINE macro instruction set
up control information used by the PUTLINE service routine. You can use the
PARM, UPT, ECT, and ECB operands of the PUTLINE macro instruction to build,
complete or modify an IOPL. The OUTPUT and TERMPUT operands and their
sublist operands initialize the PUTLINE parameter block. The PUTLINE parameter
block is referred to by the PUTLINE service routine to determine which functions
you want PUTLINE to perform. The PUTLINE service routine makes use of the
IOPL and the PTPB to determine which of the PUTLINE functions you want
performed.

In the execute form of the PUTLINE macro instruction only the following is required:

The PARM, UPT, ECT, and ECB operands are not required if you have built your
IOPL in your own code.

The output line address is required for each issuance of the PUTLINE macro
instruction, but you can supply it in the list form of the macro instruction.

The other operands and sublists are optional because you can supply them in the
list form of the macro instruction or in a previous execute form, or because you
might want to use the default values which are automatically supplied by the macro
expansion itself.

Figure 94 on page 237 shows the execute form of the PUTLINE macro instruction;
each of the operands is explained following the figure.

PUTLINE MF=(E,{list address})
{ (1) }

Using the I/O Service Routine Macro Instructions

236 z/OS V1R4.0 TSO/E Programming Services

PARM=parameter address
specifies the address of the 3-word PUTLINE parameter block (PTPB). It can
be the address of a list form of the PUTLINE macro instruction. The address
can be any address valid in an RX instruction, or the number of one of the
general registers 2–12 enclosed in parentheses. This address will be placed
into the IOPL.

UPT=upt address
specifies the address of the user profile table (UPT). You can obtain this
address from the command processor parameter list (CPPL) pointed to by
register 1 when a command processor is attached by the terminal monitor
program. The address can be any address valid in an RX instruction or it can
be placed in one of the general registers 2–12 and the register number
enclosed in parentheses. This address will be placed into the IOPL.

ECT=ect address
specifies the address of the environment control table (ECT). You can obtain
this address from the CPPL pointed to by register 1 when a command
processor is attached by the terminal monitor program. The address can be any
address valid in an RX instruction or it can be placed in one of the general
registers 2–12 and the register number enclosed in parentheses. This address
will be placed into the IOPL.

ECB=ecb address
specifies the address of the event control block (ECB). You must provide a
one-word event control block and pass its address to the PUTLINE service
routine. This address will be placed into the IOPL. The address can be any
address valid in an RX instruction or it can be placed in one of the general
registers 2–12 and the register number enclosed in parentheses.

OUTPUT=output address
indicates that an output line is provided. The type of line provided and the
processing to be performed on that line by the PUTLINE service routine are
described by the OUTPUT sublist operands TERM, FORMAT, SINGLE
MULTLVL, MULTLIN, INFOR, DATA, NOTRANS, and TRANS. The default
values are TERM, SINGLE, INFOR, and NOTRANS.

The output address differs depending upon whether the output line is an
informational message or a data line. For DATA requests, it is the address of
the beginning (the fullword header) of a data record to be put out to the
terminal. For informational message requests (INFOR), it is the address of the
output line descriptor. The output line descriptor (OLD) describes the message

[symbol] PUTLINE [PARM=parameter address] [,UPT=upt address)
[,ECT=ect address] [,ECB=ecb address]

[OUTPUT=(output address {,TERM } {,SINGLE } {,INFOR} {,NOTRANS})]
[{FORMAT} {,MULTLVL} {,DATA } {,TRANS }]
[{,MULTLIN}]

[{EDIT }]
[,TERMPUT=({ASIS } {,WAIT } {,NOHOLD} {,NOBREAK})]
[{CONTROL} {,NOWAIT} {,HOLD } {,BREAKIN}]

[,ENTRY={entry address}] ,MF=(E {,list address})
[{ (15) }] { (1) }

Figure 94. The Execute Form of the PUTLINE Macro Instruction

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 237

to be put out, and contains the address of the beginning (the fullword header) of
the message or messages to be written to the terminal by the PUTLINE service
routine.

When a barrier element is the top stack element, and PUTLINE is operating in
the foreground, PUTLINE displays the output at the terminal; if PUTLINE is
operating in the background, it places the output in the SYSTSOUT data set.

TERM | FORMAT

TERM
Write the line out to the terminal.

FORMAT
The output request is only to format a single message and not to put
the messages out to the terminal. The PUTLINE service routine returns
the address of the formatted line by placing it in the third word of the
PUTLINE parameter block.

SINGLE | MULTLVL | MULTLIN

SINGLE
The output line is a single line.

MULTLVL
The output message consists of multiple levels. INFOR must be
specified.

MULTLIN
The output data consists of multiple lines. DATA must be specified.

INFOR | DATA

INFOR
The output line is an informational message.

DATA
The output line is a data line.

NOTRANS | TRANS

NOTRANS
specifies that the output line is not to be translated.

TRANS
specifies that the output line is to be written in the language specified in
the user profile table (UPT). INFOR must be specified if TRANS is
specified.

Note: For more information about providing translated messages, see
“PUTLINE Message Line Processing” on page 250.

TERMPUT=
specifies the options requested. The options are EDIT, ASIS, or CONTROL;
WAIT or NOWAIT; NOHOLD or HOLD; and NOBREAK or BREAKIN. The
default values are EDIT, WAIT, NOHOLD, and NOBREAK.

EDIT | ASIS | CONTROL

EDIT
specifies that in addition to minimal editing (see ASIS), the following
functions are requested:

Using the I/O Service Routine Macro Instructions

238 z/OS V1R4.0 TSO/E Programming Services

1. Any trailing blanks are removed before the line is written to the
terminal. If a blank line is sent, the terminal vertically spaces one
line.

2. Control characters are added to the end of the output line to
position the cursor to the beginning of the next line.

3. All terminal control characters (for example: bypass, restore,
horizontal tab, new line) are replaced with a printable character.
Backspace is an exception; see item 4 under ASIS.

ASIS
specifies that minimal editing is to be performed as follows:

1. The line of output is translated from EBCDIC to terminal code.
Incorrect characters are converted to a printable character to
prevent program-caused I/O errors. This does not mean that all
unprintable characters are eliminated. Restore, uppercase,
lowercase, bypass, and bell ring, for example, might be valid but
nonprinting characters at some terminals. (See CONTROL.)

2. Transmission control characters are added.

3. EBCDIC NL, placed at the end of the message, indicates that the
cursor is to be returned at the end of the line. NL is replaced with
whatever is necessary for that particular terminal type to cause the
cursor to return. This NL processing occurs only if you specify ASIS,
and the NL is the last character in your message.

If you specify EDIT, NL is handled as described in 3 under EDIT.

If the NL is embedded in your message, a semicolon or colon may
be substituted for NL and sent to the terminal. No idle characters
are added (see item 6 below). This can cause overprinting,
particularly on terminals that require a line-feed character to position
the cursor on a new line.

4. If you have used backspace in your output message, but the
backspace character does not exist on the terminal type to which
the message is being routed, the PUTLINE service routine attempts
alternate methods to accomplish the backspace.

5. Control characters are added as needed to cause the message to
occur on several lines if the output line is longer than the terminal
line size.

6. Idle characters are sent at the end of each line to prevent typing as
the carrier returns.

CONTROL
specifies that the output line is composed of terminal control characters
and will not display or move the cursor on the terminal. This option
should be used for transmission of characters such as bypass, restore,
or bell ring.

WAIT | NOWAIT

WAIT
specifies that control will not be returned until the output line has been
placed into a terminal output buffer.

NOWAIT
specifies that control should be returned whether or not a terminal
output buffer is available. If no buffer is available, a return code of 8 is
returned in register 15.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 239

NOHOLD | HOLD

NOHOLD
specifies that control is returned to the routine that issued the PUTLINE
macro instruction, and it can continue processing, as soon as the output
line has been placed on the output queue.

HOLD
specifies that the module that issued the PUTLINE macro instruction is
not to resume processing until the output line has been put out to the
terminal or deleted.

NOBREAK | BREAKIN

NOBREAK
specifies that if the terminal user has started to enter input, the user is
not to be interrupted. The output message is placed on the output
queue to be displayed after the terminal user has completed the line.

BREAKIN
specifies that output has precedence over input. If the user at the
terminal is transmitting, the user is interrupted, and the output line is
sent. Any data that was received before the interruption is kept and
displayed at the terminal following the output line.

ENTRY=entry address | (15)
specifies the entry point of the PUTLINE service routine. If ENTRY is omitted,
the PUTLINE macro expansion will generate a LINK macro instruction to invoke
the PUTLINE service routine. The address can be any address valid in an RX
instruction or (15) if the entry point address has been loaded into general
register 15.

MF=E
indicates that this is the execute form of the PUTLINE macro instruction.

list address | (1)
The address of the four-word input/output parameter list (IOPL). This can be a
completed IOPL that you have built, or 4 words of declared storage to be filled
from the PARM, UPT, ECT, and ECB operands of this execute form of the
PUTLINE macro instruction. The address is any address valid in an RX
instruction or (1) if the parameter list address has been loaded into general
register 1.

Building the PUTLINE Parameter Block
When the list form of the PUTLINE macro instruction expands, it builds a
three-word PUTLINE parameter block (PTPB). The list form of the macro instruction
initializes the PTPB according to the operands you have coded in the macro
instruction. The initialized block, which you can later modify with the execute form of
the PUTLINE macro instruction, indicates to the PUTLINE service routine the
function you want performed. You must supply the address of the PTPB to the
execute form of the PUTLINE macro instruction. Because the list form of the macro
instruction expands into a PTPB, all you need do is pass the address of the list
form of the macro instruction to the execute form as the PARM value.

The PUTLINE parameter block is defined by the IKJPTPB DSECT, which is
provided in SYS1.MACLIB. Table 62 on page 241 describes the contents of the
PTPB.

Using the I/O Service Routine Macro Instructions

240 z/OS V1R4.0 TSO/E Programming Services

Table 62. The PUTLINE Parameter Block

Number of
Bytes

Field Name Contents or Meaning

2 Control flags. These bits describe the output line to the
PUTLINE service routine.

Byte 1:
..0. The output line is a message.
..1. The output line is a data line.
...1 The output line is a single level or a

single line.
.... 1... The output is multiline.
.... .1.. The output is multilevel.
.... ..1. The output line is an informational

message.
xx.x xx.x Reserved bits.

Byte 2:
..1. The format only function was

requested.
.... ..1. The output line is to be written in the

language specified in the UPT.
xx.x xx.x Reserved bits.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 241

Table 62. The PUTLINE Parameter Block (continued)

Number of
Bytes

Field Name Contents or Meaning

2 PUT options field. These bits indicate to the PUTLINE
service routine which of the options you want to use for
PUT.

Byte 1:
0... Always set to 0.
...0 WAIT processing has been requested.

Control will be returned to the issuer
of PUTLINE only after the output line
has been placed into a terminal output
buffer.

...1 NOWAIT processing has been
requested. Control will be returned to
the issuer of PUTLINE whether or not
a terminal output buffer is available.

.... 0... NOHOLD processing has been
requested. The command processor
that issued the PUTLINE can resume
processing as soon as the output line
has been placed on the output queue.

.... 1... HOLD processing has been
requested. The command processor
that issued the PUTLINE is not to
resume processing until the output line
has been written to the terminal or
deleted.

.... .0.. NOBREAK processing has been
requested. The output line will be
printed only when the terminal user is
not entering a line.

.... .1.. BREAKIN processing has been
requested. The output line is to be
sent to the terminal immediately. If the
terminal user is entering a line, the
user is to be interrupted.

.... ..00 EDIT processing has been requested.

.... ..01 ASIS processing has been requested.

.... ..10 CONTROL processing has been
requested.

Byte 2: Reserved.
4 PTPBOPUT The address of the output line descriptor (OLD) if the

output line is a message. The address of the fullword
header preceding the data if the output line is a single
data line. The address of a forward-chain pointer
preceding the fullword data header, if the output is
multiline data.

4 PTPBFLN Address of the format only line. The PUTLINE service
routine places the address of the formatted line into this
field.

Types and Formats of Output Lines
There are two types of output lines processed by the PUTLINE service routine: data
lines and message lines.

Using the I/O Service Routine Macro Instructions

242 z/OS V1R4.0 TSO/E Programming Services

Use the OUTPUT sublist operands in the PUTLINE macro instruction to indicate to
the PUTLINE service routine which type of line you want processed (DATA,
INFOR), whether the output consists of one line, several lines, or several levels of
messages (SINGLE, MULTLIN, MULTLVL), whether the output line is to be written
in the language specified in the UPT (TRANS, NOTRANS), and whether the line is
to be written to the terminal (TERM), or formatted only (FORMAT).

Data Lines
A data line is the simplest type of output processed by the PUTLINE service
routine. It is simply a line of text to be written to the terminal. PUTLINE does not
format the line or process it in any way; it merely writes the line, as it appears, out
to the terminal. Use the DATA operand on the PUTLINE macro instruction to
indicate that the output line is a data line.

There are two kinds of data lines, single line data and multiline data; each is
handled differently by the PUTLINE service routine.

v Single Line Data: Single line data is one contiguous character string that
PUTLINE places out to the terminal as one logical line. If the line of data you
provide exceeds the terminal line length, the PUTLINE service routine segments
the line and puts it out as several terminal lines. PUTLINE accepts single line
data in the format shown in Figure 95.

You must precede your line of data with a 4-byte header field. The first two bytes
contain the length of the output line, including the header; the second two bytes
are reserved for offsets and are set to zero for data lines.

Pass the address of the output line to the PUTLINE service routine by coding the
beginning address of the four-byte header as the OUTPUT operand address in
either the list or the execute form of the macro instruction. When the macro
instruction expands, it places this data line address into the second word of the
PUTLINE parameter block.

Figure 97 on page 246 is an example of the code that could be used to write a
single line of data to the terminal using the PUTLINE macro instruction. Note that
the execute form of the PUTLINE macro instruction is used in this example to

PUTLINE OUTPUT = (output address,

Length Offset

2 bytes 2 bytes

Data

, SINGLE, DATA)

Length

Figure 95. PUTLINE Single Line Data Format

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 243

construct the input/output parameter list, and that the TERMPUT operands are
not coded in either the list or the execute form of the macro instruction; the
default values will be assumed by the PUTLINE service routine.

v Multiline Data: Multiline data is a chain of single lines. Each line of data is
processed by the PUTLINE service routine exactly as if it were single line data.
Each element of the chain, however, begins a new line to the terminal. By
specifying multiline data (MULTLIN) in the PUTLINE macro instruction, you can
put out several variable-length, non-contiguous lines at the terminal with one
execution of the macro instruction. PUTLINE accepts multiline data in a format
similar to that of single line data except that each line is prefaced with a fullword
forward chain pointer. Figure 96 shows the format of PUTLINE multiline data.

Each of the forward-chain pointers points to the next data line to be written to the
terminal. The forward-chain pointer in the last data line contains zeros. In the
case of multiline data, you pass the address of the output line to the PUTLINE
service routine by coding the beginning address of the first forward-chain pointer
as the OUTPUT operand address in either the list or the execute form of the
macro instruction. When the macro instruction expands, it places this multiline
data address into the second word of the PUTLINE parameter block.

Figure 98 on page 247 is an example of the code required to write multiple lines of
data to the terminal using the PUTLINE macro instruction.

Note that the programmer has built his own IOPL rather than build it with the
execute form of the PUTLINE macro instruction. Note also the use of the IOPL and
CPPL DSECTs (generated by the IKJIOPL and IKJCPPL macro instructions). These
provide an easy method of accessing the fields within the IOPL and the CPPL, and
they protect your code from changes made to the control blocks.

Pointer to next element

0 0 0 0 0 0 0 0

Pointer to next element

Length Offset

Length Offset

Length Offset Data

Data

Data

, MULTLIN, DATA)PUTLINE OUTPUT = (output address,

Length

Figure 96. PUTLINE Multiline Data Format

Using the I/O Service Routine Macro Instructions

244 z/OS V1R4.0 TSO/E Programming Services

Message Lines
If you code INFOR in the PUTLINE macro, the PUTLINE service routine writes the
information you supply as an informational message and provides additional
functions not applicable to data lines. An informational message is a line of output
from the program in control to the user at the terminal. It is used solely to pass
output to the terminal; no input from the terminal is required after an informational
message. For information about the additional functions that PUTLINE provides for
message lines, see “PUTLINE Message Line Processing” on page 250.

There are two types of informational messages processed by the PUTLINE service
routine: single-level messages and multilevel messages.

v Single-Level Messages: A single-level message is composed of one or more
message segments to be formatted and written to the terminal with one
execution of the PUTLINE macro instruction. Use the SINGLE operand on the
PUTLINE macro instruction to indicate that the output line is a single-level
message.

v Multilevel Messages: Multilevel messages are composed of one or more
message segments to be formatted and written to the terminal, and one or more
message segments to be formatted and placed on an internal chain in shared
subpool 78. This internal chain can either be put out to the terminal or purged by
a second execution of the PUTLINE macro instruction. Use the MULTLVL
operand on the PUTLINE macro instruction to indicate that a multilevel message
is to be written to the terminal.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 245

* ON ENTRY FROM THE TMP, REGISTER 1 CONTAINS A POINTER TO THE COMMAND
* PROCESSOR PARAMETER LIST (CPPL).
*
* SET UP ADDRESSABILITY
* SAVE AREA CHAINING
*

LR 2,1 SAVE THE ADDRESS OF THE CPPL.
USING CPPL,2 ADDRESSABILITY FOR THE CPPL
L 3,CPPLUPT PLACE THE ADDRESS IF THE UPT

* INTO A REGISTER
L 4,CPPLECT PLACE THE ADDRESS OF THE ECT

* INTO A REGISTER
* ISSUE THE EXECUTE FORM OF THE PUTLINE MACRO INSTRUCTION. USE IT
* TO WRITE A SINGLE LINE OF DATA TO THE TERMINAL AND TO BUILD THE
* IOPL. IT DOES NOT SPECIFY THE TERMPUT OPERANDS, AND THEREFORE
* PUTLINE WILL USE THE DEFAULT VALUES.
*

PUTLINE PARM=PUTBLOK,UPT=(3),ECT=(4),ECB=ECBADS, X
OUTPUT=(TEXTADS,TERM,SINGLE,DATA),MF=(E,IOPLADS)

*
* PROCESSING
* STORAGE DECLARATIONS
*
ECBADS DS F’0’ SPACE FOR THE EVENT CONTROL BLOCK
PUTBLOK PUTLINE MF=L LIST FORM OF THE PUTLINE MACRO
* INSTRUCTION. THIS EXPANDS INTO A
* PUTLINE PARAMETER BLOCK.
TEXTADS DC H’20’ LENGTH OF THE OUTPUT LINE

DC H’0’ RESERVED
DC CL16’ SINGLELINE DATA’

IOPLADS DC 4F’0’ SPACE FOR THE INPUT/OUTPUT
* PARAMETER LIST

IKJCPPL DSECT FOR THE CPPL
END

Figure 97. Example Showing PUTLINE Single Line Data Processing

Using the I/O Service Routine Macro Instructions

246 z/OS V1R4.0 TSO/E Programming Services

Passing the Message Lines to PUTLINE
You must build each of the message segments to be processed by the PUTLINE
service routine as if it were a line of single line data. The segment must be
preceded by a four-byte header field, where the first two bytes contain the length of
the segment, including the header, and the second two bytes contain an offset

* ON ENTRY FROM THE TMP, REGISTER 1 CONTAINS A POINTER TO THE COMMAND
* PROCESSOR PARAMETER LIST (CPPL).
*
* SET UP ADDRESSABILITY
* SAVE AREA CHAINING
*

LR 2,1 SAVE THE ADDRESS OF THE CPPL.
USING CPPL,2 ADDRESSABILITY FOR THE CPPL
L 3,CPPLUPT PLACE THE ADDRESS IF THE UPT

* INTO A REGISTER
L 4,CPPLECT PLACE THE ADDRESS OF THE ECT

* INTO A REGISTER
LA 5,ECBADS PLACE THE ADDRESS OF THE ECB

* INTO A REGISTER
* SET UP ADDRESSABILITY FOR THE INPUT/OUTPUT PARAMETER LIST DSECT.
*

LA 7,IOPLADS
USING IOPL,7

* FILL IN THE IOPL EXCEPT FOR THE PTPB ADDRESS
ST 3,IOPLUPT
ST 4,IOPLECT
ST 5,IOPLECB

*
* ISSUE THE EXECUTE FORM OF THE PUTLINE MACRO INSTRUCTION
*

PUTLINE PARM=PUTBLOK,OUTPUT=(TEXTADS,MULTLIN,DATA), X
MF=(E,IOPLADS)

*
* PROCESSING
* STORAGE DECLARATIONS
*
ECBADS DS F
IOPLADS DS 4F’0’
TEXTADS DC A(TEXT2) FORWARD POINTER TO THE NEXT LINE.

DC H’20’ LENGTH OF THE FIRST LINE.
DC H’0’ RESERVED.
DC CL16’MULTILINE DATA 1’

PUTBLOK PUTLINE MF=L LIST FORM OF THE PUTLINE MACRO
* INSTRUCTION.
*
TEXT2 DC A(0) END OF CHAIN INDICATOR.

DC H’20’ LENGTH OF THE SECOND LINE.
DC H’0’ RESERVED.
DC CL16’MULTILINE DATA 2’

*
IKJCPPL DSECT FOR THE COMMAND PROCESSOR

* PARAMETER LIST. THIS EXPANDS
* WITH THE SYMBOLIC NAME CPPL.

IKJIOPL DSECT FOR THE INPUT/OUTPUT
* PARAMETER LIST. THIS EXPANDS
* WITH THE SYMBOLIC NAME IOPL.

END

Figure 98. Example Showing PUTLINE Multiline Data Processing

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 247

value. See “Offset Values” on page 252 for a discussion of offset values. This
message line format is required whether the message is a single-level message or
a multilevel message.

Because of the additional operations performed on message lines, however, you
must provide the PUTLINE service routine with a description of the line or lines that
are to be processed. This is done with an output line descriptor (OLD).

There are two types of output line descriptors, depending on whether the messages
are single level or multilevel.

The OLD required for a single-level message is a variable-length control block
which begins with a fullword value representing the number of segments in the
message, followed by fullword pointers to each of the segments.

The format of the OLD for multilevel messages varies from that required for
single-level messages in only one respect. You must preface the OLD with a
fullword forward-chain pointer. This chain pointer points to another output line
descriptor or contains zero to indicate that it is the last OLD on the chain. Table 63
shows the format of the output line descriptor.

Table 63. The Output Line Descriptor (OLD)

Number of
Bytes

Field Name Contents or Meaning

4 none The address of the next OLD, or zero if this is the last
one on the chain. This field is present only if the
message pointed to is a multilevel message.

4 none The number of message segments pointed to by this
OLD.

4 none The address of the first message segment.
4 none The address of the next message segment.

You must build the output line descriptor and pass its address to the PUTLINE
service routine as the OUTPUT operand address in either the list or the execute
form of the macro instruction. When the macro expands, it places the address of
the output line descriptor into the second word of the PUTLINE parameter block.

Using the I/O Service Routine Macro Instructions

248 z/OS V1R4.0 TSO/E Programming Services

Terminal
Monitor
Program

Command
Processor

Reg. 1 Reg. 1

ATTACH LINK

PUTLINE
Service
Routine

CPPL

Number

Segment 1

Segment 2

Segment n

Segment n

IOPL

PTPB

OLD

Length Offset Text

Length Offset Text

Segment n

Next OLD

0 0 0 0 0 0 0 0

Multi-Level Messages

Single-Level Messages

From PTPB

Segment 1

Number

Segment 2

Number

Segment 1

Segment 2

Figure 99. Control Block Structures for PUTLINE Messages

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 249

PUTLINE Message Line Processing
In addition to writing a message out to the terminal, the PUTLINE service routine
provides the following additional functions for message line processing when the
INFOR operand is specified:
v Message identification stripping
v Text insertion
v Formatting only
v Second level informational chaining
v Display of translated text

Table 64 shows the output message types for which these PUTLINE service routine
functions can be used.

Table 64. PUTLINE Functions and Message Types

Message Types

Single Level Multilevel

Message ID Stripping x x

Text Insertion x x

Formatting Only x

Second Level Informational Chaining x

Display of Translated Text x x

Stripping Message Identifiers
The user can indicate whether message identifiers should be displayed at the
terminal by using the TSO/E PROFILE command. See z/OS TSO/E Command
Reference and z/OS TSO/E User’s Guide for a description of the PROFILE
command. If the terminal user indicates no message identifiers are to be displayed,
the PUTLINE service routine strips them off the message before writing the
message to the terminal.

A message identifier must be a variable-length character string, containing no
leading or embedded blanks, must not exceed a maximum length of 255
characters, and must be terminated by a blank.

Messages without message identifiers must begin with a blank. A message
beginning with a blank is handled by the PUTLINE service routine as a message
that does not require message identifier stripping, regardless of what the user at the
terminal has requested. If you do not provide a message identifier, and do not begin
your message with a blank, the beginning of your message up to the first blank will
be stripped off by the PUTLINE service routine if message identifier stripping is
requested from the terminal. If the message segment does not contain at least one
blank, PUTLINE will return a code of 12, which indicates incorrect parameters, in
register 15, even if message ID stripping is not requested from the terminal.

The following examples show the effects of the PUTLINE message identifier
stripping function.

If you provide message identifiers on your messages and the terminal user does
not request message ID stripping, your message will appear at the terminal exactly
as it appears here:

MESSAGE0010 THIS IS A MESSAGE.

Using the I/O Service Routine Macro Instructions

250 z/OS V1R4.0 TSO/E Programming Services

message will appear as:

THIS IS A MESSAGE.

If you do not want to use message identifiers on your output messages, begin your
message with a blank. A message beginning with a blank is unaffected by a
terminal user’s request for message ID stripping and will appear as you wrote it,
minus the blank.

Using the PUTLINE Text Insertion Function
The text insertion function of the PUTLINE service routine allows you to build or
modify messages at the time you put them out to the terminal. With text insertion
you can respond to different output message requirements with one basic message
(the primary segment). You can insert text into this primary segment or add text to
it, and thereby build an output message to meet the current processing situation.

To use text insertion, pass your messages to the PUTLINE service routine as a
variable number of text segments; from 1 to 255 segments are permissible.

Figure 100 shows an example of using the PUTLINE text insertion facility to insert
text before the primary segment.

TINS0 CSECT ,
TINS0 AMODE 31
TINS0 RMODE ANY
@MAINENT DS 0H

STM R14,R12,12(R13) ENTRY LINKAGE
LR R12,R15

@PSTART EQU TINS0
USING @PSTART,R12
ST R13,SAVEAREA+4
LA R11,SAVEAREA
ST R11,8(,R13)
LA R13,SAVEAREA

*
*
MAIN DS 0H
*

LR 2,1 Save the address of the CPPL
USING CPPL,2 Addressability for the CPPL
L 3,CPPLUPT R3<-address of the UPT
L 4,CPPLECT R4<-address of the ECT

*
* Issue the execute form of the PUTLINE macro instruction.
* PUTLINE builds the IOPL, provides text insertion and writes
* a message to the terminal,
*

PUTLINE PARM=PUTBLK,UPT=(3),ECT=(4),ECB=ECBADS, +
OUTPUT=(ONEOLD,TERM,SINGLE,INFOR),MF=(E,IOPLADS)

Figure 100. Example of PUTLINE Text Insertion - Before the Primary Segment (Part 1 of 2)

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 251

Each segment can contain from 0 to 32763 characters, as long as the total number
of characters in all the segments does not exceed 32763. You must precede each
of these text segments with a four-byte header in which the first two bytes contain
the length of the message, including the header, and the second two bytes contain
an offset value.

Offset Values: The offset value in the primary segment must be zero. The offset
in any secondary segments can be from zero to the length of the primary segment’s
text field. An offset of zero in a secondary segment implies that the segment is to
be placed before the primary segment. An offset that is equal to the length of the
primary segment’s text field implies that the secondary segment is to be placed
after the primary segment. An offset of n, where n represents a value greater than
zero but less than the total length of the primary segment, implies that the segment

*
DS 0H
L R13,4(,R13) EXIT LINKAGE
LM R14,R12,12(R13)
SLR R15,R15
BR R14

*

* Storage declarations follow
*
ECBADS DC F’0’ Space for the event control block
IOPLADS DC 4F’0’ Space for the I/O parameter block
*
PUTBLK PUTLINE MF=L List form of PUTLINE macro. It
* expands into space for the PTPB.
*
ONEOLD DC F’4’ Indicate four text segments.

DC A(SEG1) Address of 1st segment
DC A(SEG2) Address of 2nd segment
DC A(SEG3) Address of 3rd segment
DC A(SEG4) Address of 4th segment

SEG1 DC H’5’ Length of 1st segment
DC H’0’ Offset of prime is always zero
DC CL1’.’

SEG2 DC H’13’ Length of 2nd segment
DC H’0’ Offset zero - place before 1st segment
DC CL9’Segments ’

SEG3 DC H’12’ Length of 3rd segment
DC H’0’ Offset zero - place before 1st segment
DC CL8’showing ’

SEG4 DC H’45’ Length of 4th segment
DC H’0’ Offset zero - place before 1st segment
DC CL41’text insertion before the primary segment’

*
*

*
SAVEAREA DS 18F
*
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
R11 EQU 11
*

IKJCPPL
END

Figure 100. Example of PUTLINE Text Insertion - Before the Primary Segment (Part 2 of 2)

Using the I/O Service Routine Macro Instructions

252 z/OS V1R4.0 TSO/E Programming Services

is to be inserted after the nth byte of the primary segment. PUTLINE places the
secondary segment after that character, completes the message, and puts it out to
the terminal.

If you specify an offset in a secondary segment, greater than the length of the
primary segment, PUTLINE cannot handle the request and returns an error code of
12, which indicates incorrect parameters, in register 15. In addition, if the secondary
segments do not appear in the OLD with their offsets in ascending order, PUTLINE
returns an error code of 12 in register 15.

If you provide more than one secondary segment to be inserted into a primary
segment, the offset fields on each of the secondary segments must indicate the
position within the original primary segment at which you want them to appear.
PUTLINE determines the points of insertion by counting the characters of the
original primary segment only. As an example, if you provided one primary and two
secondary segments as shown:

2 bytes 2 bytes 28 bytes

32 0 PLEASE ENTER TO PROCESSING

9 13 TEXT

13 16 CONTINUE

PUTLINE would place the first insert, TEXT, after the 13th character, and the
second insert, CONTINUE, after the 16th character of the text field of the primary
segment. After PUTLINE inserts the two text segments, the message would read:

PLEASE ENTER TEXT TO CONTINUE PROCESSING

The leading and trailing blanks are automatically stripped off before the message is
written to the terminal.

Figure 101 on page 256 is an example of the code required to make use of the text
insertion feature of the PUTLINE service routine; it uses the text segments shown
above.

Note that the operand INFOR, which indicates to the PUTLINE service routine that
the text segments are to be processed as informational messages, requires an
output line descriptor to point to the message segments. Only one output line
descriptor (ONEOLD) is required to point to the 3 message segments because the
3 segments are to be combined into one single-level message.

Using the Format Only Function
You can also use the PUTLINE service routine to format a message but not write it
at the terminal. To do this, code the FORMAT operand in the PUTLINE macro
instruction and pass PUTLINE the same message segment structure required for
the text insertion function. The PUTLINE service routine performs text insertion if
requested and places the finished message in subpool 1, which is not shared. It
then places the address of the formatted line into the third word of the PUTLINE
parameter block. The storage occupied by the formatted message belongs to your
program and, if space is a consideration, must be freed by it. The returned
formatted line is in the variable-length record format; that is, it is preceded by a
four-byte header. You can use the first two bytes of this header to determine the
length of the returned message, and later, to free the real storage occupied by the
message with the R form of the FREEMAIN macro instruction.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 253

One difference between format only processing and text insertion processing is that
format only processing can be used only on single-level messages. You cannot use
the format only feature to format multilevel messages. You can however, use the
second level informational chaining function of PUTLINE to format second-level
messages and place them on an internal chain.

If you specify the TRANS operand with the FORMAT operand, the PUTLINE service
routine places the finished message in shared subpool 78. The format of the
message buffer returned is multiline data format, even if translation fails. Multiline
data format is necessary because the translated message text may consist of more
lines than the original message text. Figure 96 on page 244 shows the format of
multiline data.

Building a Second Level Informational Chain
PUTLINE can accept two levels of informational messages at each execution of the
service routine. It formats the first-level message and puts it out to the terminal. The
second-level message is formatted and a copy of it is placed on an internal chain in
shared subpool 78. This internal chain, the second level informational chain, is
maintained by the I/O service routines for the duration of one command or
subcommand processor. You can use the PUTLINE service routine to purge this
chain or to put it out to the terminal in its entirety.

To purge the chain without putting it out to the terminal, you must turn on the
high-order bit in the first byte (ECTMSGF) of the third word of the environment
control table (ECT). The ECT is pointed to by the second word of the input/output
parameter list, and can be mapped by the IKJECT DSECT. The next time any
chaining or unchaining is requested with PUTLINE or PUTGET, the second-level
informational chain will be eliminated.

To put the entire chain out to the terminal, use the PUTLINE macro instruction and
place a zero address where the output line address is normally required. This will
cause the PUTLINE service routine to write the chain to the terminal and eliminate
the internal chain. You will normally use this procedure only if your attention exit
routine is using the PUTLINE macro instruction to process a question mark entered
from the terminal.

Figure 102 on page 257 is an example of the code required to build a second-level
informational chain. It executes the PUTLINE service routine by using two different
execute form macro instructions to modify the PUTLINE parameter block built by
the list form of the PUTLINE macro instruction.

The code shown puts two messages out to the terminal and places two
second-level messages on an internal chain. It then executes a third execute form
of the PUTLINE macro instruction with a zero OUTPUT address to put the second
level chain out to the terminal.

Note that the offset value for the primary message segment must always be zero,
and when placing second-level messages on an internal chain, the offset value for
the second-level message must also be zero. Note also that you do not place a
message identifier on a second-level message.

Displaying Translated Message Text
You can specify that the message text should be displayed in the language
specified in the user profile table (UPT). This is done by using the TRANS operand
on the PUTLINE macro instruction.

Using the I/O Service Routine Macro Instructions

254 z/OS V1R4.0 TSO/E Programming Services

Return Codes from PUTLINE
When the PUTLINE service routine returns control to the program that invoked it,
PUTLINE provides one of the following return codes in general register 15:

Table 65. Return Codes from the PUTLINE Service Routine

Return Code
Dec(Hex)

Meaning

0(0) PUTLINE completed normally.

4(4) The PUTLINE service routine did not complete. An attention interruption
occurred during its execution, and the attention handler turned on the
completion bit in the communications ECB.

8(8) The NOWAIT option was specified and the line was not written to the
terminal.

12(C) Incorrect parameters were supplied to the PUTLINE service routine.

16(10) PUTLINE was unable to obtain sufficient storage to satisfy the request
for output buffers.

20(14) The terminal has been disconnected.

Note: See Chapter 21, “Analyzing Error Conditions with GNRLFAIL/VSAMFAIL” on
page 395 for information on how to issue meaningful error messages for
PUTLINE error codes.

Figure 101 on page 256 shows an example of PUTLINE text insertion.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 255

Figure 102 shows an example of chaining for PUTLINE second-level information.

* ON ENTRY FROM THE TMP, REGISTER 1 CONTAINS A POINTER TO THE COMMAND
* PROCESSOR PARAMETER LIST (CPPL).
*
* SET UP ADDRESSABILITY
* SAVE AREA CHAINING
*

LR 2,1 SAVE THE ADDRESS OF THE CPPL.
USING CPPL,2 ADDRESSABILITY FOR THE CPPL.
L 3,CPPLUPT PLACE THE ADDRESS OF THE UPT

* INTO A REGISTER.
L 4,CPPLECT PLACE THE ADDRESS OF THE ECT

* INTO A REGISTER.
* ISSUE THE EXECUTE FORM OF THE PUTLINE MACRO INSTRUCTION. LET IT
* INITIALIZE THE IOPL.

PUTLINE PARM=PUTBLK,UPT=(3),ECT=(4),ECB=ECBADS, X
OUTPUT=(ONEOLD,TERM,SINGLE,INFOR),MF=(E,IOPLADS)

*
* PROCESSING
* STORAGE DECLARATIONS
*
ECBADS DC F’0’ SPACE FOR THE EVENT CONTROL BLOCK
IOPLADS DC 4F’0’ SPACE FOR THE INPUT/OUTPUT
* PARAMETER LIST.
PUTBLK PUTLINE MF=L THE LIST FORM OF THE PUTLINE
* MACRO INSTRUCTION. IT EXPANDS
* INTO SPACE FOR A PTPB.
ONEOLD DC F’3’ INDICATE THREE TEXT SEGMENTS.

DC A(FIRSTSEG) ADDRESS OF THE FIRST TEXT
* SEGMENT.

DC A(SECSEG) ADDRESS OF THE SECOND TEXT
* SEGMENT.

DC A(THIRDSEG) ADDRESS OF THE THIRD TEXT
* SEGMENT.

FIRSTSEG DC H’32’ LENGTH OF THE FIRST SEGMENT
* INCLUDING THE HEADER.

DC H’0’ OFFSET OF PRIME SEGMENT IS
* ALWAYS ZERO.

DC CL28’ PLEASE ENTER TO PROCESSING ’
* PRIMARY SEGMENT.
SECSEG DC H’9’ LENGTH OF SECOND SEGMENT
* INCLUDING THE HEADER.

DC H’14’ OFFSET INTO FIRST SEGMENT AFTER
* WHICH SECOND SEGMENT IS TO BE
* INSERTED.

DC CL5’TEXT ’ TEXT OF THE SECOND SEGMENT
THIRDSEG DC H’13’ LENGTH OF THIRD SEGMENT
* INCLUDING THE HEADER.

DC H’17’ OFFSET INTO FIRST SEGMENT AFTER
* WHICH THIRD SEGMENT IS TO BE
* INSERTED.

DC CL9’CONTINUE ’ TEXT OF THE THIRD SEGMENT
IKJCPPL CPPL DSECT - THIS EXPANDS WITH

* THE SYMBOLIC ADDRESS CPPL.
END

Figure 101. Example Showing PUTLINE Text Insertion

Using the I/O Service Routine Macro Instructions

256 z/OS V1R4.0 TSO/E Programming Services

* ON ENTRY FROM THE TMP, REGISTER 1 CONTAINS A POINTER TO THE COMMAND
* PROCESSOR PARAMETER LIST (CPPL).
*
* SET UP ADDRESSABILITY
* SAVE AREA CHAINING
*

LR 2,1 SAVE THE ADDRESS OF THE CPPL.
USING CPPL,2 ADDRESSABILITY FOR THE CPPL.
L 3,CPPLUPT PLACE THE ADDRESS IF THE UPT

* INTO A REGISTER.
L 4,CPPLECT PLACE THE ADDRESS OF THE ECT

* INTO A REGISTER.
* ISSUE THE EXECUTE FORM OF THE PUTLINE MACRO INSTRUCTION. THIS ONE
* BUILDS THE IOPL, WRITES A MESSAGE TO THE TERMINAL, AND PLACES ONE
* SECOND-LEVEL MESSAGE ON THE CHAIN.
*

PUTLINE PARM PUTBLK,UPT=(3),ECT=(4),ECB=ECBADS, X
OUTPUT=(OLD1,TERM,MULTLVL,INFOR),MF=(E,IOPLADS)

*
* PROCESSING
*
* ISSUE A SECOND EXECUTE FORM OF THE PUTLINE MACRO INSTRUCTION. IT
* USES THE SAME IOPL AND PTPB AS THE PREVIOUS EXECUTE FORM. IT GIVES
* A NEW OUTPUT LINE DESCRIPTOR ADDRESS AS THE OUTPUT= OPERAND. THIS
* EXECUTION OF THE PUTLINE MACRO INSTRUCTION WRITES ONE MESSAGE TO THE
* TERMINAL AND CHAINS ANOTHER.
*

PUTLINE PARM=PUTBLK,OUTPUT=(OLD2,MULTLVL,INFOR), X
MF=(E,IOPLADS)

*
* PROCESSING
*
* TO WRITE THE SECOND-LEVEL MESSAGE CHAIN TO THE TERMINAL AND THEN
* PURGE THE CHAIN, ISSUE THE EXECUTE FORM OF THE PUTLINE MACRO
* INSTRUCTION WITH A ZERO ADDRESS WHERE THE OUTPUT LINE ADDRESS IS
* REQUIRED.
*

PUTLINE PARM=PUTBLK,OUTPUT=0,MF=(E,IOPLADS)
*
* PROCESSING
* STORAGE DECLARATIONS
IOPLADS DC 4F’0’ SPACE FOR THE INPUT/OUTPUT
* PARAMETER LIST.
PUTBLK PUTLINE MF=L THE LIST FORM OF THE PUTLINE
* MACRO INSTRUCTION. IT EXPANDS
* INTO SPACE FOR A PTPB.

Figure 102. Example Showing PUTLINE Second-Level Informational Chaining (Part 1 of 2)

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 257

Using PUTGET to Put a Message Out to the Terminal and Obtain a
Line of Input in Response

Use the PUTGET macro instruction to put messages out to the terminal and to
obtain a response to those messages. A message to the user at the terminal which
requires a response is called a conversational message. There are two types of
conversational messages:

Mode messages These messages tell the user at the terminal which
processing mode is active so the user can enter a
response applicable to that processing mode.
Examples of mode messages are the READY
message sent to the terminal by the terminal
monitor program to indicate that it expects a

ECBADS DC F’0’ SPACE FOR THE EVENT CONTROL BLOCK
OLD1 DC A(NEXTLEN) FORWARD POINTER TO NEXT OLD

DC F’1’ ONLY ONE SEGMENT.
DC A(MESSAGE1) ADDRESS OF TEXT SEGMENT.

NEXTLEV DC A(0) INDICATE LAST OLD ON CHAIN
DC F’1’ ONLY ONE SEGMENT.
DC A(MESSAGE2) ADDRESS OF SECOND LEVEL TEXT.

MESSAGE1 DC H’32’ LENGTH OF SEGMENT INCLUDING
* HEADER.

DC H’0’ OFFSET OF PRIME SEGMENT MUST BE
* ZERO.

DC CL28’MYMSG1 PLEASE ENTER USER ID.’
* FIRST-LEVEL MESSAGE.

MESSAGE2 DC H’36’ LENGTH OF SEGMENT INCLUDING
* HEADER.

DC H’0’ OFFSET MUST BE ZERO.
DC CL32’ USER ID REQUIRED FOR ACCOUNTING’

* SECOND-LEVEL MESSAGE. NOTE THAT
* IT MUST NOT HAVE A MESSAGE ID.

OLD2 DC A(NEXTOLD) FORWARD POINTER TO NEXT OLD.
DC F’1’ ONLY ONE SEGMENT.
DC A(SECMSG1) ADDRESS OF PRIME SEGMENT.

NEXTOLD DC A(0) INDICATE THIS IS THE LAST OLD
* ON THIS CHAIN.

DC F’1’ ONLY ONE SEGMENT.
DC A(SECMSG2) ADDRESS OF THE SECOND LEVEL TEXT

SECMSG1 DC H’33’ LENGTH OF THE TEXT SEGMENT
* INCLUDING THE HEADER.

DC H’0’ OFFSET OF PRIME SEGMENT MUST
* BE ZERO.

DC CL29’MYMSG2 PLEASE ENTER PROC NAME’
* FIRST-LEVEL MESSAGE.

SECMSG2 DC H’41’ LENGTH OF THE TEXT SEGMENT
* INCLUDING THE HEADER.

DC H’0’ OFFSET MUST BE ZERO.
DC CL37’ PROCEDURE NAME REQUIRED BY PROCESSOR’

* SECOND-LEVEL MESSAGE. NOTE THAT
* IT MUST NOT HAVE A MESSAGE ID

IKJCPPL CPPL DSECT. THIS EXPANDS WITH
* THE SYMBOLIC ADDRESS CPPL.

END

Figure 102. Example Showing PUTLINE Second-Level Informational Chaining (Part 2 of 2)

Using the I/O Service Routine Macro Instructions

258 z/OS V1R4.0 TSO/E Programming Services

command to be entered, and the command name,
such as EDIT or TEST, sent by a command
processor to indicate that it is ready to accept a
subcommand name.

Prompt messages These messages prompt the user at the terminal to
enter parameters required by the program in
control, or to reenter those parameters which were
previously entered incorrectly.

When you issue a PUTGET macro instruction, the PUTGET service routine obtains
a line of input from either:
v The terminal or the REXX data stack
v An in-storage list (including a command procedure)

PUTGET determines the source of input from the top element of the input stack
unless you have specified the TERM or ATTN operands on the PUTGET macro
instruction.

The input line returned by the PUTGET service routine can come from the terminal
or an in-storage list, or from the REXX data stack; PUTGET determines the source
of input from the top element of the input stack unless you have specified the
TERM or ATTN operands in the PUTGET macro instruction.

PUTGET, like PUTLINE and GETLINE, has many parameters. The parameters are
passed to the PUTGET service routine according to the operands you code in the
list and the execute forms of the PUTGET macro instruction.

This topic describes:
v The list and execute forms of the PUTGET macro instruction
v Building the PUTGET parameter block
v Types and formats of the output line
v Passing the message lines to PUTGET
v PUTGET processing
v Input line format - the input buffer
v Return codes from PUTGET

The List Form of the PUTGET Macro Instruction
The list form of the PUTGET macro instruction builds and initializes a PUTGET
parameter block (PGPB), according to the operands you specify in the PUTGET
macro instruction. The PUTGET parameter block indicates to the PUTGET service
routine which of the PUTGET functions you want performed.

In the list form of the PUTGET macro instruction, only
is required.

The output line address is not specifically required in the list form of the PUTGET
macro instruction, but must be coded in either the list or the execute form.

The other operands and their sublists are optional because you can supply them in
the execute form of the macro instruction, or if you want the default values, they are
supplied automatically by the expansion of the macro instruction.

PUTGET MF=L

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 259

The operands you specify in the list form of the PUTGET macro instruction set up
control information used by the PUTGET service routine. This control information is
passed to the PUTGET service routine in the PUTGET parameter block, a
four-word parameter block built and initialized by the list form of the PUTGET macro
instruction.

Figure 103 shows the list form of the PUTGET macro instruction; each of the
operands is explained following the figure.

OUTPUT=output address
Specify the address of the output line descriptor or a zero. The output line
descriptor (OLD) describes the message to be put out, and contains the
address of the beginning (the one-word header) of the message or messages to
be written to the terminal. You have the option under MODE processing to
provide or not provide an output message. If you do not provide an output line,
code OUTPUT=0, and only the GET functions will take place. If you do provide
an output message, the type of message and the processing to be performed
by the PUTGET service routine are described by the OUTPUT sublist operands
SINGLE, MULTLVL, PROMPT, MODE, PTBYPS, TERM, ATTN, NOTRANS, and
TRANS. SINGLE, PROMPT, and NOTRANS are the default values.

SINGLE | MULTLVL

SINGLE
The output message is a single-level message.

MULTLVL
The output message consists of multiple levels. The first-level message
is written to the terminal, the second-level messages are printed at the
terminal, one at a time, in response to question marks entered from the
terminal. PROMPT must also be specified or defaulted.

PROMPT
The output line is a prompt message.

MODE
The output line is a mode message.

PTBYPS
The output line is a prompt message and the terminal user’s response will
not be displayed at those terminals that support the print inhibit feature. A

[{,PROMPT}]
[symbol] PUTGET [OUTPUT=(output address {,SINGLE } {,MODE } {,NOTRANS})]

[{,MULTLVL} {,PTBYPS} {,TRANS }]
[{,TERM }]
[{,ATTN }]

[{EDIT }]
[,TERMPUT=({ASIS } {,WAIT } {,NOHOLD} {,NOBREAK})]
[{CONTROL} {,NOWAIT} {,HOLD } {,BREAKIN}]

[,TERMGET=({EDIT} {,WAIT })] ,MF=L
[{ASIS} {,NOWAIT}]

[,SUBSTACK=({NO })]
[{YES}]

Figure 103. The List Form of the PUTGET Macro Instruction

Using the I/O Service Routine Macro Instructions

260 z/OS V1R4.0 TSO/E Programming Services

terminal user can override bypass processing by pressing an attention
followed by pressing the Enter key before entering input.

TERM
indicates to PUTGET that the current source of input, indicated by the top
element of the input stack, is to be ignored. The output line, which is a
mode message, is to be written to the terminal. Input is to be returned from
the REXX data stack (if elements exist) or from the terminal. For more
information about how PUTGET determines the source of input, refer to
“What Is the Input Source?” on page 276.

ATTN
specifies that the output line, which is a mode message, is to be initially
suppressed, but an input line is to be returned from the terminal.

NOTRANS | TRANS

NOTRANS
specifies that the output line is not to be translated.

TRANS
specifies that the output line is to be written in the language specified in
the user profile table (UPT).

Note: For more information about providing translated messages, see
“PUTLINE Message Line Processing” on page 250.

TERMPUT=
specifies the options requested. The options are EDIT, ASIS or CONTROL,
WAIT, or NOWAIT, NOHOLD or HOLD, and NOBREAK or BREAKIN. The
default values are EDIT, WAIT, NOHOLD, and NOBREAK.

EDIT | ASIS | CONTROL

EDIT
specifies that in addition to minimal editing (see ASIS), the following
functions are requested:

1. Any trailing blanks are removed before the line is written to the
terminal. If a blank line is sent, the terminal vertically spaces one
line.

2. Control characters are added to the end of the output line to
position the cursor to the beginning of the next line.

3. All terminal control characters (for example, bypass, restore,
horizontal tab, new line) are replaced with a printable character.
Backspace is an exception; see item 4 under ASIS.

ASIS
specifies that minimal editing is to be performed as follows:

1. The line of output is to be translated from EBCDIC to terminal code.
Incorrect characters will be converted to printable characters to
prevent program caused I/O errors. This does not mean that all
unprintable characters will be eliminated. Restore, upper case, lower
case, bypass, and bell ring, for example, might be valid but
nonprinting characters at some terminals. (See CONTROL.)

2. Transmission control characters will be added.

3. EBCDIC NL, placed at the end of the message, indicates that the
cursor is to be returned at the end of the line. NL is replaced with
whatever is necessary for that particular terminal type to cause the

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 261

cursor to return. This NL processing occurs only if you specify ASIS,
and the NL is the last character in your message.

If you specify EDIT, NL is handled as described in item 3 under
EDIT.

If the NL is embedded in your message, a semicolon or colon may
be substituted for NL and sent to the terminal. No idle characters
are added (see item 6 below). This might cause overprinting,
particularly on terminals that require a line-feed character to position
the cursor on a new line.

4. If you have used backspace in your output message but the
backspace character does not exist on the terminal type to which
the message is being routed, the PUTGET service routine attempts
alternate methods to accomplish the backspace.

5. Control characters are added as needed to cause the message to
occur on several lines if the output line is longer than the terminal
line size.

6. Idle characters are sent at the end of each line to prevent typing as
the carrier returns.

No line continuation checking is done.

CONTROL
specifies that the output line is composed of terminal control characters
and will not display or move the cursor on the terminal. This option
should be used for transmission of characters such as bypass, restore,
or bell ring. See ASIS for additional information.

WAIT | NOWAIT

WAIT
specifies that control will not be returned to the program that issued the
PUTGET until the output line has been placed into a terminal output
buffer.

NOWAIT
specifies that control should be returned to the program that issued the
PUTGET macro instruction, whether or not a terminal output buffer is
available. If no buffer is available a return code of 16 (decimal) is
returned.

NOHOLD | HOLD

NOHOLD
specifies that control is to be returned to the issuer of the PUTGET
macro instruction, and that program can resume processing as soon as
the output line has been placed on the output queue.

HOLD
specifies that the program that issued the PUTGET macro instruction
cannot continue its processing until this output line has been put out to
the terminal or deleted.

NOBREAK | BREAKIN

NOBREAK
specifies that if the terminal user has started to enter input,
transmission is not to be interrupted. The output message is placed on
the output queue to be displayed after the terminal user has completed
the line.

Using the I/O Service Routine Macro Instructions

262 z/OS V1R4.0 TSO/E Programming Services

BREAKIN
specifies that output has precedence over input. If the user at the
terminal is transmitting, transmission is interrupted, and this output line
is sent. Any data that was received before the interruption is kept and
displayed at the terminal following this output line.

TERMGET=
specifies the options requested. The options are EDIT or ASIS, and WAIT or
NOWAIT. The default values are EDIT and WAIT.

EDIT | ASIS

EDIT
specifies that in addition to minimal editing (see ASIS), the buffer is to
be padded with trailing blanks.

ASIS
specifies that minimal editing is to be done as follows:
1. Transmission control characters are removed.
2. The line of input is translated from terminal code to EBCDIC.
3. Line-deletion and character-deletion editing is performed.
4. Line feed and cursor return characters, if present, are removed.

No line continuation checking is done.

WAIT | NOWAIT

WAIT
specifies that control is to be returned to the program that issued the
PUTGET macro instruction, only after an input message has been read.

NOWAIT
specifies that control should be returned to the program that issued the
PUTGET macro instruction whether or not a line of input is available. If
a line of input is not available, a return code of 20 (decimal) is returned
in register 15 to the command processor.

MF=L
indicates that this is the list form of the macro instruction.

SUBSTACK=
SUBSTACK=YES indicates that normal stack operations continue until PUTGET
reaches a barrier element. PUTGET then passes the caller a return code
indicating that a barrier element was reached. The barrier element remains on
the stack until the caller explicitly deletes it. SUBSTACK=NO is the default
value and indicates that the barrier feature is not used.

Note: If the caller issues PUTGET without SUBSTACK=YES, and a barrier
element exists on the input stack, normal stack operations continue until
PUTGET reaches a barrier element. In foreground mode, PUTGET then
treats the barrier element as a terminal element. In background mode,
PUTGET passes an end-of-data return code to the caller. Processing
continues in this manner until the caller explicitly deletes the barrier
element.

The Execute Form of the PUTGET Macro Instruction
Use the execute form of the PUTGET macro instruction to do the following:

v Prepare a mode or a prompt message for output to the terminal.

v Determine whether that message should be sent to the terminal.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 263

v Return a line of input from the source indicated by the top element of the input
stack to the program that issued the PUTGET macro instruction.

You can use the execute form of the PUTGET macro instruction to build and
initialize the input/output parameter list required by the PUTGET service routine,
and to request PUTGET functions not already requested by the list form of the
macro instruction, or to change those functions previously requested in either a list
form or a previous execute form of the PUTGET macro instruction.

In the execute form of the PUTGET macro instruction, only the following is required:

The PARM, UPT, ECT, and ECB operands are not required if you have built your
IOPL in your own code.

The output line address is not specifically required in the execute form of the
PUTGET macro instruction, but must be coded in either the list or the execute form.

The other operands and sublists are optional because you can supply them in the
list form of the macro or in a previous execute form, or because you might want to
use the default values which are automatically supplied by the macro expansion
itself.

The operands you specify in the execute form of the PUTGET macro set up control
information used by the PUTGET service routine. You can use the PARM, UPT,
ECT, and ECB operands of the PUTGET macro to build, complete, or modify an
IOPL. The OUTPUT, TERMPUT, and TERMGET operands and their sublist
operands initialize the PUTGET parameter block. The PUTGET parameter block is
referred to by the PUTGET service routine to determine which functions you want
PUTGET to perform.

Figure 104 on page 265 shows the execute form of the PUTGET macro instruction;
each of the operands is explained following the figure.

PUTGET MF=(E,{list address})
{ (1) }

Using the I/O Service Routine Macro Instructions

264 z/OS V1R4.0 TSO/E Programming Services

PARM=parameter address
specifies the address of the four-word PUTGET parameter block (PGPB). This
address is placed into the input/output parameter list (IOPL). It can be the
address of a list form of the PUTGET macro instruction. The address is any
address valid in an RX instruction, or you can put it in one of the general
registers 2–12, and use that register number, enclosed in parentheses, as the
parameter address.

UPT=upt address
specifies the address of the user profile table (UPT). This address is placed into
the IOPL when the execute form of the PUTGET macro instruction expands.
You can obtain this address from the command processor parameter list
(CPPL) pointed to by register 1 when the command processor is attached by
the terminal monitor program. The address can be used as received in the
CPPL or you can put it in one of the general registers 2–12, and use that
register number, enclosed in parentheses, as the UPT address.

ECT=ect address
specifies the address of the environment control table (ECT). This address is
placed into the IOPL when the execute form of the PUTGET macro instruction
expands. You can obtain this address from the command processor parameter
list (CPPL) pointed to by register 1 when the command processor is attached
by the terminal monitor program. The address can be used as received in the
CPPL or you can put it in one of the general registers 2–12, and use that
register number, enclosed in parentheses, as the ECT address.

ECB=ecb address
specifies the address of the command processor event control block (ECB).
This address is placed into the IOPL by the execute form of the PUTGET macro
instruction when it expands.

You must provide a one-word event control block and pass its address to the
PUTGET service routine by placing the address into the IOPL. If you code the
address of the ECB in the execute form of the PUTGET macro instruction, the
macro instruction places the address into the IOPL for you. The address can be

[symbol] PUTGET [PARM=parameter address] [,UPT=upt address)
[,ECT=ect address] [,ECB=ecb address]

{,PROMPT}
[OUTPUT=(output address {,SINGLE } {,MODE } {,NOTRANS})]
[{,MULTLVL} {,PTBYPS} {,TRANS }]
[{,TERM }]
[{,ATTN }]

[{EDIT }]
[,TERMPUT=({ASIS } {,WAIT } {,NOHOLD} {,NOBREAK})]
[{CONTROL} {,NOWAIT} {,HOLD } {,BREAKIN}]

[,TERMGET=({EDIT} {,WAIT })]
[{ASIS} {,NOWAIT}]

[,ENTRY={entry address}] ,MF=(E {,list address})
[{ (15) }] { (1) }

[,SUBSTACK=({NO })]
[{YES}]

Figure 104. The Execute Form of the PUTGET Macro Instruction

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 265

any address valid in an RX instruction, or you can put it in one of the general
registers 2–12, and use that register number, enclosed in parentheses, as the
ECB address.

If an attention interruption occurs while a mainline routine’s PUTGET macro is
prompting for input, and if an attention exit was previously identified by the
STAX macro, the exit receives control to process the attention request. If the
attention routine sets the completion bit by posting the mainline routine’s
PUTGET ECB, then the mainline PUTGET receives a return code 8. However,
if the attention routine does not set the completion bit, PUTGET continues as if
the attention interruption never occurred.

OUTPUT=output address
specifies the address of the output line descriptor or a zero. The output line
descriptor (OLD) describes the message to be issued, and contains the address
of the beginning (the one-word header) of the message or messages to be
written to the terminal. You have the option under MODE processing to provide
or not provide an output message. If you do not provide an output line, code
OUTPUT=0, and only the GET function will take place. If you do provide an
output message, the type of message and the processing to be performed by
the PUTGET service routine are described by the OUTPUT sublist operands
SINGLE, MULTLVL, PROMPT, MODE, PTBYPS, TERM, ATTN, NOTRANS, and
TRANS. The default values are SINGLE, PROMPT, and NOTRANS.

SINGLE | MULTLVL

SINGLE
The output message is a single-level message.

MULTLVL
The output message consists of multiple levels. The first-level message
is written to the terminal, the second-level messages are displayed at
the terminal, one at a time, in response to question marks entered from
the terminal. PROMPT must also be specified or defaulted.

PROMPT
The output line is a prompt message.

MODE
The output line is a mode message.

PTBYPS
The output line is a prompt message and the terminal user’s response will
not display at those terminals that support the print inhibit feature. A
terminal user can override bypass processing by pressing an attention
followed by pressing the Enter key before entering input.

TERM
specifies that the output line, which is a mode message, is to be written to
the terminal, and a line is to be returned from the terminal, regardless of the
top element of the input stack.

ATTN
specifies that the output line, which is a mode message, is to be initially
suppressed, but an input line is to be returned from the terminal.

NOTRANS | TRANS

NOTRANS
specifies that the output line is not to be translated.

Using the I/O Service Routine Macro Instructions

266 z/OS V1R4.0 TSO/E Programming Services

TRANS
specifies that the output line is to be written in the language specified in
the user profile table (UPT).

Note: For more information about providing translated messages, see
“PUTLINE Message Line Processing” on page 250.

TERMPUT=
specifies the options requested. The options are EDIT, ASIS or CONTROL,
WAIT or NOWAIT, NOHOLD or HOLD, and NOBREAK or BREAKIN. The
default values are EDIT, WAIT, NOHOLD and NOBREAK.

EDIT | ASIS | CONTROL

EDIT
specifies that in addition to minimal editing (see ASIS), the following
TPUT functions are requested:

1. Any trailing blanks are removed before the line is written to the
terminal. If a blank line is sent, the terminal vertically spaces one
line.

2. Control characters are added to the end of the output line to
position the cursor to the beginning of the next line.

3. All terminal control characters (for example, bypass, restore,
horizontal tab, new line) are replaced with a printable character.
Backspace is an exception; see item 4 under ASIS.

ASIS
specifies that minimal editing is to be performed as follows:

1. The line of output is translated from EBCDIC to terminal code.
Incorrect characters are converted to a printable character to
prevent program caused I/O errors. This does not mean that all
unprintable characters will be eliminated. Restore, upper case, lower
case, bypass, and bell ring, for example, might be valid but
nonprinting characters at some terminals. (See CONTROL.)

2. Transmission control characters are added.

3. EBCDIC NL, placed at the end of the message, indicates that the
cursor is to be returned at the end of the line. NL is replaced with
whatever is necessary for that particular terminal type to cause the
cursor to return. This NL processing occurs only if you specify ASIS,
and the NL is the last character in your message.

If you specify EDIT, NL is handled as described in item 3 under
EDIT.

If the NL is embedded in your message, a semicolon or colon may
be substituted for NL and sent to the terminal. No idle characters
are added (see item 6 below). This might cause overprinting,
particularly on terminals that require a line-feed character to position
the cursor on a new line.

4. If you have used backspace in your output message, but the
backspace character does not exist on the terminal type to which
the message is being routed, the PUTGET service routine attempts
alternate methods to accomplish the backspace.

5. Control characters are added as needed to cause the message to
occur on several lines if the output line is longer than the terminal
line size.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 267

6. Idle characters are sent at the end of each line to prevent typing as
the cursor returns.

No line continuation checking is done.

CONTROL
specifies that this line is composed of terminal control characters and
will not display or move the cursor on the terminal. This option should
be used for transmission of characters such as bypass, restore, or bell
ring.

WAIT | NOWAIT

WAIT
specifies that control will not be returned to the program that issued the
PUTGET until the output line has been placed into the terminal output
buffer.

NOWAIT
specifies that control should be returned to the program that issued the
PUTGET macro instruction, whether or not a terminal output buffer is
available. If no buffer is available, a return code of 16 (decimal) is
returned.

NOHOLD | HOLD

NOHOLD
specifies that control is to be returned to the program that issued the
PUTGET macro instruction, and it can continue processing as soon as
the output line has been placed on the output queue.

HOLD
specifies that the program that issued the PUTGET macro instruction
cannot continue its processing until the output line has been put out to
the terminal or deleted.

NOBREAK | BREAKIN

NOBREAK
specifies that if the terminal user has started to enter input,
transmission is not to be interrupted. The output message is placed on
the output queue to be displayed after the terminal user has completed
the line.

BREAKIN
specifies that output has precedence over input. If the user at the
terminal is transmitting, the user is interrupted, and this output line is
sent. Any data that was received before the interruption is kept and
displayed at the terminal following this output line.

TERMGET=
specifies the options requested. The options are EDIT or ASIS, and WAIT or
NOWAIT. The default values are EDIT and WAIT.

EDIT | ASIS

EDIT
specifies that in addition to minimal editing (see ASIS), the buffer is
filled out with trailing blanks.

ASIS
specifies that minimal editing is done as follows:
1. Transmission control characters are removed.

Using the I/O Service Routine Macro Instructions

268 z/OS V1R4.0 TSO/E Programming Services

2. The line of input is translated from terminal code to EBCDIC.
3. Line-deletion and character-deletion editing is performed.
4. Line feed and cursor return characters, if present, are removed.

No line continuation checking is done.

WAIT | NOWAIT

WAIT
specifies that control is to be returned to the program that issued the
PUTGET macro instruction, only when an input message has been
read.

NOWAIT
specifies that control should be returned to the program that issued the
PUTGET macro instruction whether or not a line of input is available. If
a line of input is not available, a return code of 20 (decimal) is returned
in register 15.

ENTRY=entry point address | (15)
specifies the entry point of the PUTGET service routine. If ENTRY is omitted,
the PUTGET macro expansion generates a LINK macro instruction to invoke
the PUTGET service routine. The address can be any address valid in an RX
instruction or (15) if you load the entry point address into general register 15.

MF=E
indicates that this is the execute form of the PUTGET macro instruction.

listaddr | (1)
The address of the four-word input/output parameter list (IOPL). This can be a
completed IOPL that you have built, or it can be 4 words of declared storage
that will be filled from the PARM, UPT, ECT, and ECB operands of this execute
form of the PUTGET macro instruction. The address must be any address valid
in an RX instruction or (1) if you have loaded the parameter list address into
general register 1.

SUBSTACK
SUBSTACK=YES indicates that normal stack operations continue until PUTGET
reaches a barrier element. PUTGET then passes the caller a return code
indicating that a barrier element was reached. The barrier element remains on
the stack until the caller explicitly deletes it. SUBSTACK=NO is the default
value and indicates that the barrier feature is not used.

Note: If the caller issues PUTGET without SUBSTACK=YES, and a barrier
element exists on the input stack, normal stack operations continue until
PUTGET reaches the barrier element. In foreground mode, PUTGET
then treats the barrier element as a terminal element. In background
mode, PUTGET passes an end-of-data return code to the caller.
Processing continues in this manner until the caller explicitly deletes the
barrier element.

Building the PUTGET Parameter Block (PGPB)
When the list form of the PUTGET macro instruction expands, it builds a four-word
PUTGET parameter block (PGPB). This PGPB combines the functions of the
PUTLINE and the GETLINE parameter blocks and contains information used by the
PUT and the GET functions of the PUTGET service routine. The list form of the
PUTGET macro instruction initializes this PGPB according to the operands you
have coded in the macro instruction. This initialized block, which you can later
modify with the execute form of the PUTGET macro instruction, indicates to the
PUTGET service routine the functions you want performed. It also contains a

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 269

pointer to the output line descriptor that describes the output message, and it
provides a field into which the PUTGET service routine places the address of the
input line returned from the input source.

You must pass the address of the PGPB to the execute form of the PUTGET macro
instruction. Because the list form of the macro instruction expands into a PGPB, all
you need do is pass the address of the list form of the macro instruction to the
execute form as the PARM value.

The PUTGET parameter block is defined by the IKJPGPB DSECT, which is
provided in SYS1.MACLIB. Table 66 describes the contents of the PUTGET
parameter block.

Table 66. The PUTGET Parameter Block

Number of
Bytes

Field Name Contents or Meaning

2 PUT control flags. These bits describe the output line to
the PUTGET service routine.

Byte 1:
..0. Always zero.
...1 The output line is a single-level

message.
.... 0... Must be zero.
.... .1.. The output line is a multilevel

message.
.... ...1 The output line is a PROMPT

message.
xx.. ..x. Reserved.

Byte 2:
1... The output line is a MODE message.
...1 BYPASS processing is requested.
.... 1... ATTN processing is requested.
.... .1.. SUBSTACK=YES is specified.
.... ..1. The output line is to be written in the

language specified in the UPT.
.xx. ...x Reserved bits.

Using the I/O Service Routine Macro Instructions

270 z/OS V1R4.0 TSO/E Programming Services

Table 66. The PUTGET Parameter Block (continued)

Number of
Bytes

Field Name Contents or Meaning

2 PUT options field. These bits indicate to the PUTGET
service routine which of the options you want to use for
PUT.

Byte 1:
0... Always set to 0.
...0 WAIT processing has been requested.

Control will be returned to the issuer
after the output line has been placed
into a terminal output buffer.

...1 NOWAIT processing has been
requested. Control will be returned to
the issuer whether or not a terminal
output buffer is available.

...0 NOHOLD processing has been
requested. The issuer can resume
processing as soon as the output line
has been placed on the output queue.

.... 1... HOLD processing has been
requested. The issuer is not to resume
processing until the output line has
been written to the terminal or deleted.

.... .0.. NOBREAK processing has been
requested. The output line will be
displayed only when the terminal user
is not entering a line.

.... .1.. BREAKIN processing has been
requested. The output line is to be
sent to the terminal immediately. If the
terminal user is entering a line, the
user is to be interrupted.

.... ..00 EDIT processing has been requested.

.... ..01 ASIS processing has been requested.

.... ..10 CONTROL processing has been
requested.

.xx. Reserved.

Byte 2: Reserved.
4 The address of the output line descriptor. GET control

flags.

Byte 1:
.00. Always zero.
...1 TERM processing is requested.
x... xxxx Reserved bits.

Byte 2:
xxxx xxxx Reserved.

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 271

Table 66. The PUTGET Parameter Block (continued)

Number of
Bytes

Field Name Contents or Meaning

2 GET options field. These bits indicate to the PUTGET
service routine which of the options you want to use for
GET.

Byte 1:
1... Always set to 1.
...0 WAIT processing has been requested.

Control will be returned to the issuer
only after an input message has been
read.

...1 NOWAIT processing has been
requested. Control will be returned to
the issuer whether or not a line of
input is available. If no line was
available, PUTGET returns a code of
20 (decimal) in general register 15.

.... ..00 EDIT processing has been requested.
In addition to the editing provided by
ASIS processing, the input buffer is to
be filled out with trailing blanks to the
next doubleword boundary.

.... ..01 ASIS processing has been requested.
(See the ASIS operand of the
PUTGET macro instruction
description.)

.xx. xx.. Reserved bits.

Byte 2:
xxxx xxxx Reserved.

4 PGPBIBUF The address of the input buffer. The PUTGET service
routine fills this field with the address of the input buffer
in which the input line has been placed.

Types and Formats of the Output Line
The PUTGET service routine writes only conversational messages to the terminal, it
does not handle data lines. For information on how to write a data line or a
nonconversational message to the terminal, see “Using PUTLINE to Put a Line Out
to the Terminal” on page 232.

PUTGET accepts two output line formats depending upon whether the message
you provide is a single-level message or a multilevel message.

Single-Level Messages: A single-level message is composed of one or more
message segments to be formatted and written to the terminal with one execution
of the PUTGET macro instruction.

Multilevel Messages: A multilevel message is composed of one or more
segments to be formatted and written to the terminal, and one or more message
segments to be formatted and written to the terminal in response to question marks
entered from the terminal. Note, however, that if you specify MODE in the PUTGET
macro instruction, you can process only single-level messages. To have
second-level messages written to the terminal, one at a time, in response to

Using the I/O Service Routine Macro Instructions

272 z/OS V1R4.0 TSO/E Programming Services

successive question marks entered from the terminal, specify PROMPT and
TERMGET=EDIT on the PUTGET macro instruction. Note that if you specify
PUTGET with TERMGET=ASIS, the user’s terminal will not recognize the question
mark. If PROMPT messages are to be available to the user at the terminal, the top
element of the input stack must not specify a procedure element as the current
source of input, and the terminal user must not have inhibited prompting. (See the
PROFILE command in z/OS TSO/E User’s Guide.)

Passing the Message Lines to PUTGET
You must build each of the message segments to be processed by the PUTGET
service routine as if it were a line of single line data. The segment must be
preceded by a four-byte header field, where the first two bytes contain the length of
the segment including the header, and the second two bytes contain zeros or an
offset value if you use the text insertion facility provided by PUTGET. This message
line format is required whether the message is a single-level message or a
multilevel message.

Because of the additional functions performed on message lines, (message ID
stripping, text insertion, and multilevel processing), you must provide the PUTGET
service routine with a description of the line or lines that are to be processed. This
is done with an output line descriptor (OLD).

There are two types of output line descriptors. The type depends on whether the
messages are single level or multilevel.

The OLD required for a single-level message is a variable-length control block
which begins with a fullword value representing the number of segments in the
message, followed by fullword pointers to each of the segments.

The format of the OLD for multilevel messages varies from that required for
single-level messages in only one respect. You must preface the OLD with a
fullword forward-chain pointer. This chain pointer points to another output line
descriptor or contains zero to indicate that it is the last OLD on the chain. Table 67
shows the format of the output line descriptor.

Table 67. The Output Line Descriptor (OLD)

Number of
Bytes

Field Name Contents or Meaning

4 The address of the next OLD, or zero if this is the last
one on the chain. This field is present only if the
message pointed to is a multilevel message.

4 The number of message segments pointed to by this
OLD.

4 The address of the first message segment.
4 The address of the next message segment.
4 The address of the nth message segment.

You must build the output line descriptor and pass its address to the PUTLINE
service routine as the OUTPUT operand address in either the list or the execute
form of the macro instruction. When the macro instruction expands, it places this
OLD address into the second word of the PUTLINE parameter block.

Figure 105 on page 275 shows the two control block structures possible when
passing an output message to the PUTGET service routine. Note that MODE,

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 273

TERM, or ATTN cannot be coded in the PUTGET macro instruction if you want to
provide multilevel messages to the terminal because mode messages can have
only one level.

Message segments for PUTGET must follow the same rules as those for PUTLINE
informational processing. (See “Stripping Message Identifiers” on page 250.) Note
that if a PUTGET message segment does not contain at least one blank, PUTGET
sets a return code of 24, indicating not valid parameters, in register 15.

PUTGET Processing
Text insertion, message identifier stripping, and text translation are available to all
output messages processed by the PUTGET service routine. For a detailed
description of these functions see “PUTLINE Message Line Processing” on
page 250.

The PUTGET service routine provides other processing capabilities depending upon
whether the message is a mode or a prompt message.

Mode Message Processing: A mode message is a message put out to the
terminal when a command or a subcommand is anticipated. The processing of
mode messages by the PUTGET service routine is dependent upon the following
two conditions:
v Are you providing an output line?
v From what source is the input line coming?

Using the I/O Service Routine Macro Instructions

274 z/OS V1R4.0 TSO/E Programming Services

Is an Output Line Present?: You are not required to provide an output line to the
PUTGET service routine. If you do provide an output line address then PUT
processing will take place. Whether your output line is written to the terminal is then

PUTGET

Service

Routine

Reg. 1

LINK

IOPL

Number

Segment 1

Segment 2

Segment n

Segment n

OLD

PGPB

OLD

Segment n

Next OLD

0 0 0 0 0 0 0 0

Multi-Level Messages

Single-Level Messages

From PGPB

Number

Segment 1

Segment 2

Number

Segment 1

Segment 2

Length Offset Message Segment

Length Offset Message Segment

MODE

TERM may not be specified.

ATTN

OLD

0 0 0 0 0 0 0 0

Figure 105. Control Block Structures for PUTGET Output Messages

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 275

dependent upon the input source indicated by the input stack. If you do not provide
an output line (OUTPUT=0) then only the GET function of the PUTGET service
routine takes place.

What Is the Input Source?: The PUTGET service routine obtains a line of input
from either:
v The REXX data stack
v The input source described by the topmost element of the input stack.

A command processor executing in a REXX exec can use the data stack to
communicate with the user using PUTGET in one of two methods:

v With PUTGET prompt message processing, for example:

v With PUTGET mode message processing, for example:

In each of these cases, if you do not specify either the ATTN or TERM operand,
PUTGET obtains input from the REXX data stack first, if there are elements on the
REXX data stack, and if the topmost element on the input stack is either a terminal
element or a barrier element. When PUTGET has processed all lines of input on
the data stack, it then obtains input from the terminal.

When the topmost element on the input stack is an in-storage list element (including
a command procedure), PUTGET obtains input from the source indicated by the
in-storage list element. This ensures compatibility with applications that are not
sensitive to the REXX data stack (for example, a CLIST invoked from within a
REXX exec).

When you specify PUTGET with the TERM operand, PUTGET obtains input from
the REXX data stack first, if there are elements on the REXX data stack. If there
are no elements on the REXX data stack, PUTGET returns input from the terminal.

When you specify PUTGET with the ATTN operand, the input source is the terminal.

A command processor can determine the source of input with which PUTGET will
satisfy an input request according to the following procedure:

1. If you specify PUTGET OUTPUT=ATTN, the input is from the terminal.

2. If you specify PUTGET OUTPUT=TERM, the input is from the REXX data stack
(if elements exist on the REXX data stack), or from the terminal. To determine if
elements exist on the REXX data stack, use step 4 on page 277.

3. Before you specify PUTGET without OUTPUT=ATTN or OUTPUT=TERM, first
invoke the STACK macro with the INQUIRE=TYPE operand to determine the
type of element on the top of the input stack.

a. If the top element of the input stack is an in-storage list (for example, a
command procedure), the source indicated by the in-storage list is the
source of input.

/* rexx */
x = prompt(’on’) /* Prompting must first be enabled */
queue "DISPLAY" /* Responds to the prompt for an action */
address tso "ALTLIB" /* Command processor that needs a prompt satisfied */

/* rexx */
queue "ALTLIB DISPLAY" /* Queued for later execution */
queue "PROFILE" /* Queued after the above command */
exit /* Leave the exec and execute commands */

Using the I/O Service Routine Macro Instructions

276 z/OS V1R4.0 TSO/E Programming Services

b. If the top element of the input stack is a barrier element that is not a
NONEST barrier element (indicated by a decimal return code of 44 from
STACK), the end of the substack has been reached. PUTGET returns a
return code or considers the barrier a terminal element, depending on what
was specified on the SUBSTACK operand. For more information on the
SUBSTACK operand, see “The Execute Form of the PUTGET Macro
Instruction” on page 263.

c. If the top element of the input stack is a NONEST barrier element (indicated
by a decimal return code of 80 from STACK) and if there are elements on
the REXX data stack, the source of input is the REXX data stack.
Otherwise, the NONEST barrier acts as a BARRIER=* element as described
in step 3b. To determine if elements exist on the REXX data stack, use step
4.

d. If the top element of the input stack is a terminal element, the source of
input is the REXX data stack (if there are elements on the REXX data
stack), or the terminal. To determine if elements exist on the REXX data
stack, use step 4.

4. To determine if elements exist on the REXX data stack, invoke the REXX data
stack replaceable routine, IRXSTK, with the QUEUED function. If the number of
queued elements is greater than zero, elements exist on the REXX data stack.
Otherwise, the source of input is the terminal.

Note: If the source of input might be the REXX data stack, and if the command
processor is invoked by a CLIST and a CLIST DATA-ENDDATA group
exists, input is from the CLIST DATA-ENDDATA group.

Mode Message Response Processing: The source of the input line, as determined
by the top element of the input stack, determines the type of processing performed
by the PUTGET service routine.

v When you provide an output line and the current source of input is the terminal
(there are no elements on the REXX data stack), the PUTGET service routine:
1. Puts out the mode message to the terminal.
2. Returns a line from the terminal.
3. Places the address of the returned line into the fourth word of the PUTGET

parameter block.

v If the line returned from the terminal is a question mark, the PUTGET service
routine:

1. Writes the second-level message (if one exists) for a message written before
the mode message, to the terminal. If no second-level message exists,
PUTGET puts out message IKJ66760I NO INFORMATION AVAILABLE.

2. Puts out the previously written mode message.

3. Returns a line from the terminal.

Note: Whenever terminal input is expected and there are elements on the REXX
data stack, the PUTGET service routine satisfies the input request from the
REXX data stack rather than obtaining a line from the terminal.

Pause Processing: If the terminal user has requested the PAUSE option on the
PROFILE command, the PUTGET service routine makes the second-level
messages available to the terminal, even if the current input source is not the
terminal.

PAUSE processing works as follows. If a second-level message does exist,
PUTGET puts out a message to the terminal informing the terminal user that

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 277

PAUSE processing is in effect. At this point the terminal user can enter either a
question mark to request second-level messages be sent to the terminal, or press
the Enter key to indicate that the information is not needed. If the user presses the
Enter key, the second-level message is eliminated. If the user enters any response
other than a question mark or hitting the Enter key, PUTGET prompts for a correct
response.

Prompt Message Processing: A prompt message is a message that is issued to
the terminal when the program in control requires input from the terminal user.
PROMPT information must come from the terminal and cannot be obtained from
any other source of input. There are three cases when a request for PROMPT
processing is denied by PUTGET:

v When the current source of input, as determined by the top element of the input
stack, is an in-storage procedure that is not an EXEC command procedure.

v When the NOPROMPT attribute is specified in the user’s profile table (UPT).

v When an EXEC command procedure, executing in the background, does not
have a DATA PROMPT entry to satisfy the request or a PROMPT control
statement.

When the PUTGET service routine returns control to the program that invoked it, it
returns a return code of 12 when no prompting was allowed on a PROMPT request
because:

v The current source of input is an in-storage list other than an EXEC command
procedure.

v The NOPROMPT attribute is specified in the user’s profile table (UPT).

v The current source of input is an EXEC command procedure running in the
background, and there is no DATA PROMPT entry to satisfy the request.

If PROMPT processing is enabled, the PUTGET service routine writes the first-level
message to the terminal and obtains an input line from either the REXX data stack
or the terminal. If the input line is a question mark, PUTGET either returns the
next-level message provided or a message informing the user that no information is
available. PUTGET continues to respond to each question mark by writing one
more second-level message to the terminal until the chain is exhausted. PUTGET
then issues a message informing the user that no more information is available.
The task then goes into a wait state until the user enters a line. When the user
enters a line, PUTGET places the address of the line into the fourth word of the
PUTGET parameter block.

Note that for message prompting, PUTGET with TERMGET=EDIT is required.

Input Line Format - The Input Buffer
The fourth word of the PUTGET parameter block contains zeros until the PUTGET
service routine returns a line of input. The service routine places the requested
input line into an input buffer beginning on a doubleword boundary located in
subpool 1. It then places the address of this input buffer into the fourth word of the
PGPB.

Note: The application that invoked PUTGET should release the input buffer’s
storage to prevent the accumulation of unused storage. The application can
free the storage with the FREEMAIN macro instruction after the application
has processed or copied an input line.

For commands not running on a command invocation platform:

Using the I/O Service Routine Macro Instructions

278 z/OS V1R4.0 TSO/E Programming Services

v Input buffer storage returned by PUTGET is automatically freed when the
command processor relinquishes control.

v The application should free the input buffer’s storage after it uses the storage.
This prevents storage from accumulating while the application is running.

For commands running on a command invocation platform:

v Input buffer storage returned by PUTGET is not freed when the command
processor relinquishes control.

v It is important to free the input buffer’s storage after use to prevent the unused
storage from accumulating during a TSO/E session.

v The storage cannot be freed after the application ends because the storage
addresses are not known to new applications.

Regardless of the source of input, the input line returned by the PUTGET service
routine is in a standard format. All input lines are in the variable-length record
format with a fullword header followed by the text returned by PUTGET. Figure 106
shows the format of the input buffer returned by the PUTGET service routine.

The two-byte length field contains the length of the returned input line including the
header (4 bytes). You can use this length field to determine the length of the input
line to be processed, and later, to free the input buffer with the R form of the
FREEMAIN macro instruction. The two-byte offset field is always set to zero on
return from the PUTGET service routine.

Figure 107 on page 281 shows the PUTGET control block structure for a multilevel
PROMPT message after the PUTGET service routine has returned an input line.

Return Codes from PUTGET
When the PUTGET service routine returns control to the program that invoked it,
PUTGET provides one of the following return codes in general register 15.

Table 68. Return Codes from the PUTGET Service Routine

Return Code
Dec(Hex)

Meaning

0(0) PUTGET completed successfully. The line was obtained from either: the
REXX data stack, a command procedure DATA-ENDDATA group, or the
terminal.

4(4) PUTGET completed successfully. The line was obtained from an
in-storage list or command procedure. (MODE messages only.)

8(8) The PUTGET service routine did not complete. An attention interruption
occurred during the execution of PUTGET, and the attention handler
turned on the completion bit in the communications ECB.

Length Offset Text

2 Bytes 2 Bytes

Length

Figure 106. Format of the PUTGET Input Buffer

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 279

Table 68. Return Codes from the PUTGET Service Routine (continued)

Return Code
Dec(Hex)

Meaning

12(C) One of the following situations occurred:

v No prompting was allowed on a PROMPT request. Either the user at
the terminal requested no prompting with the PROFILE command, or
the current source of input is an in-storage list other than an EXEC
command procedure.

v A line could not be obtained after a MODE request. Second-level
messages exist, and the current stack element is not a terminal, but
the terminal user did not request PAUSE processing with the
PROFILE command. The messages are, therefore, not available to
him.

16(10) One of the following situations occurred:

v The NOWAIT option was specified for PUT processing and no line
was put out.

v A barrier element is on top of the stack, the current source of input is
a data set, and SUBSTACK=NO was specified or defaulted. No
command buffer is passed back.

20(14) The NOWAIT option was specified for GET processing and no line was
received.

24(18) Incorrect parameters were supplied to the PUTGET service routine.

28(1C) PUTGET was unable to obtain sufficient storage to satisfy the request
for output buffers.

32(20) The terminal has been disconnected.

40(28) A barrier element is on the top of the stack and SUBSTACK=YES was
specified. No command buffer is passed back.

Note: User abend 204 is issued when the return code from PUTGET is greater
than 12 and less than 40.

Using the I/O Service Routine Macro Instructions

280 z/OS V1R4.0 TSO/E Programming Services

An Example Using PUTGET
Figure 108 on page 282 is an example of the code required to execute the PUTGET
macro instruction. The code uses a multilevel PROMPT message as the PUTGET
output line. It assumes that a line of input will be returned from the terminal and
tests only for a zero return code (PUTGET completed normally).

The execute form of the PUTGET macro instruction builds the I/O parameter list,
using the addresses of the user profile table and the environment control table
supplied in the command processor parameter list. In addition, the I/O parameter
list contains the address of an ECB built by the code, and the address of the list
form of the PUTGET macro instruction as the PUTGET parameter block address.

PUTGET

Service

Routine

Reg. 1

LINK

IOPL

Number

Segment 1

Segment 2

Segment n

OLD

PGPB

OLD

0 0 0 0 0 0 0 0

Input Line

Output Message

Length Offset Message Segment

Length Offset Data

Next OLD

Figure 107. PUTGET Control Block Structure - Input Line Returned

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 281

Note that the TERMPUT, TERMGET, and ENTRY operands are not coded; the
default values are used. Note also that this code is effective only if the top element
of the input stack indicates a terminal as the current source of input.

* ON ENTRY FROM THE TMP, REGISTER 1 CONTAINS A POINTER TO THE COMMAND
* PROCESSOR PARAMETER LIST (CPPL).
*
* SET UP ADDRESSABILITY
* SAVE AREA CHAINING
*

LR 2,1 SAVE THE ADDRESS OF THE CPPL.
USING CPPL,2 ADDRESSABILITY FOR THE CPPL
L 3,CPPLUPT PLACE THE ADDRESS IF THE UPT

* INTO A REGISTER
L 4,CPPLECT PLACE THE ADDRESS OF THE ECT

* INTO A REGISTER
* ISSUE AN EXECUTE FORM OF THE PUTGET MACRO INSTRUCTION. THIS
* EXECUTION WRITES A PROMPTING MESSAGE TO THE TERMINAL AND CHAINS
* A SECOND-LEVEL MESSAGE. IT ALSO FILLS IN THE IOPL.
*

PUTGET PARM=APGPB,UPT=(3),ECT=(4),ECB=ECBADS, X
OUTPUT=(FIRSTOLD,MULTLVL,PROMPT),MF=(E,IOPLADS)

*
* TEST THE CODE RETURNED BY THE PUTGET SERVICE ROUTINE. A RETURN CODE
* OF ZERO INDICATES NORMAL COMPLETION.
*

LTR 15,15 IS THE RETURN CODE ZERO?
BNZ EXIT NO - BRANCH TO AN EXIT.

* YES - FALL THROUGH AND OBTAIN
* THE LINE RETURNED FROM THE
* TERMINAL.

LA 5,APGPB SET ADDRESSABILITY FOR THE
USING PGPB,5 PUTGET PARAMETER BLOCK.
L 1,PGPBIBUF GET THE ADDRESS OF THE LINE

* RETURNED FROM THE TERMINAL.

* PROCESS THE INPUT LINE, AND WHEN FINISHED, FREE THE INPUT BUFFER
*

LH 0,0(1) PUT THE LENGTH OF THE INPUT
* LINE (INCLUDING THE HEADER)
* INTO REGISTER 0.

O 0,=X’01000000’
*

FREEMAIN R,LV=(0),A=(1) FREE THE INPUT BUFFER.
* PROCESSING
* .
* .
* .
*

Figure 108. Example of PUTGET Issuing a Multilevel PROMPT Message (Part 1 of 2)

Using the I/O Service Routine Macro Instructions

282 z/OS V1R4.0 TSO/E Programming Services

EXIT EXIT ROUTINES
* .
* .
* .
APGPB PUTGET MF=L LIST FORM OF THE PUTGET MACRO
* INSTRUCTION. IT EXPANDS TO
* BUILD A PUTGET PARAMETER BLOCK.
ECBADS DC F’0’ A FULLWORD OF STORAGE FOR THE
* COMMAND PROCESSOR ECB.
IOPLADS DC 4F’0’ FOUR FULLWORDS FOR THE INPUT/
* OUTPUT PARAMETER LIST
*

* BUILD THE CHAIN OF OUTPUT LINE DESCRIPTORS AND OUTPUT MESSAGE
* SEGMENTS.
*
FIRSTOLD DC A(NEXTOLD) POINTER TO THE NEXT OLD.

DC F’1’ INDICATE ONLY ONE SEGMENT.
DC A(OUTMSG) THE ADDRESS OF THE OUTPUT

* MESSAGE.
NEXTOLD DC A(0) INDICATES THAT THIS IS THE
* LAST OLD ON THE CHAIN.

DC F’1’ INDICATES ONLY ONE SEGMENT.
DC A(CHNMSG) ADDRESS OF THE SECOND LEVEL

* MESSAGE TO BE CHAINED.
*

* THE PROMPTING MESSAGE AND THE SECOND-LEVEL MESSAGE ARE FORMATTED
* IDENTICALLY. THE FORMAT IS: A TWO BYTE LENGTH INDICATOR, A TWO
* BYTE OFFSET FIELD, AND THE VARIABLE-LENGTH TEXT FIELD.
*
OUTMSG DC H’31’ LENGTH OF THE OUTPUT MESSAGE
* INCLUDING THE FOUR BYTE HEADER.

DC H’0’ THE OFFSET FIELD IS SET TO ZERO
* IN THE FIRST SEGMENT OF A
* MESSAGE.

DC CL27’PLEASE ENTER DATA SET NAME’
* THIS IS THE MESSAGE TO BE
* WRITTEN TO THE TERMINAL.

CHNMSG DC H’37’ LENGTH OF THE SECOND LEVEL
* MESSAGE TO BE PLACED ON AN
* INTERNAL CHAIN. THIS LENGTH
* INCLUDES THE FOUR BYTE HEADER.

DC H’0’ THE OFFSET FIELD IS SET TO ZERO
* IN THE FIRST SEGMENT OF A
* MESSAGE.

DC CL33’MASTER PARTS CATALOG IS REQUIRED’
* THIS IS THE MESSAGE TO BE
* INTERNALLY CHAINED.

IKJPGPB DSECT FOR THE PUTGET PARAMETER
* BLOCK. IT EXPANDS WITH THE
* SYMBOLIC NAME PGPB.

IKJCPPL DSECT FOR THE COMMAND PROCESSOR
* PARAMETER LIST.

END

Figure 108. Example of PUTGET Issuing a Multilevel PROMPT Message (Part 2 of 2)

Using the I/O Service Routine Macro Instructions

Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O 283

Using the I/O Service Routine Macro Instructions

284 z/OS V1R4.0 TSO/E Programming Services

Chapter 10. Using the TGET/TPUT/TPG Macro Instructions for
Terminal I/O

Overview of the TGET, TPUT and TPG Macro Instructions 285
Using the TPUT Macro Instruction to Write a Line to the Terminal 285
Return Codes from TPUT . 291
Using the TPG Macro Instruction to Write a Line Causing Immediate Response 291

Return Codes from TPG . 293
Using the TGET Macro Instruction to Get a Line from the Terminal 293

Return Codes from TGET 295
Parameter Formats for TGET, TPUT, and TPG. 296

Register Form of TGET and TPUT 296
Execute, Standard and List Forms of TPUT 297
Execute and List Forms of TPG 299
Standard, List and Execute Forms of TGET 300

Examples Using the TGET and TPUT Macro Instructions 300
Example 1: Using the Default Values for TPUT and TGET 301
Example 2: Using TPUT with Buffer Address and Buffer Length in Registers 301
Example 3: Using the Register Format of TGET 302

This chapter describes how to use the TGET, TPUT and TPG macro instructions to
process terminal I/O.

Overview of the TGET, TPUT and TPG Macro Instructions
You can use the TGET, TPUT, and TPG macro instructions in any programs that
you write that run under TSO/E. However, when you use TGET, TPUT, or TPG in
an application program, the program becomes TSO/E dependent. In a batch
environment, the only TPUTs that are processed are those with the ASID,
ASIDLOC, or USERIDL keyword referencing an ASID or user ID other than the
current one. TGET, TPG, and other types of TPUT macros are ignored.

The TGET, TPUT, and TPG macro instructions do not require that you build control
blocks for their use. The operands that you code on each of these macro
instructions specify the location and size of the TGET, TPUT, or TPG buffers, and
the functions you want performed.

The TGET and TPUT macro instructions have standard, list, execute, and register
forms. The TPG macro has standard, list, and execute forms.

The sections that follow discuss the syntax of the TPUT, TPG and TGET macro
instructions and the format of the parameters that you must pass.

See z/OS TSO/E Programming Guide for information about using the TGET and
TPUT macro instructions in a full-screen command processor.

Using the TPUT Macro Instruction to Write a Line to the Terminal
Use the TPUT macro instruction to transmit a line of output to the terminal. You can
use the TPUT macro instruction in any application programs to be run under
TSO/E. Note, however, that TPUT does not provide message ID stripping, text
insertion, or second-level message chaining. If you require these features, use the
PUTLINE macro instruction which is described in Chapter 9, “Using the TSO/E I/O
Service Routines for Terminal I/O” on page 191.

© Copyright IBM Corp. 1988, 2002 285

The TPUT macro instruction can be issued in 24-bit or 31-bit addressing mode. All
input specified on the macro instruction must reside below 16 MB in virtual storage.

Figure 109 shows the format of the TPUT macro instruction; the figure combines the
standard, register, list, and execute forms. Each of the operands is explained
following the figure.

Note: For a discussion of register contents and parameter list expansions for
TPUT, see “Parameter Formats for TGET, TPUT, and TPG” on page 296.

buffer address
Standard form: The address of the buffer that holds your line of output. You can
specify any label that is valid in an RX instruction, or place the address of the
label in one of the general registers 1–12, and then specify that register within
parentheses.

Register form: The register that contains the parameters. When the R format is
specified, this operand must be in one of the general registers 1–12, and that
register must be specified within parentheses.

buffer size
Standard form: The size of the output buffer in bytes. The allowable range is
0-32767 bytes. A buffer size of 0 results in no data being transmitted to the
terminal. You can specify this buffer size directly as a number, or you can place
the buffer size into one of the general registers 0, or 2–12, and specify that
register within parentheses.

Register form: The register that contains the parameters. When the R format is
specified, this operand must be in one of the general registers 0 or 2–12, and
that register must be specified within parentheses.

Note: If QSAM is used for terminal I/O and a data set is defined with
BLKSIZE=80 and RECFM=U, each line will be truncated by 1 character.
This byte (the last byte) is reserved for an attribute character.

R indicates that this is the register form of the TPUT macro instruction. You must
place the parameters you want passed to TPUT into two registers and specify
those registers as the first two operands of the macro instruction.

If the registers you specify as the first and second operands are registers 1 and
0 respectively, the TPUT macro instruction uses those registers. However, if you
use registers 2–12, the macro expansion loads registers 1 and 0, respectively,
from the registers you specify as the buffer address and buffer size. Therefore,

[symbol] TPUT [buffer address,buffer size]
[,EDIT]]
[,NOEDIT]]
[,ASIS][,WAIT][,NOHOLD][,NOBREAK]]
[,CONTROL][,NOWAIT][,HOLD][,BREAKIN]]
[,FULLSCR]]

[,R][,HIGHP][,ASID=id]]
[,MF={L }][,LOWP][,ASIDLOC=address]]
[{(E,ctrl addr)}] [,USERIDL=address]]

[[TOKNIN=address]]

Figure 109. The Standard, Register, List, and Execute Forms of the TPUT Macro Instruction

Using the TPUT Macro Instruction to Write a Line to the Terminal

286 z/OS V1R4.0 TSO/E Programming Services

you might find it advantageous to use registers 1 and 0. The expansion of the
register form of the TPUT macro instruction destroys the contents of registers 1
and 0.

The R operand and all other optional operands are mutually exclusive. If both R
and any other optional operands are coded, the macro will not expand.

MF=L | (E,ctrl addr)
indicates the form of the TPUT macro instruction.

L specifies the list form.

(E,ctrl addr)
specifies the execute form and the address of the list form.

EDIT
indicates that in addition to minimal editing (see ASIS), the following TPUT
functions are requested:

1. All trailing blanks are removed before the line is written to the terminal. If a
blank line is sent, the terminal vertically spaces one line.

2. Control characters are added to the end of the output line to position the
cursor to the beginning of the next line.

3. All terminal control characters, except backspace, are replaced with a
printable character.

4. Only those characters that appear in USA EBCDIC keyboard layout and
code charts are supported. All others are replaced with a printable
character. The replacement of characters includes the representation of the
keyboard features and the special characters $, #, @ without hexadecimal
equivalents of the USA EBCDIC code. For more information about keyboard
features character sets, see IBM 3270 Information Display System:
Character Set Reference.

EDIT is the default value for the EDIT, ASIS, CONTROL, FULLSCR, and
NOEDIT operands.

NOEDIT
indicates that, if the terminal is an IBM 3270 display, the message is transmitted
completely unedited. It is assumed that a command processor that uses this
full-screen option has structured the data stream with the necessary commands
to perform the display function. For LU_T1 terminals, this option is converted to
ASIS.

TSO/VTAM supports 3270 extended data stream functions with the TPUT
NOEDIT and NOEDIT modes of input. For information about specifying the
NOEDIT mode of input, refer to “STFSMODE — Set Full-Screen Mode” on
page 168.

ASIS
indicates that minimal editing is to be performed by TPUT as follows:

1. The line of output is translated from EBCDIC to terminal code. Not valid
characters are converted to a printable character to prevent program caused
I/O errors. This does not mean that all unprintable characters are
eliminated. For example, restore, uppercase, lower case, bypass, and bell
ring might be valid but unprintable characters at some terminals. (See
CONTROL.)

2. Transmission control characters are added.

3. An EBCDIC NL, placed at the end of the message, indicates to TPUT that
the cursor is to be returned at the end of the line. NL is replaced with

Using the TPUT Macro Instruction to Write a Line to the Terminal

Chapter 10. Using the TGET/TPUT/TPG Macro Instructions for Terminal I/O 287

whatever is necessary to cause the cursor to return for that particular
terminal type. This NL processing occurs only if you specify ASIS, and if the
NL is the last character in your message.

If you specify EDIT, NL is handled as described in item 3 under EDIT.

If the NL is embedded in your message, a semicolon or colon may be
substituted for NL and sent to the terminal. No idle characters are added
(see item 6 below). This can cause overprinting, particularly on terminals
that require a line-feed character to position the carrier on a new line.

4. If you have used backspace in your output message, but the backspace
character does not exist on the terminal type to which the message is being
routed, the backspace character is removed from the output message.

5. If the output line is longer than the terminal line size, control characters are
added as needed to cause the message to display on several lines.

6. A sufficient number of idle characters is added to the end of each output
line to prevent the transmission of output to the terminal while the cursor is
being returned to the left-hand margin.

7. Including a bypass character, bypass carriage return, or bypass new-line
character in the TPUT macro data suppresses printing of the next input
entered by the user at the 3270 terminal. VTAM moves the cursor to the
next available line, unlocking the keyboard. No more data is sent to the
terminal until the terminal user enters data or presses the Enter key. The
data entered by the user is not printed at the terminal.

CONTROL
indicates that this line is composed of terminal control characters and does not
display or move the cursor on the terminal. This option should be used for
transmission of characters such as bypass, restore, or bell ring. See item 7
under ASIS for additional information.

FULLSCR
indicates that, for IBM 3270 display terminals, the message will be transmitted
essentially unedited. The FULLSCR option is designed to allow you to use
special features of the 3270 system. For any other terminal type, this option is
treated exactly as ASIS. With the FULLSCR option, only the following editing is
performed:

1. If the first character in your message is an escape control character (X'27'),
the two characters following it are treated as a command code and as a
write control character by the 3270. Note that the command code should
always be for a remote 3270. If necessary, TPUT will convert the code to
that for a local 3270. If the first character is not an escape character, a
default write command and a write control character are added to the
beginning of the message. Any attachment-dependent characters required
for correct transmission of the data stream are provided by the access
method.

2. Transmission control characters (SOH, STX, ETX, ETB, EOT, and NAK) and
characters having no 3270 equivalent (X'04', X'06', X'14' through X'17', and
X'24') are converted to printable colons to prevent program-caused I/O
errors.

Lines are not counted when you use this option.

If the OWAITHI value specified in your TSO/E parameters is not large enough
to contain your entire message, or if the BUFFERS and BUFFERSIZE
parameters are specified so that your message does not fit into all of the
system’s buffers, the TPUT operation does not proceed, and code X'10' is

Using the TPUT Macro Instruction to Write a Line to the Terminal

288 z/OS V1R4.0 TSO/E Programming Services

returned. For a description of OWAITHI, see z/OS MVS Initialization and Tuning
Reference. Without the FULLSCR option, your TPUT proceeds buffer-by-buffer
as buffers become available.

If FULLSCR is specified for a message destined for another terminal, ASIS will
be used instead.

WAIT | NOWAIT

WAIT
specifies that control is not returned to the program that issues the TPUT
macro instruction until the output line is placed into a terminal output buffer.
If no buffers are available for the same ASID TPUT (TPUT without any
ASID, ASIDLOC, or USERIDL option - not a cross-memory TPUT), the
issuing program is placed into a wait state until buffers become available,
and the output line is placed into them. WAIT is the default value for the
WAIT and NOWAIT operands.

Note: A cross-memory TPUT with WAIT operand will be rejected with a
return code of 20 (X'14') when the buffers are not available. High
buffer threshold for a cross-memory (ASID) TPUT is used to allow
more storage for ASID TPUTs. It is calculated as:
MAX(24000, 1.5 * high buffer threshold)

where high buffer threshold is specified by parameter HIBFREXT in the
member TSOKEY00 of SYS1.PARMLIB.

NOWAIT
specifies that control is returned to the program that issues the TPUT macro
instruction, whether or not a terminal output buffer is available for the output
line. If no buffer is available, TPUT returns a code of 4 in register 15.

NOHOLD | HOLD

NOHOLD
indicates that control is returned to the program that issues the TPUT
macro instruction as soon as the output line is placed in terminal output
buffers.

NOHOLD is the default value for the NOHOLD and HOLD operands.

HOLD
specifies that the program that issues the TPUT macro instruction cannot
continue its processing until this output line is written to the terminal or
deleted. The TPUT macro with the HOLD option is not discarded during
RESHOW processing.

NOBREAK | BREAKIN

NOBREAK
specifies that if the user starts to enter input, the user is not interrupted.
The output message is placed on the output queue and displayed after the
user completes the line.

NOBREAK is the default value for the NOBREAK and BREAKIN operands.

BREAKIN
specifies that output has precedence over input. If the user starts to enter
input, input is interrupted, and this output line is displayed. Data received
before the interruption is displayed following this output line. However, the
amount of data that is displayed is unpredictable.

Using the TPUT Macro Instruction to Write a Line to the Terminal

Chapter 10. Using the TGET/TPUT/TPG Macro Instructions for Terminal I/O 289

HIGHP | LOWP

HIGHP
specifies that this message must be sent to the terminal, even though the
destination terminal does not display messages from other terminals. This
operand counters the effect of the interterminal communication bit when the
bit is set by the PROFILE command.

The operand is recognized only if your program is authorized (either by
system key, supervisor state, or APF). The ASID keyword must also be
specified. HIGHP is the default if neither HIGHP nor LOWP is specified, and
if the issuing program is authorized.

LOWP
specifies that, if the user of the destination terminal allows interterminal
messages, this TPUT will be sent to the terminal. If such messages are not
allowed, the message is not displayed, and a code of X'0C' is returned,
indicating that the message was not displayed. The LOWP operand is
recognized only when ASID is specified. To use this operand, your program
must be authorized (either by system key, supervisor state, or APF).

If you specify LOWP, your program should have an alternate method of
transmitting the message to the terminal user. For example, a message
data set could be used.

ASID | ASIDLOC | USERIDL
specifies the ASID (address space identifier) of the target terminal, the address
of that ASID, or the address of a field that contains a user ID. If you specify
ASID, you must supply an ASID number. If you use ASIDLOC, you must supply
the address of the halfword that contains the ASID. If you use USERIDL, you
must supply the address of the 8-byte field that contains the user ID. The user
ID must be left-justified and, if necessary, padded with blanks. ASID, ASIDLOC,
or USERIDL can be specified in a register (2–12), and must be right-justified.
The register number must be enclosed in parentheses. If USERIDL is used, the
NOHOLD option is both required and the default if not specified.

ASID, ASIDLOC, and USERIDL are not valid when you specify them with
FULLSCR or ASIS parameters.

Note: Normally, a program invokes TPUT to issue a message to the user
running that program; that is, ASID, ASIDLOC, and USERIDL are not
specified. If that program is run in the background, the TPUT has no
effect.

If the TPUT specifies an ASID or user ID, the message is sent to the target
terminal. ASID and USERID TPUTs from programs not in supervisor state or not
authorized under APF are prefixed with a plus sign (+) to prevent possible
counterfeiting of system messages to an operator console.

TOKNIN
specifies the address of a security token to be used by VTAM. The address can
be specified as either a register (such as (R4)), or as a label (with no
parentheses) that contains the address of the user token.

The operand is recognized only if your program is authorized (either by system
key 0 - 7, supervisor state, or APF-authorized).

You may specify the TOKNIN operand only with the execute form of the TPUT
macro.

If you specify TOKNIN= with no value, the entire TOKNIN operand is ignored.

Using the TPUT Macro Instruction to Write a Line to the Terminal

290 z/OS V1R4.0 TSO/E Programming Services

Return Codes from TPUT
When TPUT returns control to the program that invoked it, in either the foreground
or the background, TPUT supplies one of the following return codes in general
register 15:

Table 69. Return Codes from TPUT

Return Code
Dec(Hex) Meaning

0(0) TPUT completed successfully.

4(4) NOWAIT was specified and no terminal output buffer was available.

8(8) An attention interruption occurred while TPUT was processing. The
message was not sent.

12(C) A TPUT macro instruction with an ASID operand was issued but the
user, indicated by the ASID, requested that interterminal messages not
be printed on the terminal. The message was not sent.

16(10) Incorrect parameters were passed to TPUT.

20(14) The terminal was logged off and could not be reached. Cross-memory
TPUT could not get buffer.

24(18) The sender is not permitted to send a message to the intended user.

28(1C) The intended receiver of the message is logged on at a security label
too low to receive the message.

32(20) No storage is available.

36(24) JESXCF at remote side is downlevel.

40(28) JESXCF at local side is downlevel.

44(32) JESXCF function call failed.

Using the TPG Macro Instruction to Write a Line Causing Immediate
Response

Use the TPG macro instruction to transmit a line of output to the terminal if that line
of output will cause the device to respond immediately with input. You can use the
TPG macro instruction in any application programs that you write to run under
TSO/E. If a TPG macro is coded in a background program, the TPG is ignored.

The TPG macro is designed for use on any terminal type that supports the Query
function. The main use of TPG is to perform the Query function for a user who has
included a Read Partition Structured field. TPG NOEDIT creates an outbound
request unit with an associated change direction indicator to allow the device to go
into send state. This data is not inspected. A TGET macro must be issued to
retrieve the query response.

The TPG macro instruction can be invoked in either 24-bit or 31-bit addressing
mode. All input specified on the macro must reside below 16 MB in virtual storage.

Figure 110 shows the standard, list and execute forms of the TPG macro
instruction. The register format cannot be used for the TPG macro. Each of the
operands is explained following the figure. For a discussion of parameter list
expansions for TPG, see “Parameter Formats for TGET, TPUT, and TPG” on
page 296.

Using the TPUT Macro Instruction to Write a Line to the Terminal

Chapter 10. Using the TGET/TPUT/TPG Macro Instructions for Terminal I/O 291

buffer address
Standard form: The address of the buffer that holds your output data. You can
specify any address valid in an RX instruction, or place the address in one of
the general registers 1–12, and then specify that register within parentheses.

buffer size
Standard form: The size of the output buffer in bytes. The allowable range is
0-32767 bytes. A buffer size of 0 results in no data being transmitted to the
terminal. You can specify this buffer size directly as a number, or you can place
the buffer size into one of the general registers 0 or 2–12 and specify that
register within parentheses.

NOEDIT
indicates that, if the terminal is an IBM 3270 display, the message is transmitted
completely unedited. If your command processor uses this option, you must
structure the data stream with the necessary commands to perform the display
function (by including the command, write control character, structured fields,...).
The command processor should supply only the data stream. Any
attachment-dependent characters (such as X'27' for bisynchronous devices) are
provided by the access method. For LU_T1 terminals, this option is treated
exactly like the ASIS option of the TPUT macro.

Note: NOEDIT is the default, and is the only mode for the TPG macro. If
NOEDIT is omitted, a comma must be used.

WAIT | NOWAIT

WAIT
specifies that control is not returned to the program that issued the TPG
macro instruction until the output line is placed into a terminal output buffer.
If no buffers are available, the issuing program is placed into a wait state
until buffers become available, and the output line is placed into them.
WAIT is the default value for the WAIT and NOWAIT operands.

NOWAIT
specifies that control is returned to the program that issued the TPG macro
instruction, whether or not a terminal output buffer is available for the output
line. If no buffer is available, TPG returns a code of 4 in register 15.

NOHOLD | HOLD

NOHOLD
indicates that control is returned to the program that issued the TPG macro
instruction as soon as the output line is placed in terminal output buffers.

NOHOLD is the default value for the NOHOLD and HOLD operands.

HOLD
specifies that the program that issued the TPG macro instruction cannot
continue its processing until this output line is written to the terminal or
deleted.

[symbol] TPG buffer address,buffer size
[[,NOEDIT] [,WAIT][,NOHOLD]]
[[,NOWAIT][,HOLD]]
[[,MF={L }]
[[{(E,ctrl addr)}]

Figure 110. The Standard, List, and Execute Forms of the TPG Macro Instruction

Using the TPG Macro Instruction to Write a Line Causing ...

292 z/OS V1R4.0 TSO/E Programming Services

MF=L | (E,ctrl addr)
indicates the form of the TPG macro instruction.

L specifies the list form.

(E,ctrl addr)
specifies the execute form and the address of the list form.

Return Codes from TPG
When TPG returns control to the program that invoked it, either in the foreground or
in the background, TPG supplies one of the following return codes in general
register 15:

Table 70. Return Codes from TPG

Return Code
Dec(Hex) Meaning

0(0) TPG completed successfully.

4(4) NOWAIT was specified and no terminal output buffer was available.

8(8) An attention interruption occurred while TPG was processing. The
message was not sent.

16(10) Incorrect parameters were passed to TPG.

20(14) The terminal was logged off and could not be reached.

Using the TGET Macro Instruction to Get a Line from the Terminal
Use the TGET macro instruction to read a line of input from the terminal. A line of
input is defined as all the data between the beginning of the input line and a
line-end delimiter. A line-end delimiter is any character or combination of characters
that causes the cursor to return to the left-hand margin on a new line, or that
terminates transmission from the terminal.

You can use the TGET macro instruction in any application program that is run
under TSO/E. Note, however, that TGET does not provide access to in-storage lists,
nor does it perform any type of logical line processing on the returned line. If you
require these features, use the GETLINE macro instruction, which is discussed in
Chapter 9, “Using the TSO/E I/O Service Routines for Terminal I/O” on page 191.

Each time TGET returns control to your program, register 1 contains the number of
bytes of data actually moved from the terminal to your input buffer. If your buffer is
smaller than the line of input entered at the terminal, only as much of the input line
as can be contained in the input buffer is moved. Return code X'0C' indicates that
only part of the line was obtained by TGET. You must then issue as many TGET
macro instructions as are required to get the rest of the line of input.

The TGET macro instruction can be invoked in 24-bit or 31-bit addressing mode. All
input specified on the macro must reside below 16 MB in virtual storage.

Figure 111 shows the format of the TGET macro instruction; it combines the
standard, register, and list forms. Each of the operands is explained following the
figure. For a discussion of register contents and parameter list expansions for
TGET, see “Parameter Formats for TGET, TPUT, and TPG” on page 296.

Using the TPG Macro Instruction to Write a Line Causing ...

Chapter 10. Using the TGET/TPUT/TPG Macro Instructions for Terminal I/O 293

buffer address
Standard form: The address of the buffer that is to receive the input line. This
can be any address valid in an RX instruction, or the address can be placed in
one of the general registers 1–12, and that register specified within
parentheses.

Register form: The register that contains the parameters. When the R format is
specified, this operand must be in one of the general registers 1–12, and that
register must be specified within parentheses.

buffer size
Standard form: The size of the input buffer in bytes. The allowable range is
0-32767 bytes. You can specify this buffer size directly as a number, or you can
place the buffer size into one of the general registers 0, or 2–12, and specify
that register within parentheses. A TGET with a 0-length buffer size will
successfully get a null line.

Register form: The register that contains the parameters. When the R format is
specified, this operand must be in one of the general registers 0 or 2–12, and
that register must be specified within parentheses.

R indicates that this is the register form of the TGET macro instruction. You must
place the parameters you want passed to TGET into two registers and specify
those registers as the first two operands of the macro instruction.

Note: If the registers you specify as the first and second operands are registers
1 and 0 respectively, the TGET macro instruction uses those registers.
However, if you use registers 2–12, the macro expansion loads registers
1 and 0, respectively, from the registers you specify as the buffer
address and buffer size. Therefore, you might find it advantageous to
use registers 1 and 0.

The R operand and all other optional operands are mutually exclusive. If both R
and any other optional operands are coded, the macro will not expand.

EDIT
specifies that in addition to minimal editing (see ASIS), the following TGET
functions are requested:

1. All terminal control characters (nongraphic characters such as bypass, line
feed, restore, prefix and the character immediately following it) are removed
from the data.

2. When backspace is not used for character deletion, the horizontal tab (HT)
and the backspace (BS) characters remain in the data.

3. If the returned input line is shorter than the input buffer length, the buffer is
padded with blanks. These blanks are not included in the character count
returned in register 1.

EDIT is the default value for the EDIT and ASIS operands.

[[,EDIT] [,WAIT]]
[symbol] TGET buffer address,buffer size[[,ASIS] [,NOWAIT]]

[[,R]
[[,MF={L }]
[[{(E,ctrl addr)}]

Figure 111. The Standard, Register, List, and Execute Forms of the TGET Macro Instruction

Using the TGET Macro Instruction to GET a Line from the Terminal

294 z/OS V1R4.0 TSO/E Programming Services

ASIS
specifies that minimal editing is done as described below:

1. Transmission control characters are removed.

2. The returned input line is translated from terminal code to EBCDIC. Not
valid characters are compressed out of the data.

3. Line deletion and character deletion are performed according to the
specifications in the terminal status block.

4. New line (NL), cursor return (CR), and line feed (LF) characters, if present
at the end of the line, are not included in the data count returned in register
1.

5. After the input message is received, the cursor is returned to the left-hand
margin of the next line before any output to the terminal is displayed.

WAIT | NOWAIT

WAIT
specifies that control is not returned to the program that issues the TGET
macro instruction until the input line is placed into your input buffer. If an
input line is not available from the terminal, the issuing program is placed
into a wait state until a line becomes available and is read into your input
buffer. WAIT is the default value for the WAIT and NOWAIT operands.

NOWAIT
specifies that, whether or not an input line is available from the terminal,
control is returned to the program that issues the TGET macro instruction. If
no line is returned, TGET returns a code of X'04' in register 15.

MF=L | (E,ctrl addr)
indicates the form of the TGET macro instruction.

L specifies the list form.

(E,ctrl addr)
specifies the execute form and the address of the list form.

Return Codes from TGET
When TGET returns control to the program that invoked it, TGET supplies, in
register 1, the length of the message moved into your buffer. In addition, one of the
following return codes is supplied in register 15:

Table 71. Return Codes from TGET

Return Code
Dec(Hex) Meaning

0(0) TGET completed successfully. Register 1 contains the length of the
input line read into your input buffer.

4(4) NOWAIT was specified and no input was available to be read into your
input buffer.

8(8) An attention interruption occurred while TGET was processing. The
message was not received.

12(C) Your input buffer was not large enough to accept the entire line of input
entered at the terminal. Subsequent TGET macro instructions will obtain
the rest of the input line.

16(10) Incorrect parameters were passed to TGET.

20(14) The terminal was logged off and could not be reached.

Using the TGET Macro Instruction to GET a Line from the Terminal

Chapter 10. Using the TGET/TPUT/TPG Macro Instructions for Terminal I/O 295

Table 71. Return Codes from TGET (continued)

Return Code
Dec(Hex) Meaning

24(18) TGET completed successfully. Register 1 contains the length of the
input line read into your buffer. The data was received in NOEDIT mode.

28(1C) Your input buffer was not large enough to accept the entire line of input
entered at the terminal. Subsequent TGET macro instructions will obtain
the rest of the input line. The data was received in NOEDIT mode.

Parameter Formats for TGET, TPUT, and TPG

Register Form of TGET and TPUT
If you use the register form of the TGET or TPUT macro instruction, you must code
the parameters into two registers. Specify these two registers, enclosed in
parentheses, as the first two operands of the TGET or TPUT macro instruction,
followed by the R operand to indicate that you are executing the register form of the
macro instruction.

If the registers you specify as the first and second operands of the macro
instruction are register 1 and register 0 respectively, the TGET or TPUT macro
instruction uses those registers. However, if you specify registers 2–12, the macro
expansion loads registers one and zero, respectively, from the registers you specify.
For TPUT, the expansion destroys the contents of registers 0 and 1. The R format
cannot be used for the TPG macro.

For the TPUT macro, you must format the registers as shown in Figure 112.

For the TGET macro, you must format the registers as shown in Figure 113.

Address Space ID (ASID-TPUT only) Buffer Size

Flags Address of your Input or Output Buffer

Address of User ID

R0

R1

R15

Figure 112. TPUT Parameter Registers

Using the TGET Macro Instruction to GET a Line from the Terminal

296 z/OS V1R4.0 TSO/E Programming Services

For both TPUT and TGET, the high-order byte of register 1 contains flags that
indicate what type of processing you want performed. Table 72 shows the meanings
of these flags.

Table 72. Option Flags Contained in Register 1

Setting Meaning

0... Always set to 0 for TPUT.
1... Always set to 1 for TGET.
.0.. No user ID.
.1.. Register 15 contains address of user ID.
..0. HIGHP processing is requested.
..1. LOWP processing is requested.
...0 WAIT processing is requested.
...1 NOWAIT processing is requested.
.... 0... NOHOLD processing is requested.
.... 1... HOLD processing is requested.
.... .0.. NOBREAK processing is requested.
.... .1.. BREAKIN processing is requested.
.... ..00 EDIT processing is requested.
.... ..01 ASIS processing is requested.
.... ..10 CONTROL processing is requested.
.... ..11 FULLSCR processing is requested.

Execute, Standard and List Forms of TPUT
If you use the execute form of the TPUT macro, the coded parameters expand into
the parameter list shown in Figure 114 on page 298.

Reserved Buffer Size

Flags Address of your Input Buffer

R0

R1

Figure 113. TGET Parameter Registers

Parameter Formats for TGET, TPUT, and TPG

Chapter 10. Using the TGET/TPUT/TPG Macro Instructions for Terminal I/O 297

The possible settings of Flag1 in the parameter list expansion for the execute form
of TPUT are the same as those for the high-order byte of register 1 in the register
form. Table 72 on page 297 describes the meanings of these flags.

If you use the standard form of the TPUT macro, you can code your parameters
using registers or symbols. In this case, the TPUT macro expands to load the
parameters into registers 0, 1, and 15 in the format illustrated in Figure 112.

If you use the list form of the TPUT macro, the coded parameters expand into the
parameter list shown in Figure 115.

General

Register 1

Address Space ID Output Buffer Size

Address of Your Output Buffer

(X'80')R0

+0

+4

+8

+C

Reserved

Flag 2

(X'80')

Flag 1

Reserved

Address of User ID (if specified)

Figure 114. Parameter List Expansion for the Execute Form of TPUT

Parameter Formats for TGET, TPUT, and TPG

298 z/OS V1R4.0 TSO/E Programming Services

The value of Flag2 in the parameter list expansion for the list form of TPUT is X'01',
if the NOEDIT option is specified.

Execute and List Forms of TPG
If you use the execute form of the TPG macro, the coded parameters expand into
the parameter list shown in Figure 116.

Output Buffer Size

Address of Your Output Buffer

+0

+4

+8

+C

Address Space ID (ASID-TPUT only)

Address of User ID

ReservedFlag 2

Flag 1

Figure 115. Parameter List Expansion for the List Form of TPUT

General

Register 1

Output Buffer Size

Address of Your Output Buffer

Flag 2

(X'80')

(X'80') ReservedR0

+0

+4

+8

+C

Address Space ID (ASID-TPUT only)

Address of User ID

Reserved

Figure 116. Parameter List Expansion for the Execute Form of TPG

Parameter Formats for TGET, TPUT, and TPG

Chapter 10. Using the TGET/TPUT/TPG Macro Instructions for Terminal I/O 299

If you use the list form of the TPG macro, the coded parameters expand into the
parameter list shown in Figure 117.

For Figure 117, the possible settings of Flag1 are shown in Table 72 on page 297.
Flag2 is X'01' for the NOEDIT option and X'02' for the TPG macro.

Standard, List and Execute Forms of TGET
If you use the standard, list, or execute form of the TGET macro, the coded
parameters expand into the parameter list shown in Figure 118.

In Figure 118, the possible settings of Flags are the same as those for the
high-order byte of register 1 in the register form. Table 72 on page 297 describes
the meanings of these flags.

Examples Using the TGET and TPUT Macro Instructions
The following coding examples show different ways to use the TGET and TPUT
macro instructions.

Output Buffer Size

Address of Your Output Buffer

Flag 2

+0

+4

+8

+C

Reserved

Reserved

ReservedFlag 1

Figure 117. Parameter List Expansion for the List Form of TPG

Reserved Input Buffer Size

Flags Address of Your Input Buffer

Execute and Standard Form

Reserved Input Buffer Size

Flags Address of Your Input Buffer

List Form

R0

R1

Figure 118. Parameter List Expansion for the Standard, List, and Execute Forms of TGET

Parameter Formats for TGET, TPUT, and TPG

300 z/OS V1R4.0 TSO/E Programming Services

Example 1: Using the Default Values for TPUT and TGET
Figure 119 shows a TPUT and a TGET macro instruction. They both use the default
values; that is, the TPUT macro instruction defaults to EDIT, WAIT, NOHOLD, and
NOBREAK, and the TGET macro instruction defaults to EDIT and WAIT.

The program issuing the TGET macro instruction is not given control until a line of
data is returned. The default value is WAIT. If less than 130 characters are entered,
the input buffer is padded with blanks. The default is EDIT. Remember that the
actual length of the data in the input buffer is returned in register 1.

Example 2: Using TPUT with Buffer Address and Buffer Length in
Registers

In the coding example shown in Figure 120 on page 302, the output message buffer
address and length are loaded into registers, and those registers are coded as
operands in the TPUT macro instruction.

*
* PROCESSING
*
* USE THE TPUT MACRO INSTRUCTION TO WRITE A MESSAGE TO THE TERMINAL.
* USE THE DEFAULT VALUES.
*

TPUT MESSAGE1,24 THE BUFFER ADDRESS IS THE SYMBOLIC
* ADDRESS MESSAGE1, AND THE BUFFER
* LENGTH IS 24 BYTES.

LTR 15,15 TEST RETURN CODE - ZERO INDICATES
* SUCCESSFUL COMPLETION.

BNZ ERRTN IF THE RETURN CODE IS NOT ZERO,
* GO TO AN ERROR ROUTINE.
* USE THE TGET MACRO INSTRUCTION TO OBTAIN AN INPUT LINE FROM THE
* TERMINAL. TAKE THE DEFAULT VALUES.
*

TGET BUFFER,130 THE BUFFER ADDRESS IS THE SYMBOLIC
* ADDRESS, BUFFER, AND THE INPUT
* BUFFER LENGTH IS 130 BYTES.

LTR 15,15 TEST THE RETURN CODE - ZERO
* INDICATES SUCCESSFUL COMPLETION.

BNZ ERRTN IF THE RETURN CODE IS NOT ZERO,
* BRANCH TO AN ERROR ROUTINE.
*
* PROCESSING
*
ERRTN ERROR ROUTINE PROCESSING
* .
* .
* .
* STORAGE DECLARATIONS
*

DS 0F
MESSAGE1 DC CL24’THIS IS A TPUT MESSAGE. ’
BUFFER DS CL130

END

Figure 119. Example 1: TPUT and TGET Macro Instructions Using the Default Values

Examples Using the TGET and TPUT Macro Instructions

Chapter 10. Using the TGET/TPUT/TPG Macro Instructions for Terminal I/O 301

You might want to do this when, for example, the TPUT macro instruction is issued
in a subroutine which receives, as parameters, a pointer to the message and the
message length.

Example 3: Using the Register Format of TGET
Figure 121 on page 303 shows the code necessary to issue a register format TGET
macro instruction. The buffer length, buffer address, and the option flags are loaded
into registers zero and one. Note that the flag byte in register one is set to binary
B'10000001', indicating that this is a TGET macro instruction requesting ASIS
processing. This means that only minimal editing is performed on the input line.

*
* PROCESSING
*
* PLACE THE BUFFER ADDRESS AND THE BUFFER LENGTH INTO REGISTERS.
*

LA 0,L’MESSAGE1 LOAD THE BUFFER LENGTH INTO
* REGISTER ZERO. THE LOAD ADDRESS
* INSTRUCTION INSURES THAT THE HIGH
* ORDER BYTE IS ZEROED IN THE
* REGISTER.

LA 1,MESSAGE1 LOAD ADDRESS OF THE OUTPUT
* BUFFER INTO REGISTER 1.
* ISSUE THE TPUT MACRO INSTRUCTION.
*

TPUT (1),(0)
*

LTR 15,15 TEST THE RETURN CODE - ZERO
* INDICATES SUCCESSFUL COMPLETION.

BNZ ERRTN IF THE RETURN CODE IS NOT ZERO,
* GO TO AN ERROR ROUTINE.
* PROCESSING
*
ERRTN ERROR PROCESSING
* .
* .
* .
* STORAGE DECLARATIONS
*

DS 0F
MESSAGE1 DC C’THIS IS A TPUT MESSAGE.’
*

END

Figure 120. Example 2: TPUT Macro Instruction with Buffer Address and Buffer Length in
Registers

Examples Using the TGET and TPUT Macro Instructions

302 z/OS V1R4.0 TSO/E Programming Services

GETFLGS EQU B’10000001’
*
* PROCESSING
*
* PLACE THE BUFFER SIZE AND THE BUFFER ADDRESS INTO REGISTERS 0 AND 1.
*

LA 0,L’BUFFER LOAD THE BUFFER SIZE INTO
* REGISTER ZERO.

LA 1,BUFFER LOAD BUFFER ADDRESS INTO
* REGISTER 1.

LA 4,GETFLGS THIS WILL BE THE HIGH-ORDER
* BYTE OF REGISTER 1.

SLL 4,24 SHIFT THE FLAGS TO THE HIGH-
* ORDER BYTE

OR 1,4 MERGE FLAG BYTE INTO REGISTER 1.
*
* ISSUE THE TGET MACRO INSTRUCTION SPECIFYING REGISTER FORMAT (R).
*

TGET (1),(0),R
*

LTR 15,15 TEST RETURN CODE. IF NOT ZERO,
BNZ ERRTN GO TO AN ERROR ROUTINE.

*
* PROCESSING
*
ERRTN ERROR PROCESSING
* .
* .
* .
* STORAGE DECLARATIONS
*
BUFFER DS CL130 INPUT BUFFER
*

END

Figure 121. Example 3: TGET Macro Instruction Register Format

Examples Using the TGET and TPUT Macro Instructions

Chapter 10. Using the TGET/TPUT/TPG Macro Instructions for Terminal I/O 303

Examples Using the TGET and TPUT Macro Instructions

304 z/OS V1R4.0 TSO/E Programming Services

Chapter 11. Using the TSO/E Message Handling Routine
IKJEFF02

Overview of Message Handling 305
TSO/E Message Issuer Routine (IKJEFF02). 305

Passing Control to the TSO/E Message Issuer Routine 306
The Input Parameter List . 306
Using IKJTSMSG to Describe Message Text and Insert Locations 314

Return Codes from the TSO/E Message Issuer Routine 314
Example Using IKJTSMSG . 315

This chapter describes how to use the TSO/E message handling routine
(IKJEFF02) in a command processor to issue messages.

Overview of Message Handling
There are three types of TSO/E messages:
v Prompting messages
v Mode messages
v Informational messages

Prompting messages begin with ENTER or REENTER, and require a response from
the user.

Mode messages are the READY messages sent by the terminal monitor program,
and any other similar messages sent by command processors, such as the EDIT
mode message sent by the EDIT command processor. They inform the user which
command is in control and let the user know that the system is waiting for the user
to enter a new command or subcommand.

Informational messages do not require an immediate response from the user.

Messages should usually have other messages associated with them that more fully
explain the initial message. These messages, called second-level messages, are
displayed only if the user specifically requests them by entering a question mark (?)
in response to the initial message. Prompting messages can have any number of
second-level messages. An informational message can have only one second-level
message associated with it. Mode messages cannot have second-level messages.

TSO/E Message Issuer Routine (IKJEFF02)
The TSO/E message issuer routine issues a message using PUTLINE, PUTGET,
write-to-operator (WTO), or write-to-programmer (WTP). You can indicate to
IKJEFF02 which of these services should be used to issue the message, or you
can allow the default, PUTGET, to be used. For prompting and mode messages,
you should indicate to IKJEFF02 that PUTGET should be used to issue the
message; for informational messages, PUTLINE should be used. If you want to
issue the message in the language specified in the user profile table (UPT), you
must indicate to IKJEFF02 that PUTGET or PUTLINE should be used.

For more information about providing translated messages, see “PUTLINE Message
Line Processing” on page 250.

© Copyright IBM Corp. 1988, 2002 305

You can invoke IKJEFF02 just to issue the message to the terminal, both to issue
the message and return the requested message to the caller in the caller’s buffers,
or just to return the message to the caller. This process of returning the message is
referred to as extracting the message.

The TSO/E message issuer routine simplifies the issuing of messages with inserts
because hexadecimal inserts can be converted to printable characters and the
same parameter list can be used to issue any message. It also makes it more
convenient to place all messages for a command in a single CSECT or assembly
module, which is important when message texts must be modified. Adding or
updating a message is simpler when IKJEFF02 is used, rather than PUTLINE or
PUTGET.

Passing Control to the TSO/E Message Issuer Routine
Your command processor can invoke the TSO/E message issuer routine using
either the CALLTSSR or LINK macro instructions, specifying IKJEFF02 as the entry
point name. However, you must first create the input parameter list and place its
address into register 1. The input parameter list is described in “The Input
Parameter List”.

IKJEFF02 can be invoked in either 24- or 31-bit addressing mode. IKJEFF02 can
accept input above or below 16 MB in virtual storage. The caller’s parameters must
be in the primary address space.

The Input Parameter List
Use the IKJEFFMT macro to map the input parameter list for IKJEFF02. This
parameter list identifies the message which is to be issued, describes inserts, if any,
for the message, and indicates to IKJEFF02 whether to issue the message using
PUTLINE, PUTGET, WTO or WTP. The parameter list also indicates to IKJEFF02
whether the message is to be provided in the language specified in the UPT, and
contains the address of a CSECT that contains the text of the message.

This mapping macro allows you to request the standard format, which is the default,
or the extended format of the parameter list. The extended format must be used if
the message inserts or the extract buffers being passed to IKJEFF02 reside above
16 MB in virtual storage. If they reside below 16 MB, you do not need to use the
extended format. However, all 31-bit addresses must be valid; that is the high-order
bit must be zero. Your command processor must set the MTFMT bit in the input
parameter list to reflect the format of the parameter list you are using.

The IKJEFFMT macro, which is provided in SYS1.MACLIB, has several options that
your command processor can specify:

v Use the MTDSECT=YES option to map the MTDSECTD DSECT, instead of
obtaining storage. MTDSECT=NO is the default.

v Use the MTFORMAT=NEW option to request the extended format; specify
MTFORMAT=OLD to request the standard format. MTFORMAT=OLD is the
default.

v The MTNINST option specifies the number of entries to be inserted into the
message that IKJEFF02 issues.

Standard Format of the Input Parameter List
The IKJEFFMT macro generates the standard format input parameter list described
below.

TSO/E Message Issuer Routine (IKJEFF02)

306 z/OS V1R4.0 TSO/E Programming Services

Table 73. Standard Format of Input Parameter List

Offset
Dec(Hex)

Field Name Contents or Meaning

0(0) LISTPTR Address of message description section of this
parameter list. (The message description section begins
with the MSGCSECT entry.)

4(4) MTCPPL Address of TMP’s CPPL control block (required for
PUTLINE or PUTGET).

8(8) ECBPTR Address of optional communications ECB for PUTLINE
or PUTGET.

12(C) Reserved.
12(C) MTHIGH High-order bit of reserved field turned on for standard

linkage.
16(10) MSGCSECT Address of an assembly module or a CSECT containing

IKJTSMSG macros that build message identifications
and associated texts.

20(14) SW 1-byte field of switches.
MTNOIDSW 1... Message is printed; no message id is

needed.

MTPUTLSW .1.. Message issued as PUTLINE.
(Message inserts for a second-level
message must be listed before inserts
for a first-level message.) If this bit is
zero, message issued as a PUTGET,
with second-level message required
and inserts for second-level messages
necessarily following inserts for
first-level messages.

MTWTOSW ..1. Message issued as a WTO. Default is
PUTGET.

MTHEXSW ...1 Number translations to printable
hexadecimal rather than default of
printable decimal.

MTKEY1SW 1... Modeset from key 1 to key 0 before
issuing a PUTLINE or PUTGET
message. Default is no modeset.

MTJOBISW1.. Blanks are compressed from inserts in
the format of JOBNAME (JOBID).
The blanks between (1) the
JOBNAME and opening parenthesis
and (2) the JOBID and closing
parenthesis are removed. The
maximum value for the message and
insert lengths is 252 characters.
Inserts and messages greater than
252 characters are truncated.

TSO/E Message Issuer Routine (IKJEFF02)

Chapter 11. Using the TSO/E Message Handling Routine IKJEFF02 307

Table 73. Standard Format of Input Parameter List (continued)

Offset
Dec(Hex)

Field Name Contents or Meaning

MTWTPSW1. Message issued as WTO with
write-to-programmer routing code.
Inserts are handled the same as for
PUTLINE. Default is PUTGET.

MTNHEXSW1 Number translations to printable
decimal, even if larger than X'FFFF'.
Default is printable hex above
X'FFFF'.

21(15) MTREPLYP Address of reply from PUTGET. The reply text is
preceded by a 2-byte field containing length of text plus
header field.

24(18) SW2 1-byte field of switches.
MT2OLDSW 1... Field MTOLDPTR points to second

level message already in
PUTLINE/PUTGET (Output Line
Descriptor) format. Default is
IKJTSMSG format.

MTDOMSW .1.. Delete WTP or WTO messages from
the display console.

MTNOXQSW ..1. Override default of X‘’ around inserts
converted to printable hex.

MTNPLMSW ...1 Override default of error message if
PUTLINE fails.

MTPGMSW 1... Request an error message if PUTGET
fails.

MTEXTRCN1.. Request an extract and a message.

MTFMT0. Request standard (24-bit) format of
this parameter list.

MTTRANS1 Issue the message in the language
specified in the UPT.

25(19) Reserved.
28(1C) MTOLDPTR Pointer to OLD for second-level message, required if

MT2OLDSW bit is on.

TSO/E Message Issuer Routine (IKJEFF02)

308 z/OS V1R4.0 TSO/E Programming Services

Table 73. Standard Format of Input Parameter List (continued)

Offset
Dec(Hex)

Field Name Contents or Meaning

32(20) MTEXTRLN 1-byte field indicating the length of the extract buffer.
The caller provides this for the first-level message.

When message translation is requested (that is,
MTTRANS is ON), the caller provides a four-byte buffer.
IKJEFF02 updates the buffer with the address of the
translated message buffers that it returns. Therefore,
you specify the address of a four-byte buffer in this field.
For information about the form of the message buffers
that IKJEFF02 returns, see Figure 122 on page 311.

When message translation is not requested (that is,
MTTRANS is OFF), the caller provides a buffer to
contain the entire first-level message. Therefore, you
specify the length of the entire buffer you are providing.

33(21) MTEXTRBF A fullword field that points to the extract buffer that the
caller provides for the first-level message.

When message translation is requested (that is,
MTTRANS is ON), the caller provides a four-byte buffer.
IKJEFF02 updates the buffer with the address of the
translated message buffers that it returns. Therefore,
you specify the address of a four-byte buffer in this field.
For information about the form of the message buffers
that IKJEFF02 returns, see Figure 122 on page 311.

When message translation is not requested (that is,
MTTRANS is OFF), the caller provides a buffer to
contain the entire first-level message. Therefore, you
specify the address of the buffer you are providing to
IKJEFF02. The maximum length of the buffer that the
caller can provide is 255 bytes, based on the one-byte
length field, MTEXTRLN.

Upon return from IKJEFF02, the buffer contains the
first-level message in the form:

LL 00 Text
(2 bytes) (2 bytes)

where:
LL indicates the length in hex of the

entire message that was extracted into
the caller’s buffer, including the 4 byte
length of the LL and 00 fields.

00 indicates a halfword offset containing
2 bytes of X'00'.

Text indicates the actual first-level message
text.

TSO/E Message Issuer Routine (IKJEFF02)

Chapter 11. Using the TSO/E Message Handling Routine IKJEFF02 309

Table 73. Standard Format of Input Parameter List (continued)

Offset
Dec(Hex)

Field Name Contents or Meaning

36(24) MTEXTRL2 1-byte field indicating the length of the extract buffer the
caller provides for the second-level message.

When message translation is requested (that is,
MTTRANS is ON), the caller provides a four-byte buffer
that IKJEFF02 updates with the address of the
translated message buffers that it returns. Therefore,
you specify a value of 4 in this field.

When message translation is not requested (that is,
MTTRANS is OFF), the caller provides a buffer to
contain the entire second-level message. Therefore, you
specify the length of the entire buffer you are providing.

37(25) MTEXTRB2 A fullword field that points to the extract buffer that the
caller provides for the second-level message.

When message translation is requested (that is,
MTTRANS is ON), the caller provides a four-byte buffer.
IKJEFF02 updates the buffer with the address of the
translated message buffers that it returns. Therefore,
you specify the address of a four-byte buffer in this field.
For information about the form of the message buffers
that IKJEFF02 returns, see Figure 122 on page 311.

When message translation is not requested (that is,
MTTRANS is OFF), the caller provides a buffer to
contain the entire second-level message. Therefore, you
specify the address of the buffer you are providing to
IKJEFF02. The maximum length of the buffer that the
caller can provide is 255 bytes, based on the one-byte
length field, MTEXTRL2.

Upon return from IKJEFF02, the buffer contains the
second-level message in the form:

LL 00 Text
(2 bytes) (2 bytes)

where:
LL indicates the length in hex of the

entire message that was extracted into
the caller’s buffer, including the 4 byte
length of the LL and 00 fields.

00 indicates a halfword offset containing
2 bytes of X'00'

Text indicates the actual second-level
message text.

40(28) MSGID Message’s identifier in message CSECT, padded with
blanks on the right.

44(2C) MTINSRTS Insert information for message. The following two fields
are supplied for each insert.

44(2C) MTLEN Length of an insert for the message.

TSO/E Message Issuer Routine (IKJEFF02)

310 z/OS V1R4.0 TSO/E Programming Services

Table 73. Standard Format of Input Parameter List (continued)

Offset
Dec(Hex)

Field Name Contents or Meaning

44(2C) MTHIGHL High-order bit is on if necessary to translate the first 1-4
bytes of the insert from hexadecimal to character
(printable hexadecimal or decimal depending on
whether MTHEXSW is set to ON or OFF).

45(2D) MTADDR Address of an insert for the message.

Note: If MTTRANS is on and extraction is requested, IKJEFF02 sets the fullword,
pointed to by MTEXTRBF or MTEXTRB2, to the address of the translated
text buffers in subpool 78. The user must free the translated text buffers.

The format of a translated text buffer is shown in Figure 122. The pointer in the last
message text line contains zero to indicate the end of the buffer.

Extended Format of Input Parameter List
The IKJEFFMT macro generates the extended format input parameter list described
below.

Table 74. Extended Format of Input Parameter List

Offset
Dec(Hex)

Field Name Contents or Meaning

0(0) LISTPTR Address of message description section of this
parameter list. (The message description section begins
with the MSGCSECT entry.)

4(4) MTCPPL Address of TMP’s CPPL control block (required for
PUTLINE or PUTGET).

8(8) ECBPTR Address of optional communications ECB for PUTLINE
or PUTGET.

12(C) Reserved.
12(C) MTHIGH High-order bit of reserved field turned on for standard

linkage.
16(10) MSGCSECT Address of an assembly module or a CSECT containing

IKJTSMSG macros that build message identifications
and associated texts.

20(14) SW 1-byte field of switches.
MTNOIDSW 1... Message is printed; no message id is

needed.

Next Len Text 0 Len Text

0 3 4 5 6

Figure 122. Translated Text Buffer Format

TSO/E Message Issuer Routine (IKJEFF02)

Chapter 11. Using the TSO/E Message Handling Routine IKJEFF02 311

Table 74. Extended Format of Input Parameter List (continued)

Offset
Dec(Hex)

Field Name Contents or Meaning

MTPUTLSW .1.. Message issued as PUTLINE.
(Message inserts for a second-level
message must be listed before inserts
for a first-level message.) If this bit is
zero, message issued as a PUTGET,
with second-level message required
and inserts for second-level messages
necessarily following inserts for
first-level messages.

MTWTOSW ..1. Message issued as a WTO. Default is
PUTGET.

MTHEXSW ...1 Number translations to printable
hexadecimal rather than default of
printable decimal.

MTKEY1SW 1... Modeset from key 1 to key 0 before
issuing a PUTLINE or PUTGET
message. Default is no modeset.

MTJOBISW1.. Blanks are compressed from xx(yy)
format inserts. Default is no
compression.

MTWTPSW1. Message issued as WTO with
write-to-programmer routing code.
Inserts are handled the same as for
PUTLINE. Default is PUTGET.

MTNHEXSW1 Number translations to printable
decimal, even if larger than X'FFFF'.
Default is printable hex above
X'FFFF'.

21(15) MTEXTRLN Length of extract buffer (4 if MTTRANS is on).
22(16) MTEXTRL2 Length of extract buffer for second-level message (4 if

MTTRANS is on).
23(17) Reserved.
24(18) SW2 1-byte field of switches.

MT2OLDSW 1... Field MTOLDPTR points to
second-level message already in
PUTLINE/PUTGET (Output Line
Descriptor) format. Default is
IKJTSMSG format.

TSO/E Message Issuer Routine (IKJEFF02)

312 z/OS V1R4.0 TSO/E Programming Services

Table 74. Extended Format of Input Parameter List (continued)

Offset
Dec(Hex)

Field Name Contents or Meaning

MTDOMSW .1.. Delete WTP or WTO messages from
the display console.

MTNOXQSW ..1. Override default of X‘’ around inserts
converted to printable hex.

MTNPLMSW ...1 Override default of error message if
PUTLINE fails.

MTPGMSW 1... Request an error message if PUTGET
fails.

MTEXTRCN1.. Request an extract and a message.

MTFMT1. Request extended (31-bit) format of
this parameter list.

MTTRANS1 Issue the message in the language
specified in the UPT.

25(19) Reserved.
28(1C) MTOLDPTR Pointer to OLD for second-level message, required if

MT2OLDSW bit is on.
32(20) MTEXTRBF Pointer to extract buffer supplied by caller or pointer to a

fullword if MTTRANS is on.
36(24) MTEXTRB2 Pointer to extract buffer supplied by caller for

second-level message or pointer to a fullword if
MTTRANS is on.

40(28) MSGID Message’s identifier in message CSECT, padded with
blanks on the right.

44(2C) MTREPLYP Address of reply from PUTGET.
48(30) MTINSRTS Insert information for message. The following two fields

are supplied for each insert.
48(30) MTLEN Length of an insert for the message.
48(30) MTHIGHL High-order bit is on if necessary to translate the first 1-4

bytes of the insert from hexadecimal to character
(printable hexadecimal or decimal depending on
whether MTHEXSW is set to ON or OFF).

52(34) MTADDR Address of an insert for the message.

Note: If MTTRANS is on and extraction is requested, IKJEFF02 sets the fullword,
pointed to by MTEXTRBF or MTEXTRB2, to the address of the translated
text buffers in subpool 78. The user must free the translated text buffers.

The format of a translated text buffer is shown in Figure 122 on page 311.

TSO/E Message Issuer Routine (IKJEFF02)

Chapter 11. Using the TSO/E Message Handling Routine IKJEFF02 313

Using IKJTSMSG to Describe Message Text and Insert Locations
Use the IKJTSMSG macro to generate assembler language DC instructions
describing the text and locations of inserts for a message which is to be issued by
the TSO/E message issuer routine (IKJEFF02). All of the messages which a
command processor issues should be grouped into an assembly module consisting
entirely of IKJTSMSG macros preceded by a CSECT statement and followed by an
END statement. The last IKJTSMSG macro in the CSECT must be a dummy entry
with no operands.

The IKJTSMSG macro can be issued by a program loaded below or above 16 MB
in virtual storage.

Figure 123 shows the syntax of the IKJTSMSG macro instruction; each of the
operands is explained following the figure.

msgid
The identifier which will be displayed when the message is issued.

msgtext
The text of the message. If an insert is necessary within the text of a message
or at the end of a message, use the following rules:

v Indicate the location of an insert in the middle of a message by a ‘,,’.

v If the insert is to be located at the end of a message, indicate it by a ',
following the message text.

id1
The internal identifier of the message. It can be from one to four characters and
cannot contain a blank, comma, parenthesis, or an apostrophe. Pass this id to
IKJEFF02 in the MSGID field of the parameter list. For a PUTGET message
with more than one level, pass the id1 field of the first-level message. For a
PUTLINE, WTO or write-to-programmer message with two levels, pass the id1
field of the second-level message.

id2
The internal identifier of a message to be chained to this message. For a
PUTGET message, the first-level message would have an id2 field identifying
the second level, and the second-level message could have an id2 field to
identify another second-level, and so on. For a PUTLINE, WTO, or
write-to-programmer message, the second-level message would have an id2
field identifying the first level.

Return Codes from the TSO/E Message Issuer Routine
When the TSO/E message issuer routine returns control to its caller, register 15
contains one of the following return codes:

Table 75. Return Codes from the TSO/E Message Issuer Routine

Return Code
Dec(Hex)

Meaning

0(0) The message was issued successfully.

[symbol] IKJTSMSG (’msgid msgtext’),id1[,id2]

Figure 123. The IKJTSMSG Macro Instruction

TSO/E Message Issuer Routine (IKJEFF02)

314 z/OS V1R4.0 TSO/E Programming Services

Table 75. Return Codes from the TSO/E Message Issuer Routine (continued)

Return Code
Dec(Hex)

Meaning

76(4C) There was an error in the parameter list. A diagnostic message is also
issued.

Other This is either a PUTLINE or PUTGET return code. See “Return Codes
from PUTLINE” on page 255 or “Return Codes from PUTGET” on
page 279.

Example Using IKJTSMSG
Figure 124 is an example that shows how a message module can be created for a
SUBMIT command. The IKJTSMSG macro is used to describe the following:

v Message IKJ56250I is a single level PUTLINE message with one insert.

v Message IKJ56251I is a PUTLINE message with two levels.

v Message IKJ56252A is a PUTGET message with two levels.

v Message IKJ56253I is a PUTLINE message with an insert at the end of the text.

v The IKJTSMSG macro with no operands indicates the end of the message
CSECT.

Figure 124 shows an example of the IKJTSMSG macro.

*
* COMMENTS CAN PRECEDE OR FOLLOW THE MACROS TO LIST MODULES ISSUING
* THE MESSAGES AND GIVE THE MESSAGE DESCRIPTIONS.
*
IKJEFF03 CSECT

IKJTSMSG (’IKJ56250I JOB’,,’SUBMITTED’),00
*

IKJTSMSG (’IKJ56251I ’,,’ COMMAND NOT AUTHORIZED+’),R01
IKJTSMSG (’IKJ56251I YOUR INSTALLATION MUST AUTHORIZE USE OF TX

HIS COMMAND’),01,R01
* ** SECOND LEVEL POINTS TO FIRST LEVEL FOR PUTLINE **
*

IKJTSMSG (’IKJ56252A ENTER JOBNAME CHARACTER+ -’),02,S02
IKJTSMSG (’IKJ56252A JOBNAME IS CREATED FROM USERID PLUS’, X

’ ONE ALPHANUMERIC OR SPECIAL CHARACTER’),S02
* ** FIRST LEVEL POINTS TO SECOND LEVEL FOR PUTGET **

IKJTSMSG (’IKJ56253I INVALID CHARACTER -’,),03
* ** THE COMMA AFTER THE APOSTROPHE INDICATES A TRAILING INSERT
*

IKJTSMSG
END IKJEFF03

Figure 124. An Example Using the IKJTSMSG Macro Instruction

Return Codes from the TSO/E Message Issuer Routine

Chapter 11. Using the TSO/E Message Handling Routine IKJEFF02 315

Example Using IKJTSMSG

316 z/OS V1R4.0 TSO/E Programming Services

Chapter 12. Using the STAX Service Routine to Handle
Attention Interrupts

The STAX Macro Instruction 317
Return Codes from the STAX Service Routine 322
Example Using the STAX Macro Instruction 324

This chapter describes how to use the STAX service routine in your programs to
handle attention interruptions.

Use the STAX service routine in your command processor or problem program to
cause the system to recognize and schedule an attention exit that receives control
when an attention interruption occurs. Your program provides the address of an
attention exit routine to the system by issuing the STAX macro instruction.

The STAX service routine may be invoked in either 24-, 31-, or 64-bit addressing
mode. Your attention exit routine receives control in the same addressing mode in
which the corresponding STAX macro is issued.

For information on writing attention exit routines, see z/OS TSO/E Programming
Guide.

The STAX Macro Instruction
Use the STAX macro instruction to specify the address of an attention exit routine
that is to be given control asynchronously when a user presses the attention key or
when a simulated attention is specified. (See “STATTN — Set Attention Simulation”
on page 175 for a description of the simulated attention function.)

For attention interruptions that occur while a CLIST with a CLIST attention exit is
processing, control passes to the last attention exit established with the CLSTATTN
operand on the STAX macro (attention exits are searched in LIFO order until one is
found that was established with the CLSTATTN operand). If no attention exit was
established with the CLSTATTN operand, control passes to the first attention exit
established.

The STAX macro instruction can also be used to cancel the last attention exit
routine established by the task. To do this, specify the STAX macro instruction
without any operands.

The STAX macro instruction is used only in a time sharing environment. When a
task other than a TSO/E user issues the STAX macro, no action is taken. In
addition, attention exits can be established only for time sharing tasks operating in
the foreground.

Note: If the PSW key at the time of the STAX is zero, the PSW key when the exit
is driven is zero. However, if the PSW key at the time of the STAX is not
zero, the PSW key when the exit is driven is that of the job key.

The system routines that process attention handling require that the STAX
parameter list remain unchanged for the duration of the program. Because the
expansion of the STAX parameter list is usually located in an area that is reusable

© Copyright IBM Corp. 1988, 2002 317

by the active program, you should either code the necessary protection to prevent
overlays or you should make a copy of the parameter list in an area that is
non-reusable.

Issue the STAX macro instruction to provide the information required by the STAX
service routine. The STAX macro may be issued in either 24-, 31-, or 64-bit
addressing mode, unless you are using the LINKAGE=BRANCH option. (See the
LINKAGE operand description below for programming restrictions.) An attention exit
routine receives control in the same addressing mode in which the STAX macro is
issued.

The STAX macro instruction has a list, an execute, and a standard form.

The list form of the STAX macro instruction (MF=L) generates a STAX parameter
list. The execute form of the STAX macro instruction (MF=E,address) completes or
modifies that list and passes its address to the STAX service routine. The standard
form does not require you to specify MF=L or MF=E.

Figure 125 shows the format of the STAX macro instruction; each of the operands
is explained following the figure.

Note: When the STAX macro is issued in 31- or 64-bit addressing mode, exit
address and USADDR can reside above 16 MB in virtual storage. All other
input must reside below 16 MB.

exit address
Specify the entry point of the routine to be given control when an attention
interruption is received. You must specify the exit address in both the list and
the execute forms of the STAX macro instruction when you are establishing an
attention interruption handling exit.

[symbol] STAX [exit address [,OBUF=(output buffer address,size)]]
[[,IBUF=(input buffer address,size)]]

[,USADDR=user address]

[,REPLACE={YES}]
[{NO }]

[,DEFER={YES}]
[{NO }]

[,LINKAGE={SVC }]
[{BRANCH}]

[,CLSTATTN={YES}]
[{NO }]

[,IGNORE={YES}]
[{NO }]

[,TOPLEVL={YES}]
[{NO }]

{,MF=L }
{,MF=(E,address) }

Figure 125. Forms of the STAX Macro Instruction

The STAX Macro Instruction

318 z/OS V1R4.0 TSO/E Programming Services

You do not need to specify an exit address if you are using the DEFER operand
as long as you code no other operands, except the MF operand. If you exclude
the exit address and code no other operands, the STAX service routine cancels
the previous attention exit established by the task issuing this STAX macro
instruction.

OBUF=(output buffer address,output buffer size)

Output buffer address
Supply the address of a buffer you have obtained and initialized with the
message to be put out to the terminal user who enters the attention
interruption. This message can identify the exit routine and request
information from the terminal user. It is sent to the terminal before the
attention exit routine is given control.

Output buffer size
Indicate the number of characters in the output buffer. The size can range
from 0 to 32,767 (215-1) inclusive.

IBUF=(input buffer address,input buffer size)

Input buffer address
Supply the address of a buffer you have obtained to receive responses
from the terminal user. The attention exit routine is not given control until
the STAX service routine has placed the terminal user’s reply into this
buffer.

Input buffer size
Indicate the number of bytes you have provided as an input buffer. The size
can range from 0 to 32,767 (215-1) inclusive.

USADDR=(user address)
The user address is a 24-, 31-, or 64-bit address that points to any information
you want passed to your attention handling exit routine when it is given control.
When the attention exit gains control, register 1 points to the attention exit
parameter list described in Table 76.

Table 76. The Attention Exit Parameter List

Number of
Bytes

Field Name Contents or Meaning

4 The address of the terminal attention interrupt element
(TAIE).

4 The address of the input buffer you specified as the
IBUF operand of the STAX macro instruction. This field
is zero if you did not include the IBUF operand in the
STAX macro instruction.

4 The address of the user parameter information you
specified as the USADDR operand of the STAX macro
instruction. This field is zero if you did not include the
USADDR operand in the STAX macro instruction.

REPLACE=YES | NO

YES
indicates that the attention exit specified by this STAX macro instruction
replaces any attention exit specified by a STAX macro instruction previously
issued by this task. YES is the default value. REPLACE implies establishing
a new attention exit routine for the task, if no previous attention exit has
been established.

The STAX Macro Instruction

Chapter 12. Using the STAX Service Routine to Handle Attention Interrupts 319

NO
indicates that this attention exit be established as a new attention exit for
this task, in addition to any that have been previously established for this
task.

DEFER=YES | NO
The DEFER operand is optional. If the DEFER operand is coded in the STAX
macro instruction, the option you request (YES or NO) applies to all tasks within
the task chain in which the macro instruction was issued. Any task can issue
the STAX macro instruction to specify DEFER=YES or NO; it is not necessary
for the issuing task itself to have provided an attention exit routine. If the
DEFER operand is not coded in the macro instruction, no action is taken by the
STAX service routine regarding the deferral of attention exits.

YES
indicates that any attention interruptions received are to be queued and are
not to be processed until:

v Another STAX macro instruction is executed specifying DEFER=NO

v The request block of the program that issued STAX DEFER=YES
terminates and there is no other request block on the chain with attention
interruptions to be deferred.

NO
indicates that the defer option is being canceled. Any attention interruptions
received while the defer option was in effect are processed, unless the task
is still not eligible for attention interruptions. If the DEFER operand is
omitted, the control program leaves the deferral status unchanged.

Be aware that if a program issues a STAX macro instruction specifying
DEFER=YES, the program can get into a situation where an attention
interruption cannot be received from the terminal. If your program enters a loop
or an unending wait before it has issued a STAX macro instruction specifying
DEFER=NO, you cannot regain control at the terminal by entering an attention
interruption.

You do not need to specify an exit address in a STAX macro instruction issued
only to change deferral status.

LINKAGE=SVC | BRANCH (For MVS/ESA SP 4.2.2 or higher)
The LINKAGE operand is optional and is valid only when used with the DEFER
operand. You cannot use any STAX operands other than DEFER when you use
LINKAGE=BRANCH. It may be specified only on the standard form of the
macro.

SVC
specifies that the STAX macro will generate an SVC to link from the calling
program to the STAX SVC service routine. SVC is the default value.

BRANCH
specifies that the STAX macro will generate a branch instruction to link to
the DEFER service of the STAX service routine. Because SVCs are not
valid in cross-memory mode, this option allows you to defer attention exits
in cross-memory mode.

The LINKAGE=BRANCH option requires that your program be in the
following states:
Authorization Supervisor
State Key 0
Amode 31-bit

The STAX Macro Instruction

320 z/OS V1R4.0 TSO/E Programming Services

Rmode Any
Interrupt Status For DEFER=NO,LINKAGE=BRANCH, the

caller must be enabled and unlocked.
For DEFER=YES,LINKAGE=BRANCH, the
caller may be either enabled or disabled.

Serialization None.

CLSTATTN=YES | NO
The CLSTATTN operand is optional. Code it only when you are establishing an
attention exit. If you code the CLSTATTN keyword, you must provide an exit
address.

YES
indicates that the attention exit being established can receive control for
normal attention interruptions and for attention interruptions that occur while
a CLIST with a CLIST attention exit is processing. When an attention
interruption occurs while a CLIST with a CLIST attention exit is processing,
the last attention exit established with the CLSTATTN=YES operand gains
control to process the CLIST attention exit or pass control to the CLIST
attention facility.

NO
indicates that the attention exit being established cannot process a CLIST
that has a CLIST attention exit. No is the default value for the CLSTATTN
operand.

IGNORE=YES | NO
The IGNORE operand is optional and is effective only when used in conjunction
with the CLSTATTN=YES operand. Code the IGNORE operand only when
attention interruptions are to be ignored or reestablished.

YES
When coded with the CLSTATTN operand (and an exit address) to establish
an attention exit, indicates that attention interruptions are to be ignored
when the attention exit being established receives control. Attention
interruptions are reestablished when the attention exit returns control or
issues the IGNORE=NO operand.

When coded within an attention exit established with the CLSTATTN=YES
operand, IGNORE=YES also indicates that attention interruptions are to be
ignored until the attention exit currently in control returns control or issues
the IGNORE=NO operand. However, when coded within an attention exit,
IGNORE=YES must be the only operand on the STAX macro instruction.

NO
indicates that attention interruptions are to be reestablished. An attention
exit established with the CLSTATTN=YES operand can issue IGNORE=NO
to indicate that attention interruptions are to be reestablished. The
IGNORE=NO operand must be the only operand on the STAX macro
instruction. IGNORE, without the CLSTATTN operand and an exit address,
can only be issued by an attention exit that was established with the
CLSTATTN=YES operand.

TOPLEVL=YES | NO
The TOPLEVL operand is optional. Code it only when you are establishing an
attention exit.

If you code the TOPLEVL operand, you must provide an exit address.

If the ATTENTION key is pressed once, the first-level attention exit is given
control; if pressed twice, the second-level attention exit is given control, and so

The STAX Macro Instruction

Chapter 12. Using the STAX Service Routine to Handle Attention Interrupts 321

forth. Use the TOPLEVL operand to control processing when the terminal user
presses the attention key multiple times.

YES
indicates that when the attention key is pressed multiple times, control is
not to be passed to higher-level attention exits than the exit being
established. When an attention exit established with the TOPLEVL=YES
operand receives control, the user cannot terminate execution of the exit by
pressing the attention key. Therefore, the user cannot terminate execution
of the program, and possibly see a TSO/E READY mode message.

NO
indicates that higher-level attention exits than the one being established can
receive control when the attention key is pressed multiple times. For
example, when the user presses the attention key two times, the
second-level attention exit is given control. NO is the default value for the
TOPLEVL operand.

MF=L | (E,address)
specifies the form of the STAX macro instruction.

L specifies the list form of the STAX macro instruction. It generates a STAX
parameter list.

(E,address)
specifies the execute form of the STAX macro instruction. It completes or
modifies the STAX parameter list and passes the address of the parameter
list to the STAX service routine. Place the address of the STAX parameter
list (the address of the list form of the STAX macro instruction) into a
register and specify that register number within parentheses.

You can place each of the required address and size parameters into registers and
specify those registers, within parentheses, in the STAX macro instruction.
Figure 126 shows how an execute form of the STAX macro instruction might look if
you load all the required parameters into registers.

Return Codes from the STAX Service Routine
When your program issues the STAX macro instruction, control is returned to the
instruction following the STAX macro instruction. When control is returned, register
1 either contains the address of the user parameter list provided for the previous
exit for this task or it contains zero. Register 1 contains zero if this is the first STAX
issued for this task, the STAX was issued with a cancel option, or the STAX was
issued with only the DEFER option. If an error was detected (return code 8, 12, or
16), then the contents of register 1 is the same as it was at entry.

STAX (2),IBUF=((3),(4)),OBUF=((5),(6)),USADDR=(7),MF=(E,(1))

Figure 126. Using Registers in the STAX Macro Instruction

The STAX Macro Instruction

322 z/OS V1R4.0 TSO/E Programming Services

Register 15 contains one of the following return codes:

Table 77. Return Codes from the STAX Service Routine

Return Code
Dec(Hex)

Meaning

0(0) The STAX service routine successfully completed the function you
requested.

4(4) Deferral of attention exits has already been requested and is presently
in effect. Any other operands you specified in the STAX macro
instruction have been processed successfully.

8(8) The user of the DEFER option is not valid (asynchronous exit routine).

12(C) The STAX macro has already been issued with the IGNORE=YES
operand.

16(10) The STAX macro has already been issued with the IGNORE=NO
operand.

20(14) A branch entry STAX DEFER=NO was requested, but attentions are not
being deferred.

24(18) A branch entry STAX DEFER=NO was requested, but the task is still not
eligible to receive attention interruptions.

Note: If the STAX macro instruction is issued by a task that is not executing in a
TSO/E user’s address space, a return code of zero is passed to the caller in
register 15. The contents of register 1 are not altered.

If a combination of parameters or the parameters themselves are not valid, an
abend code of X'260' will be issued. The following types of errors cause an abend:

v Both DEFER=YES and DEFER=NO are specified.

v The input buffer address is not valid because the storage is not in same key as
user’s TCB.

v The input or output buffer size is not valid.

v A routine that is not a CLIST attention exit issued the STAX macro with the
IGNORE parameter.

v A parameter list address is not valid.

v The format number of the parameter list is not valid.

Return Codes from the STAX Service Routine

Chapter 12. Using the STAX Service Routine to Handle Attention Interrupts 323

Example Using the STAX Macro Instruction
The coding example shown in Figure 127 uses the list and the execute forms of the
STAX macro instruction to set up an attention handling exit. The OBUF operand
provides a message to be written to the terminal when the attention interruption is
received, and the IBUF operand provides space for an input buffer. Because the
REPLACE operand is not coded on the macro instruction, the default value of YES
is used. The attention handling exit established by this execution of the STAX
macro instruction replaces the previous attention handling exit established for this
task.

* THIS CODING EXAMPLE ISSUES A STAX MACRO INSTRUCTION TO SET UP AN
* ATTENTION EXIT.
*
* PROCESSING
* .
* .
* .
*

LA 3,STAXLIST
* ISSUE THE EXECUTE FORM OF THE STAX MACRO INSTRUCTION
*

STAX ATTNEXIT,OBUF=(OUTBUF,31),IBUF=(INBUF,140),MF=(E,(3))
*
* CHECK THE RETURN CODE FROM THE STAX SERVICE ROUTINE. A ZERO RETURN
* CODE INDICATES SUCCESSFUL COMPLETION.
*

LTR 15,15
BNZ ERRTN

*
* PROCESSING
*
ERRTN ERROR HANDLING ROUTINE
* .
* .
* .
ATTNEXIT ATTENTION EXIT ROUTINE
* .
* .
* .
*
*
* STORAGE DECLARATIONS
*
STAXLIST STAX ATTNEXIT,MF=L THIS LIST FORM OF THE STAX
* MACRO INSTRUCTION EXPANDS AND
* PROVIDES SPACE FOR THE STAX
* PARAMETER LIST
*
OUTBUF DC C’THIS IS A SAMPLE ATTENTION EXIT’

DS 0F
INBUF DC CL140’0’ INITIALIZE 140 BYTES TO ZERO
* AS THE INPUT BUFFER
*

END

Figure 127. Example Using the STAX Macro Instruction

Example Using the STAX Macro Instruction

324 z/OS V1R4.0 TSO/E Programming Services

Chapter 13. Using the CLIST Attention Facility

Overview of the CLIST Attention Facility 325
Invoking the CLIST Attention Facility 326

Establishing the Exit that Invokes IKJCAF 326
Passing Parameters to IKJCAF 326
Passing Control to IKJCAF 327

Returning from the CLIST Attention Facility 327

This chapter describes how to use the CLIST attention facility to process a CLIST’s
attention routine.

Overview of the CLIST Attention Facility
If a program processes a CLIST with a CLIST attention routine, and an attention
interruption occurs, the program’s attention routine can process the CLIST’s
attention routine through the CLIST attention facility.

When an attention interruption occurs while a CLIST with an attention routine is
processing, the attention routine established with the CLSTATTN operand receives
control. The routine can then invoke the CLIST attention facility to process the
CLIST’s attention routine.

Note: If the program does not establish an attention routine with the CLSTATTN
operand, control passes to the next highest-level attention routine
established with the CLSTATTN operand coded on the STAX macro.

Figure 128 shows the flow of control between a program and the CLIST attention
facility.

Sets up the CLIST attention
facility parameter list.

Issues CALLTSSR macro to
invoke IKJCAF.

Program or function

Program or function attention exit

Issues STAX macro with
CLSTATTN=YES and
IGNORE=YES operands.

Processes a CLIST containing
an attention routine.

If an attention interruption
occurs, control is passed to
an attention routine
established with
CLSTATTN=YES

Figure 128. Flow of Control Between a Caller and the CLIST Attention Facility

© Copyright IBM Corp. 1988, 2002 325

Invoking the CLIST Attention Facility
To invoke the CLIST attention facility, the calling program must:

1. Establish an attention routine that specifies the parameters on the STAX macro
to:

v Receive control when an interruption occurs while processing a CLIST that
contains a CLIST attention routine.

v Prevent attention interruptions while processing the CLIST attention routine.

2. Build the CLIST attention facility parameter list (IKJCAFPL) and place its
address in register 1.

3. Issue the CALLTSSR macro to pass control to the CLIST attention facility.

Establishing the Exit that Invokes IKJCAF
You must include the CLSTATTN operand on the STAX macro that establishes the
caller’s attention exit. When an attention interruption occurs, control passes to the
last attention routine established with the CLSTATTN=YES operand.

You must also include the IGNORE=YES operand on the STAX macro that
establishes the caller’s attention routine. The IGNORE=YES operand indicates that
attention interruptions are to be ignored while the routine is processing a CLIST’s
attention routine. If attention interruptions are not ignored, an abend can result.

See “The STAX Macro Instruction” on page 317 for restrictions governing the use of
the CLSTATTN and IGNORE operands.

Passing Parameters to IKJCAF
The caller’s attention routine must store the address of the CLIST attention facility
parameter list (IKJCAFPL) in register 1. A caller executing below 16 MB in virtual
storage must make sure the parameters it passes to IKJCAF are valid in a 31-bit
environment. That is, the high-order byte of each address must be zero. If the
high-order byte of each address is not zero, the CLIST attention facility returns to
the caller with a return code of 28 (decimal).

You can use the IKJCAFPL DSECT, which is provided in SYS1.MACLIB, to map the
fields of the parameter list. Table 78 shows the format of the CLIST attention facility
parameter list.

Table 78. The CLIST Attention Facility Parameter List (IKJCAFPL)

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

0(0) 4 CAFCAF Parameter list identifier, which is the value
C‘CAF’.

4(4) 1 CAFLEV Version number.
5(5) 3 Reserved.
8(8) 4 CAFTAIE Address of the terminal attention interruption

element (TAIE).
12(C) 4 CAFIOPL Address of the input/output (IOPL)

parameter list. The calling program must fill
in all fields of the IOPL except IOPLIOPB.

16(10) 4 CAFPGPB Address of the PUTGET parameter block
(PGPB). The calling program must provide
the space for the PGPB, which is defined by
the IKJPGPB DSECT.

Invoking the CLIST Attention Facility

326 z/OS V1R4.0 TSO/E Programming Services

Table 78. The CLIST Attention Facility Parameter List (IKJCAFPL) (continued)

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

20(14) 4 CAFSTPB Address of the STACK parameter block
(STPB). The calling program must provide
the space for the stack parameter block,
which is defined by the IKJSTPB DSECT.
IKJCAF fills in the STPB.

24(18) 4 CAFABEND Abend code. If no abend, this field will be
blanks.

28(1C) 4 CAFRSNCD Abend reason code. If no abend, this field
will be zeros.

32(20) 8 Reserved.

Passing Control to IKJCAF
Issue the CALLTSSR macro instruction in your program’s attention routine to pass
control to IKJCAF.

You must invoke IKJCAF in 31-bit addressing mode, after setting its addressing
mode in bit 0 of register 14. The parameters you pass to IKJCAF must be in the
primary address space. IKJCAF returns control in 31-bit addressing mode.

The following example shows the assembler code you can use to invoke the CLIST
attention facility:
*

R1=PARMADDR *Address of the
*parameter list

*
CALLTSSR EP=IKJCAF *Passes control to the

* *CLIST attention facility

Note: Any routine that uses the CALLTSSR macro instruction to invoke IKJCAF
must include the CVT mapping macro (CVT), which is found in
SYS1.MACLIB and the TSVT mapping macro (IKJTSVT), which is found in
SYS1.MACLIB.

Returning from the CLIST Attention Facility
Output from the CLIST attention facility consists of a return code in register 15 and,
if the return code is zero, a buffer. The buffer contains the TSO/E command coded
in the CLIST attention routine.

When the CLIST attention facility returns control to your attention routine, your
routine should do the following:

1. Check the return code in general register 15. Table 79 shows the possible return
codes from the CLIST attention facility.

Table 79. Return Codes from the CLIST Attention Facility

Return Code
Dec(Hex)

Meaning

0(0) Normal completion.

8(8) The current attention interruption is not for a CLIST with an attention
routine.

Invoking the CLIST Attention Facility

Chapter 13. Using the CLIST Attention Facility 327

Table 79. Return Codes from the CLIST Attention Facility (continued)

Return Code
Dec(Hex)

Meaning

16(10) The CLIST attention facility issued an abend and retried. The reason
code that accompanies the abend is the return code from the failing
TSO/E service routine.

20(14) The CLIST attention facility could not establish an ESTAE exit. No
processing occurred.

24(18) The CLIST attention facility received incorrect parameters from the
calling program.

28(1C) A 24-bit caller passed a parameter list that was not valid in the CLIST
attention facility’s 31-bit environment. (The high-order byte of each
address was not zero.)

2. If attention interruptions have not been reestablished, issue the STAX macro
with the IGNORE=NO operand.

If you included the IGNORE=YES operand on the STAX macro that established
the caller’s attention exit, or the caller’s exit issued the macro before invoking
IKJCAF, the caller’s exit receives control from IKJCAF in the IGNORE=YES
state. The caller’s exit must issue the STAX macro with the IGNORE=NO
operand to reestablish attention interruptions. However, if the caller’s exit does
not reestablish attention interruptions, interruptions are automatically
reestablished when the exit ends.

If you did not include the IGNORE=YES operand on the STAX macro that
established the caller’s attention exit, or the caller’s exit did not issue the macro
before invoking IKJCAF, IKJCAF changes the IGNORE=NO state before it
returns control to the caller’s exit. When the caller’s exit receives control,
attention interruptions are reestablished.

See “The STAX Macro Instruction” on page 317 for restrictions governing the
use of the IGNORE operand.

3. Issue the FREEMAIN macro to free the storage for the input buffer. (If the
caller’s attention exit does not free the storage for the input buffer, the caller’s
mainline routine should free the storage.)

Returning from the CLIST Attention Facility

328 z/OS V1R4.0 TSO/E Programming Services

Chapter 14. Obtaining a List of Data Set Names

Operation of ICQGCL00 . 329
Invoking ICQGCL00 . 330
Output Table Variables . 331
Return Codes from ICQGCL00 331
Example Using ICQGCL00 . 331

This chapter describes how to use the TSO/E program ICQGCL00 in an application
program to obtain a list of data set names that match specified criteria.

A valid ISPF environment must exist for an application to be able to invoke
ICQGCL00.

ICQGCL00 lets application users search user catalogs for data set names that
adhere to the criteria specified. Using the information returned by ICQGCL00,
application programs can display those data set names to the user, who can view
them or select them for further processing.

Operation of ICQGCL00
An application that uses ICQGCL00 specifies, as input parameters, the criteria to be
used in searching the user catalog. The list of the names of the data sets that
match the searched criteria are returned to the application in an ISPF table. If the
table specified by the application does not exist, ICQGCL00 creates a temporary
table. If the table does exist, and is sorted, the data sets are added to the table in
sorted order. However, if the existing table is not sorted, ICQGCL00 adds the data
set names to the bottom of the table. Figure 129 shows the interaction between an
application program and ICQGCL00.

User Application Program ICQGCL00

ISPF Table

User
Catalog

The user requests information.

The application program, if necessary, prompts the user for more
information.

The application program invokes ICQGCL00.

ICQGCL00 retrieves the requested data set names from the user catalog
using the criteria specified by the application program.

ICQGCL00 returns the list of data set names to the application program
in an ISPF table.

Figure 129. Using ICQGCL00 to Return a List of Data Set Names

© Copyright IBM Corp. 1988, 2002 329

A fully-qualified data set name has three fields: a user ID (or prefix), a first-level
qualifier (or data set name) and a second-level qualifier (or descriptive qualifier).
Search criteria can be specified for each field of a data set name. For example, an
application can specify that all data set names with a user ID of MYDATA, a
first-level qualifier beginning with the characters ICQ, and a second-level qualifier of
CLIST be returned.

The input parameters limit the search. For example, they can specify that only
those data set names that have exactly two qualifiers following the user ID be
returned.

Invoking ICQGCL00
Applications invoke ICQGCL00 with the following syntax. The parameters PREFIX
and TABLE are required; the others are optional keyword parameters.
ICQGCL00 +

PREFIX(user ID) +
QUAL1(first-level-qualifier) +
QUAL2(second-level-qualifier) +
EXACT(Y|N) +
TABLE(table-name)

PREFIX(user ID)
specifies the user ID or prefix to be used as search criteria.

QUAL1(first-level qualifier)
specifies the first-level qualifier to be used as search criteria. An asterisk (*) can
be specified to indicate that all data set names meet the search criteria for the
first-level qualifier. Also, an asterisk can be used as a suffix of the first-level
qualifier to indicate that all data set names that match the prefix characters
meet the search criteria for the first-level qualifier.

QUAL2(second-level qualifier)
specifies the second-level qualifier to be used as search criteria. An asterisk (*)
can be specified to indicate that all data set names meet the search criteria for
the second-level qualifier. Also, an asterisk can be used as a suffix of the
second-level qualifier to indicate that all data set names that match the prefix
characters meet the search criteria for the second-level qualifier.

EXACT(Y | N)
specifies whether to return those data set names that match the specified
qualifiers and have exactly that number of qualifiers. The default is Y, to return
only those data set names that have exactly the number of specified qualifiers.

For example, to search for all data sets that have a user ID of MYDATA and a
first-level qualifier beginning with ICQ, specify
ICQGCL00 PREFIX(MYDATA) QUAL1(ICQ*) EXACT(N) +

TABLE(table-name)

To search for all data sets with a user ID of MYDATA that have exactly two
levels of qualification after the prefix, specify:
ICQGCL00 PREFIX(MYDATA) QUAL1(*) QUAL2(*) EXACT(Y) +

TABLE(table-name)

TABLE(table-name)
specifies the name of the ISPF table in which ICQGCL00 returns the names of
the data sets that meet the search criteria. If the specified table does not exist,
ICQGCL00 creates a temporary table. The following section describes the
variables that ICQGCL00 creates in the table.

Operation of ICQGCL00

330 z/OS V1R4.0 TSO/E Programming Services

Output Table Variables
ICQGCL00 returns an ISPF table containing the names of the data sets that meet
the search criteria. If the table does not exist, ICQGCL00 creates a temporary table;
if the table does exist, ICQGCL00 adds rows to it at the bottom. Each row in the
output table contains the following variables.

QCLPREF
indicates the user ID (or prefix) portion of the data set name.

QCLDSN1
indicates the first-level qualifier part of the data set name.

QCLDSN2
indicates the second-level qualifier part of the data set name.

QCLDSN
indicates the fully-qualified data set name, without quotes.

Return Codes from ICQGCL00
ICQGCL00 sets the return code in variable &LASTCC and the reason code in
shared pool variable &QCLRESC. Table 80 lists the return codes set by ICQGCL00.

Table 80. ICQGCL00 Return Codes

Return Code Meaning

0 ICQGCL00 completed successfully.

12 No data set names were found to match the search criteria.

16 An ISPF services TBADD error occurred. &QCLRESC contains the
TBADD return code.

20 A prefix was not specified.

24 An error occurred. &QCLRESC contains the LOCATE return code.

28 ISPLINK module was not found.

32 A parameter was either missing or not valid.

36 An error occurred in the parse service routine.

40 The application specified a table that does not exist and ICQGCL00
could not create it.

Example Using ICQGCL00
The CLIST in Figure 130 on page 332 is a sample application that invokes ISPF
dialog management services to display input and output panels. The application
displays an input panel on which user enters the information to be used as criteria
for searching the user catalog. The input panel is shown in Figure 131 on page 333.
The application invokes ICQGCL00 using the search criteria that the user specified.
The application displays the results on an output panel (Figure 132 on page 333),
which lists the data sets matching the search criteria.

Output Table Variables

Chapter 14. Obtaining a List of Data Set Names 331

/***/
/* */
/* THIS SAMPLE APPLICATION SEARCHES THE USER CATALOG FOR DATA SET */
/* NAMES THAT MATCH THE CRITERIA SPECIFIED BY THE USER. IT */
/* RETURNS A LIST OF DATA SET NAMES THAT ARE DISPLAYED ON AN */
/* OUTPUT PANEL. */
/* */
/***/
PROC 0
CONTROL END(ENDO)

/* PROCESSING
/* .
/* .
/* .
SET LOOP = YES
ISPEXEC DISPLAY PANEL(PANEL1) /* DISPLAY PANEL TO USER
IF &LASTCC = 8 THEN +

SET LOOP = NO /* END PRESSED, DON’T CONTINUE
DO WHILE &LOOP = YES /* REPEAT UNTIL END PRESSED

ISPEXEC TBCREATE QCLDSNTB +
NAMES(QCLPREF QCLDSN1 QCLDSN2 QCLDSN QCLACT) +

NOWRITE REPLACE /* CREATE TABLE TO DISPLAY
SET PARM1 = PREFIX(&NRSTR(&USER)) /* SET UP PARAMETERS
SET PARM2 = QUAL1(&NRSTR(&QCLDSN1))
SET PARM3 = QUAL2(&NRSTR(&QCLDSN2))
SET PARM4 = EXACT(Y)
SET PARM5 = TABLE(QCLDSNTB)
ICQGCL00 &PARM1 &PARM2 &PARM3 &PARM4 &PARM5 /* CALL ICQGCL00+

TO GET LIST OF DATA SET NAMES
SET LCC = &LASTCC
IF &LCC = 0 THEN +

DO /* MATCH FOUND
ISPEXEC TBTOP QCLDSNTB /* GO TO TOP OF TABLE
ISPEXEC TBDISPL QCLDSNTB PANEL(PANEL2)
IF &LASTCC ¬= 8 THEN +

DO
.
. /* PROCESS SELECTIONS
.

ENDO
ENDO

ELSE +
DO

.

. /* ISSUE APPROPRIATE MESSAGE

.
ENDO

ISPEXEC DISPLAY PANEL(PANEL1) /* DISPLAY PANEL TO USER
IF &LASTCC = 8 THEN +

SET LOOP = NO /* END PRESSED, DON’T CONTINUE
ENDO
/*
/* PROCESSING
/* .
/* .
/* .

Figure 130. A Sample Application Using ICQGCL00

Example Using ICQGCL00

332 z/OS V1R4.0 TSO/E Programming Services

)ATTR
% TYPE(TEXT) INTENS(HIGH)
+ TYPE(TEXT) INTENS(LOW)
_ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT)
¬ TYPE(INPUT) INTENS(HIGH) PAD(_) CAPS(ON)

)BODY
+ List of Data Set Names - Specification
+COMMAND%===>_ZCMD +
+
+Specify criteria to use in searching for data set names below.
+
+ISPF Library:
+ Project %===>_USER +
+ Group %===>_Q2 +
+ Type %===>_Q3 +
+
+
+
)PROC
VER (&USER,NB) /* ensure PROJECT is specified
IF (&Q2 = ’ ’) /* if second qualifier is blank

&Q2 = ’*’ /* default it to asterisk
IF (&Q3 = ’ ’) /* if third qualifier is blank

&Q3 = ’*’ /* default it to asterisk
&QCLPREF = &USER
&QCLDSN1 = &Q2
&QCLDSN2 = &Q3
)END

Figure 131. Sample Application Input Panel Definition (PANEL1)

)ATTR DEFAULT(%+_)
% TYPE(TEXT) INTENS(HIGH)
+ TYPE(TEXT) INTENS(LOW)
_ TYPE(INPUT) CAPS(ON) JUST(LEFT) PAD(_) INTENS(HIGH)
@ TYPE(INPUT) CAPS(ON) JUST(LEFT) INTENS(HIGH)
$ TYPE(OUTPUT) CAPS(ON) INTENS(HIGH)

)BODY
+ Data Set List
+Command ===>@Z %SCROLL ===>@Z +
+
+Type action to be performed to the right of the data set name.
+
)MODEL
$QCLDSN +@QCLACT
)INIT
.ZVARS = ’(ZCMD ZSCML)’
IF (&ZSCML = ’ ’) /* if scroll is blank,

&ZSCML = ’PAGE’ /* default it to PAGE
.CURSOR = QCLACT /* set cursor at first action field
)PROC
)END

Figure 132. Sample Application Output Panel Definition (PANEL2)

Example Using ICQGCL00

Chapter 14. Obtaining a List of Data Set Names 333

Example Using ICQGCL00

334 z/OS V1R4.0 TSO/E Programming Services

Chapter 15. Using the Space Management CLIST ICQSPC00

Functions of ICQSPC00 . 335
Applications . 335
Considerations for Using ICQSPC00 336
Invoking ICQSPC00 . 336
Return and Reason Codes from ICQSPC00. 340
Examples Using ICQSPC00 343

Example 1: The SPACE MANAGER CLIST 343
Example 2: The SPACE ENLARGER CLIST 344

CLIST ICQSPC00 enables an application program to access the TSO/E space
management service. The space management service ensures that a specified data
set has adequate free space for additional data. If the specified data set does not
exist, ICQSPC00 can allocate it. You can invoke ICQSPC00 from within a program
that runs under ISPF, or by typing “tso %icqspc00 dsname optional parameters” on
the command line in an ISPF environment.

Functions of ICQSPC00
When you invoke ICQSPC00 and give it the name of a data set, it checks to see if
the data set exists and how full the data set is. Based on the invocation parameters
you use, ICQSPC00 determines whether more space is needed. If it is, ICQSPC00
tries to compress or reallocate the data set. If reallocation is needed, ICQSPC00
can check for and preserve RACF protection.

One optional invocation parameter lets you indicate that, if the specified data set
does not exist, it should be allocated. If you use this option, you must specify the
allocation parameters.

Applications
Using ICQSPC00, you can:

v Manage any data set that will be edited or that will have data added to it in any
other way.

v Periodically make sure your data sets have enough space left for future
operations.

v Use an ISPF edit macro (SAVE or END) to invoke the space manager to make
sure there is enough space left to save the data set being edited, and compress
it if necessary.

Note: Space management cannot enlarge a data set that is being edited.
Therefore, the edit macro must invoke the space manager with the
REALLOCATENEW(NO) parameter.

v Use the invocation parameters SPACEFULL and DIRFULL to make sure the data
set is never more than a specified percentage full.

v Use the invocation parameters KBYTESFREE or DIRBLOCKSFREE to make
sure there is a specific amount of space left in a data set before adding data.

v Allocate a data set, reallocate a data set, RACF protect a data set, check that a
data set exists, or obtain allocation, protection, and directory information provided
by the LISTDSI statement.

© Copyright IBM Corp. 1988, 2002 335

v Invoke the space management service from a CLIST as an error routine to
allocate more space when an error occurs in processing a data set because the
data set does not have enough space.

Considerations for Using ICQSPC00
v ISPF must be active to support the space management information panels.

v RACF accounting data is lost when ICQSPC00 reallocates a data set.

v If a data set is RACF protected by a discrete profile, but its profile has been
deleted, ICQSPC00 cannot copy the protection to the new data set.

v If RACF is not installed, space management cannot copy the RACF universal
access (UACC) from the old data set profile to the new data set profile. Instead,
space management gives the new data set the default UACC, which might not
match that of the old data set. For any release of RACF, however, space
management copies the RACF access list from the old profile to the new profile.

v When a user enlarges a RACF-protected data set that has a high-level qualifier
not equal to the user’s user ID, the user needs the authority to create a RACF
profile for the temporary data set used during reallocation.

v If the old data set is password-protected, and password-protected data sets are
allowed, the data set is no longer password-protected if space management must
reallocate the data set. (Whether password-protected data sets are allowed is
specified when space management is invoked).

v Space management can only ensure that the data set has a specified percentage
or amount of space free. If, after invoking ICQSPC00, an application or user
adds more data to the data set than there is room for, the addition fails. However,
an application could invoke ICQSPC00 to recover from the shortage.

Invoking ICQSPC00
The invocation syntax of ICQSPC00 is as follows. Only the dsname parameter is
required; the others are optional keyword parameters.
%ICQSPC00 dsname SPACEFULL(percent) +

SPACEINCREASE(percent) +
KBYTESFREE(nn) +
DIRFULL(percent) +
DIRINCREASE(percent) +
DIRBLOCKSFREE(nn) +
RECALL(yes/no) +
PROTECTNEW(yes/no) +
RACFUACC(none/read/update/alter) +
ALLOWPASSWORDS(yes/no) +
INFOPANEL(panelid) +
ASKPANEL(panelid) +
VERIFYPARMS(yes/no) +
COMPRESS +
TRACE +
REALLOCATENEW(yes/no) +
ALLOCATENEW(yes/no/ask) +

PRIMSPACE(nn) +
SECSPACE(nn) +
UNITS(tracks/cylinders) +
DIRBLOCKS(nn) +
BLKSIZE(nn) +
LRECL(nn) +
RECFM(string) +
LIKE(dsname)

DSNAME
specifies the name of the data set to be managed. If the data set name appears

Applications

336 z/OS V1R4.0 TSO/E Programming Services

within single quotes, the CLIST treats it as fully qualified. If the data set name
appears without quotes, the CLIST adds the prefix.

SPACEFULL(percent)
specifies the percentage that the data set can be full before ICQSPC00 should
compress or reallocate it. Specify a number from 0 to 100. The default is 80,
which means that when the data set is greater than 80% full, it will be
compressed or reallocated.

SPACEINCREASE(percent)
specifies the percentage of increase for the data set’s primary extent that
ICQSPC00 is to use when reallocating the data set. Specify an integer. The
default is 50.

KBYTESFREE(nn)
specifies the minimum amount of space (in kilobytes) that the data set must
have free. If the data set does not have this much space free after ICQSPC00
compresses it, ICQSPC00 then reallocates the data set to force this much free
space. There is no default.

DIRFULL(percent)
specifies the percentage that the directory for a partitioned data set can be full
before it should be compressed or reallocated. Specify a number from 0 to 100.
The default is 80, which means that when the directory is greater than 80% full,
it will be compressed or reallocated.

DIRINCREASE(percent)
specifies the percentage that a partitioned data set’s directory should be
increased in size when being reallocated. Specify an integer. The default is 50.

DIRBLOCKSFREE(nn)
specifies the minimum number of directory blocks (in positive integers) that a
partitioned data set must have free. If the data set does not have this many
blocks free after ICQSPC00 compresses it, ICQSPC00 then reallocates it to
force this many directory blocks to be free. There is no default.

RECALL(YES | NO | null)
specifies whether ICQSPC00 is to recall a data set that has been migrated by
the Data Facility Hierarchical Storage Manager (DFHSM). Null specifies
recalling a migrated data set from DASD. YES specifies recalling a data set
from any medium, including tape. NO specifies that no data sets be recalled.
The default is null.

PROTECTNEW(YES | NO)
specifies whether ICQSPC00 should RACF-protect a new data set. If you
specify YES, ICQSPC00 protects the new data set with the value in
RACFUACC and copies the list of users who have permission to access the
data set. The default is NO.

RACFUACC(NONE | READ | UPDATE | ALTER)
specifies the universal RACF access for a new data set or an enlarged data
set. When the data set has a generic profile, this parameter also protects the
temporary data set used during reallocation. If the data set has a discrete
RACF profile, ICQSPC00 ignores this parameter and copies the existing
RACFUACC value and the list of users who have permission to access the data
set. The default is NONE.

ALLOWPASSWORDS(YES | NO)
specifies whether ICQSPC00 should manage a password-protected data set. If
you specify NO and the data set is password-protected, ICQSPC00 does not
manage the data set and sets a non-zero return code. If you specify YES,

Invoking ICQSPC00

Chapter 15. Using the Space Management CLIST ICQSPC00 337

ICQSPC00 executes normally, and the system prompts the user to enter the
password when required. The default is NO.

INFOPANEL(panel ID)
specifies the ID of a panel that will override the default space management
panel displayed during allocation. The default panel ID is ICQSPE00.

ASKPANEL(panel ID)
specifies the ID of a panel that will override the default space management
panel displayed when a data set does not exist. The default panel ID is
ICQSPE01.

VERIFYPARMS(YES | NO)
specifies whether ICQSPC00 is to check the syntax of the input parameters.
Specify YES to check the parameter syntax. Specifying NO can improve
performance. The default is YES.

ICQSPE00 INFORMATION CENTER FACILITY - SPACE MANAGEMENT

The data set specified below is running out of storage space.

Please wait a few minutes while the storage space for
this data set is automatically increased.

None of your work will be lost.

This panel is simply to inform you of this activity while
it is taking place, because it can take a few moments.

You will be returned to where you were interrupted when this
processing is complete.

You can then continue where you left off.

Figure 133. Default Panel for Space Management Allocation (ICQSPE00)

ICQSPE01 INFORMATION CENTER FACILITY - SPACE MANAGEMENT
COMMAND ===>

The data set specified below does not exist.

To continue normally and have the data set created, press ENTER.
To cancel, press END.

Figure 134. Default Panel for Space Management When a Data Set Does Not Exist
(ICQSPE01)

Invoking ICQSPC00

338 z/OS V1R4.0 TSO/E Programming Services

COMPRESS
specifies that ICQSPC00 is to compress the data set. After compressing the
data set, ICQSPC00 then checks to see if there is enough space, and if not, it
reallocates the data set.

TRACE
specifies that space management should trace ICQSPC00 to the terminal. It
sets the same trace level as TRACE2 in other Information Center Facility
functions.

Note: If you invoke ICQSPC00 from an ISPF selection panel, it also supports
the Information Center Facility trace options ‘TRACE1’, ‘TRACE2’,
‘TRACE3.ICQSPC00’, and ‘TRACEOFF’.

REALLOCATENEW(YES | NO)
specifies whether to enlarge (reallocate) a data set if it is running out of space.
Specify YES or NO. If you specify NO, ICQSPC00 does not reallocate the data
set. The default is YES.

ALLOCATENEW(YES |NO | ASK)
specifies whether ICQSPC00 is to allocate a new data set if the one specified
does not exist. If you specify YES, ICQSPC00 automatically allocates the data
set. If you specify NO, ICQSPC00 does not allocate a new data set and sets a
return code indicating that the data set was not found. If you specify ASK, the
panel specified in the ASKPANEL parameter (or the default, ICQSPE01) is
displayed, asking whether the file should be allocated. The default is ASK.

The following optional allocation parameters must be used when allocating a
new data set:

PRIMSPACE(nn)
specifies the number of primary space units to be allocated to the data set.
There is no default.

SECSPACE(nn)
specifies the number of secondary space units to be allocated to the data
set. There is no default.

UNITS(TRACKS | CYLINDERS)
specifies the space units for the data set. It can be TRACKS or
CYLINDERS. There is no default.

DIRBLOCKS(nn)
specifies the number of directory blocks to be allocated to a partitioned data
set. For a sequential data set, you must specify DIRBLOCKS(0). There is
no default.

BLKSIZE(nn)
specifies the block size of the data set. There is no default.

LRECL(nn)
specifies the logical record length of the data set. The length can range
from 1 to 32756. There is no default.

RECFM(string)
specifies the record format of the data set. If more than one characteristic is
specified, do not separate them with blanks or commas. For example,
specify RECFM(FB) to indicate that the records are blocked and
fixed-length.

Invoking ICQSPC00

Chapter 15. Using the Space Management CLIST ICQSPC00 339

LIKE(dsname)
specifies a data set that the space manager is to use as a model data set.
There is no default.

To specify a fully-qualified data set name, enclose it in three sets of single
quotes. For example, to use ‘userid.MODEL.CLIST’ as a model data set,
specify:
LIKE(’userid.MODEL.CLIST’’)

Return and Reason Codes from ICQSPC00
This section describes the return codes and reason codes that ICQSPC00 returns.
ICQSPC00 sets the return code in variable &LASTCC and the reason code in a
shared pool variable, &QSPRC. The return code tells you whether the function
completed successfully, and the reason code gives more detail about what
ICQSPC00 did. Table 81 and Table 82 lists the return and reason codes set by
ICQSPC00.

The return and reason codes have related messages. ICQSPC00 sets the return
code messages in the shared pool variable &QSPCCMSG and the reason code
messages in the shared pool variable &QSPRCMSG.

Table 81. ICQSPC00 Return and Reason Codes

Return Code
&LASTCC

Meaning Possible reason
codes &QSPRC

Message ID
&QSPCCMSG

0 The data set was managed
successfully.

1 - 6 ICQSP000

8 An input parameter was not
valid.

11 - 37 ICQSP010

20 The data set could not be
managed.

41, 58, 431 - 435 ICQSP040

Table 82. ICQSPC00 Reason Codes

Reason
Code

Meaning Message ID
&QSPRCMSG

1 The data set did not need more space. ICQSP001

2 The data set was compressed. ICQSP002

3 The data set’s directory was enlarged. ICQSP003

4 The data set’s primary quantity was enlarged. ICQSP004

5 The data set’s directory and primary quantity were
enlarged.

ICQSP005

6 The data set did not exist, but was created. ICQSP006

11 dsname is not valid. ICQSP011

12 SPACEFULL is not valid. It must be an integer, 0 - 100. ICQSP012

13 SPACEINCREASE is not valid. It must be an integer. ICQSP013

14 KBYTESFREE is not valid. It must be an integer or
blank.

ICQSP014

15 DIRFULL is not valid. It must be an integer, 0 - 100. ICQSP015

16 DIRINCREASE is not valid. It must be an integer. ICQSP016

Invoking ICQSPC00

340 z/OS V1R4.0 TSO/E Programming Services

Table 82. ICQSPC00 Reason Codes (continued)

Reason
Code

Meaning Message ID
&QSPRCMSG

17 DIRBLOCKSFREE is not valid. It must be an integer or
blank.

ICQSP017

18 RECALL is not valid. It must be null, YES, or NO. ICQSP018

19 PROTECTNEW is not valid. It must be YES or NO. ICQSP019

21 RACFUACC is not valid. It must be NONE, READ, or
ALTER.

ICQSP021

22 ALLOWPASSWORDS is not valid. It must be YES or
NO.

ICQSP022

23 REALLOCATENEW is not valid. It must be YES or NO. ICQSP023

24 ALLOCATENEW is not valid. It must be YES, NO, or
ASK.

ICQSP024

25 PRIMSPACE is not valid. It must be an integer or blank. ICQSP025

26 SECSPACE is not valid. It must be an integer or blank. ICQSP026

27 UNITS not valid. It must be TRACKS, CYLINDERS, or
blank.

ICQSP027

28 DIRBLOCKS is not valid. It must be an integer or blank. ICQSP028

29 BLKSIZE is not valid. It must be an integer, 1 - 32760,
or blank.

ICQSP029

30 LRECL is not valid. It must be an integer, 1 - 32756, or
blank.

ICQSP030

31 RECFM is not valid. It must be alphabetic or blank. ICQSP031

32 LIKE is not valid. It must be a valid data set name or
blank.

ICQSP032

35 INFOPANEL is not valid. It must be non-blank. ICQSP035

36 ASKPANEL is not valid. It must be non-blank. ICQSP036

37 VERIFYPARMS is not valid. It must be YES or NO. ICQSP037

38 ALLOCATION parameters are missing. ICQSP038

41 Data set could not be managed: it is password-protected. ICQSP041

42 Data set could not be managed: it is not sequential or
partitioned.

ICQSP042

43 LISTDSI error occurred. ICQSP043

44 Data set does not exist and could not be created. ICQSP044

45 Data set was not created: insufficient authority. ICQSP045

46 Data set was not created: allocation error. ICQSP046

47 Data set was not created: ADDSD return code =
&QSPRACFA.

ICQSP047

48 Data set was not created: user request. ICQSP048

49 Data set was not compressed: IEBCOPY return code =
&QSPCOPY.

ICQSP049

50 Data set was not enlarged: application request. ICQSP050

51 Data set was not enlarged: insufficient authority. ICQSP051

52 Data set was not enlarged: allocation error. ICQSP052

Return and Reason Codes from ICQSPC00

Chapter 15. Using the Space Management CLIST ICQSPC00 341

Table 82. ICQSPC00 Reason Codes (continued)

Reason
Code

Meaning Message ID
&QSPRCMSG

53 Data set was not enlarged: ADDSD return code =
&QSPRACFA.

ICQSP053

54 Data set was not enlarged: PERMIT return code =
&QSPRACFP.

ICQSP054

55 Data set was not enlarged: IEBCOPY return code =
&QSPCOPY.

ICQSP055

56 Data set was not enlarged: DELETE return code =
&QSPDELET.

ICQSP056

57 Data set was not enlarged but renamed: an enlarge error
occurred.

ICQSP057

58 Data set was not enlarged: IEBGENER return code =
&QSPGENER.

ICQSP058

431 You are not authorized to access the data set. ICQSP431

432 Data set not available: migrated and not recalled. ICQSP432

433 Data set not available: DFHSM migrated to a non-DASD
device.

ICQSP433

434 Data set not available: it is not on a DASD device. ICQSP434

435 Data set not available: volume containing it is not
mounted.

ICQSP435

Return and Reason Codes from ICQSPC00

342 z/OS V1R4.0 TSO/E Programming Services

Examples Using ICQSPC00
The following CLISTs illustrate sample applications for the space management
service.

Example 1: The SPACE MANAGER CLIST
The SPACE MANAGER CLIST in Figure 135 receives a data set name as input
using a positional parameter called DATA SET. The CLIST then invokes ICQSPC00,
which checks to see if the data set is 75% full. If it is 75% or more full, ICQSPC00
tries to compress the data set. If compression is not possible, ICQSPC00
reallocates the data set, preserving the RACF protection. If the data set does not
exist, ICQSPC00 can allocate a new data set with the specified name.

/***/
/* This CLIST invokes the space manager function to ensure that the */
/* specified data set is no more than 75% full. If it is too full, */
/* space management will enlarge (compress or reallocate) the data */
/* set by 50%. If the data set does not exist, space manager will */
/* ask the user if it should be created. Data set protection will */
/* be maintained if the data set is reallocated. */
/* */
/***/
PROC 1 DATASET
%ICQSPC00 &DATASET /* Invoke space manager to... */+

SPACEFULL(75) /* If the data set is over 75% full, */+
SPACEINCREASE(50) /* increase it by 50% */+
DIRFULL(75) /* If the dir blocks are over 75% full, */+
DIRINCREASE(50) /* increase them by 50% */+
ALLOCATENEW(ASK) /* If the data set doesn’t exist, ask +

the user if it should be created, +
using the following ALLOC parameters */+

PRIMSPACE(10) /* Primary space of 10 tracks, */+
SECSPACE(5) /* Secondary space of 5 tracks, */+
UNITS(TRACKS) /* Allocate in tracks, */+
DIRBLOCKS(10) /* 10 directory blocks, */+
BLKSIZE(800) /* Block size of 800 */+
LRECL(80) /* Logical record length of 80 */+
RECFM(FB) /* Fixed, blocked record format */

SET RCODE = &LASTCC /* Save the return code */
ISPEXEC VGET (QSPRCMSG) /* Get reason code message & display it */
ISPEXEC GETMSG MSG(&QSPRCMSG) LONGMSG(MESSAGE)
CONTROL ASIS
WRITE &MESSAGE
EXIT CODE(&RCODE)

Figure 135. Example 1: The SPACE MANAGER CLIST

Examples Using ICQSPC00

Chapter 15. Using the Space Management CLIST ICQSPC00 343

Example 2: The SPACE ENLARGER CLIST
The SPACE ENLARGER CLIST in Figure 136 invokes ICQSPC00 to automatically
enlarge the specified data set by 50%. The SPACE ENLARGER CLIST displays a
message if the data set was enlarged successfully or, if not, it displays an error
message from ICQSPC00.

/***
/* This CLIST invokes ICQSPC00 to enlarge the specified data set */
/* by 50%. */
/**/
PROC 1 DATASET
%ICQSPC00 &DATASET /* Invoke space manager to... */+

SPACEFULL(0) /* Force the space to be enlarged */+
DIRFULL(0) /* Force the dir blocks to be enlarged */+
SPACEINCREASE(50) /* Increase primary extent by 50% */+
DIRINCREASE(50) /* Increase size of directory by 50% */+
ALLOCATENEW(NO) /* Don’t create the data set, if it +

doesn’t exist */
SET RCODE = &LASTCC /* Save the return code */
CONTROL ASIS
IF &RCODE = 0 THEN +

WRITE The data set was enlarged successfully.
ELSE +
DO /* Error enlarging data set */
ISPEXEC VGET (QSPRCMSG) /* Get reason code message & display it */
ISPEXEC GETMSG MSG(&QSPRCMSG) LONGMSG(MESSAGE)
WRITE &MESSAGE
END
EXIT CODE(&RCODE)

Figure 136. Example 2: The SPACE ENLARGER CLIST

Examples Using ICQSPC00

344 z/OS V1R4.0 TSO/E Programming Services

Chapter 16. Using IKJADTAB to Change Alternative Library
Environments

Functions of IKJADTAB . 345
Passing Control to IKJADTAB 345

The IKJADTAB Parameter List. 346
Output from IKJADTAB . 348

Return Codes from IKJADTAB. 348
Example Using IKJADTAB . 351

This chapter describes how an application program can use the alternative library
interface routine to create and remove alternative library environments and to
modify alternative library definitions.

Functions of IKJADTAB
Use the alternative library interface routine (IKJADTAB) to create and remove
alternative library environments and to modify alternative library definitions for
CLIST and REXX libraries.

An environment application is a program that must disregard system level
definitions and previous alternative definitions established by the user or by
application programs. Therefore, before an application program invokes an
environment application, the program must establish a new alternative library
environment by creating an alternative library definition table. Creating an
alternative library definition table is necessary if the environment being invoked
uses alternative libraries for CLISTs and REXX execs. Conversely, when the
environment application completes, the invoking program must remove the
alternative library definition table that was created, and re-establish the previous
environment.

Execs written in REXX can establish alternative load libraries that determine where
the system searches for TSO/E commands issued from the exec. For execs that
run in an ISPF environment, use IKJADTAB in an application program to reset DCB
addresses for these alternative load module libraries.

An application program can use IKJADTAB to perform the following functions:

v Create a new alternative library definition table. Optionally, you can provide a
model table whose contents are copied into the new table.

v Create an alternative library definition table if one does not exist. Add to the table
the address of the DCB for an alternative load module library.

v Remove one or more alternative library definition tables.

v Remove all alternative library definition tables.

Passing Control to IKJADTAB
Your program can invoke the alternative library interface routine by using either:
v The CALLTSSR macro instruction, specifying IKJADTB as the entry point name
v The LINK macro instruction, specifying IKJADTAB as the entry point name.

However, you must first create the IKJADTAB parameter list and place its address
into general register 1.

© Copyright IBM Corp. 1988, 2002 345

IKJADTAB must receive control in 31-bit addressing mode. The parameters you
pass to IKJADTAB must be in the primary address space. This routine accepts input
above or below 16 MB in virtual storage. Alternative library definition tables created
by IKJADTAB reside above 16 MB in virtual storage.

The IKJADTAB Parameter List
On entry to IKJADTAB, register 1 must point to an IKJADTAB parameter list that
you have built.

Figure 137 shows the standard parameter list structure for IKJADTAB.

You must turn on the high-order bit of the last address in the parameter list to
indicate the end of the list.

Use the IKJADFMT mapping macro, which is provided in SYS1.MACLIB, to map
the parameter list for IKJADTAB. IKJADFMT has the following syntax:

IKJADFMT [ADMAXCNT=xx]

ADMAXCNT=xx
specifies the number of elements in the array of table tokens. ADMAXCNT=1 is
the default.

Table 83 on page 347 shows the names and descriptions of the IKJADTAB
parameters.

Function

Token for model alternative
library definition table

Number of tables

Array of table tokens

Function Data

Model
Data

LOADLIB
Data

Count
Data

Array Data

ECTADDR
Data

Abend
Data

Reason
Data

Address of ECT (optional)

Abend code (optional)

Abend reason code (optional)

Address of DCB

Function data

Model table data

LOADLIB data

Count data

Array data

ECTADDR data

Abend data

Reason data

Figure 137. Parameter List Structure for IKJADTAB

Passing Control to IKJADTAB

346 z/OS V1R4.0 TSO/E Programming Services

Table 83. The Parameters for IKJADTAB

Parameter Function

ADTAB_FUNCTION An 8-byte character string that indicates the function to be
performed. Set the contents of the 8-byte field to one of the
following EBCDIC values:

Value Function

NEWTABLE Create a new table. If your program uses the
ADTAB_LIKE parameter to specify a model
table, IKJADTAB copies the contents of the
model table into the new table. Otherwise,
IKJADTAB initializes a new table.

ADD_LOAD If a table to contain alternative libraries does
not exist, create one. IKJADTAB adds the
DCB address, which you specify in the
ADTAB_LOADLIB parameter, to the table.

ENDTABLE Remove one or more tables.

ALLTABLS Remove all tables. IKJADTAB removes tables
created by your program and by callers of your
program.

ADTAB_LIKE A fullword containing the token for a model alternative library
table. Use this parameter to pass alternative library definitions to
a new environment. Specify the ADTAB_LIKE parameter with
the NEWTABLE function to copy the contents of the model table
into the new table being created.

The calling program must set the token for the model table to
zero if:

v You use the NEWTABLE function to initialize a new
alternative library table.

v You specify a function other than NEWTABLE.

ADTAB_LOADLIB A fullword containing the address of the DCB for an alternative
load module library. Use this parameter with the ADD_LOAD
function to place the DCB address for a load module library in
an existing or newly created alternative library table. If you
specify a function other than ADD_LOAD, you must set the
address of the DCB to zero.

ADTAB_COUNT A fullword containing the number of tables to be freed. Use this
parameter with the ENDTABLE function to specify the number of
tables to be freed. Use the ADTAB_ARRAY parameter to specify
the tokens for the tables to be freed. If you specify a function
other than ENDTABLE, you must set the number of tables to
zero.

ADTAB_ARRAY An array of table tokens. Each element of the array is a fullword
containing the token for a table to be freed. Use this parameter
with the ENDTABLE function to specify the tokens for the tables
to be freed. Use the ADTAB_COUNT parameter to specify the
number of tables to be freed. When IKJADTAB successfully
frees a table, it sets the corresponding token in the parameter
list to zero. If you specify a function other than ENDTABLE, you
must set the value of the first array element to zero.

Passing Control to IKJADTAB

Chapter 16. Using IKJADTAB to Change Alternative Library Environments 347

Table 83. The Parameters for IKJADTAB (continued)

Parameter Function

ADTAB_ECTADDR A fullword containing the address of the current ECT under
which the ALTLIB environment is to be created or removed. This
parameter is optional. If you do not specify this parameter, or if
you specify a binary zero as the ECT address, IKJADTAB uses
the system ECT.

ADTAB_ABEND A fullword containing the hexadecimal abend code issued by
IKJADTAB. IKJADTAB sets this parameter only when it sets a
return code of 100 (decimal) or 104 (decimal). A return code of
100 indicates that a parameter is in inaccessible storage. A
return code of 104 indicates an internal IKJADTAB error.

This parameter is optional. If you do not specify this parameter,
IKJADTAB will not return an abend code when it sets a return
code of 100 or 104.

ADTAB_REASON_ A fullword containing the hexadecimal abend reason code
issued by IKJADTAB. IKJADTAB sets this parameter only when
it sets a return code of 100 (decimal) or 104 (decimal). A return
code of 100 indicates that a parameter is in inaccessible
storage. A return code of 104 indicates an internal IKJADTAB
error.

This parameter is optional. If you do not specify this parameter,
IKJADTAB will not return an abend reason code when it sets a
return code of 100 or 104.

Note: IKJADFMT provides a “bounded” parameter list, which means that you must
indicate the number of tables to be freed at the time the parameter list is
built. If your program cannot determine the number of tables to be freed
before building the parameter list, perform the following steps:

1. Use the IKJADFMT mapping macro specifying ADMAXCNT=1.

2. Obtain sufficient virtual storage for the array of table tokens.

3. Modify the ADTAB_COUNT parameter to reflect the number of tables to
be freed.

4. In the parameter list, set the pointer to the array data (ADTAB_ARRAY@
field) to the address of the virtual storage obtained for the array.

Output from IKJADTAB
The alternative library interface routine passes a return code to the calling program
in general register 15. Also, if IKJADTAB determines that the input parameters are
valid, general register 0 contains the token for an alternative library definition table
when:

v Either the NEWTABLE or ADD_LOAD functions are specified, and IKJADTAB
issues a return code of 0 or 4.

v The ENDTABLE function is specified, and IKJADTAB issues a return code of 20.
In this case, register 0 contains the token for the first alternative library definition
table that could not be freed.

Return Codes from IKJADTAB
When IKJADTAB returns control to its caller, general register 15 contains one of the
following return codes:

Passing Control to IKJADTAB

348 z/OS V1R4.0 TSO/E Programming Services

Table 84. Return Codes from IKJADTAB

Return Code
Dec(Hex)

Meaning

0(0) Successful completion. Additional information, listed by function, follows.

Function Meaning

NEWTABLE A previous table did not exist and a new table was
created. Register 0 contains the token for the new
table.

ADD_LOAD An alternative library definition table exists and was
updated. Register 0 contains the token for the table.

ENDTABLE IKJADTAB freed all tables requested and set the
corresponding table tokens in the parameter list to
zero. All associated ddnames are also freed.

ALLTABLS IKJADTAB freed all tables created by your program
and by callers of your program.

4(4) Successful completion. Additional information, listed by function, follows.

Function Meaning

NEWTABLE A previous table existed, and a new table was created
to replace it. Register 0 contains the token for the new
table.

ADD_LOAD An alternative library definition table did not exist, but
IKJADTAB created and updated a new table. Register
0 contains the token for the new table.

ENDTABLE IKJADTAB freed all alternative library definition tables
and set the corresponding table tokens in the
parameter list to zero. However, errors occurred when
deallocating ddnames. IKJADTAB issues appropriate
messages.

16(10) Unsuccessful completion. Additional information, listed by function,
follows:

Function Meaning

NEWTABLE The calling program specified a non-zero value for the
token for the model table (ADTAB_LIKE parameter),
but a table containing alternative libraries was not
found. Register 0 is unchanged. IKJADTAB issues an
appropriate message.

ADD_LOAD The system previously created an environment that it
expected to use for the current request. IKJADTAB
determined that this environment is in error. Register 0
is unchanged. IKJADTAB issues an appropriate
message.

Output from IKJADTAB

Chapter 16. Using IKJADTAB to Change Alternative Library Environments 349

Table 84. Return Codes from IKJADTAB (continued)

Return Code
Dec(Hex)

Meaning

20(14) Unsuccessful completion. Additional information, listed by function,
follows.

Function Meaning

NEWTABLE IKJADTAB was unable to obtain a table to contain
alternative library definitions. Register 0 is unchanged.
IKJADTAB issues an appropriate message.

ADD_LOAD IKJADTAB was unable to obtain an alternative library
definition table. Register 0 is unchanged. IKJADTAB
issues an appropriate message.

ENDTABLE At least one of the alternative library definition tables
could not be freed. Register 0 contains the token for
the first table that could not be freed. For tables that
were freed successfully, IKJADTAB set the
corresponding table tokens in the parameter list to
zero. However, errors occurred when deallocating
ddnames. IKJADTAB issues an appropriate message.

ALLTABLS IKJADTAB could not free at least one of the tables.

28(1C) Unsuccessful completion. IKJADTAB was unable to establish a recovery
environment. IKJADTAB issues an appropriate message.

40(28) Unsuccessful completion. A not valid function was specified (neither
NEWTABLE, ADD_LOAD, ENDTABLE, nor ALLTABLS). IKJADTAB
issues an appropriate message.

44(2C) Unsuccessful completion. The NEWTABLE function was requested, but
a non-zero value was specified for the ADTAB_LOADLIB parameter.
IKJADTAB issues an appropriate message.

48(30) Unsuccessful completion. The NEWTABLE function was requested, but
a non-zero value was specified for the ADTAB_COUNT parameter.
IKJADTAB issues an appropriate message.

52(34) Unsuccessful completion. The NEWTABLE function was requested, but
a non-zero value was specified for the ADTAB_ARRAY parameter.
IKJADTAB issues an appropriate message.

56(38) Unsuccessful completion. The ADD_LOAD function was requested, but
a non-zero value was specified for the ADTAB_LIKE parameter.
IKJADTAB issues an appropriate message.

60(3C) Unsuccessful completion. The ADD_LOAD function was requested, but
a non-zero value was specified for the ADTAB_COUNT parameter.
IKJADTAB issues an appropriate message.

64(40) Unsuccessful completion. The ADD_LOAD function was requested, but
a non-zero value was specified for the ADTAB_ARRAY parameter.
IKJADTAB issues an appropriate message.

68(44) Unsuccessful completion. The ENDTABLE function was requested, but a
non-zero value was specified for the ADTAB_LIKE parameter.
IKJADTAB issues an appropriate message.

72(48) Unsuccessful completion. The ENDTABLE function was requested, but a
non-zero value was specified for the ADTAB_LOADLIB parameter.
IKJADTAB issues an appropriate message.

Output from IKJADTAB

350 z/OS V1R4.0 TSO/E Programming Services

Table 84. Return Codes from IKJADTAB (continued)

Return Code
Dec(Hex)

Meaning

76(4C) Unsuccessful completion. The ALLTABLS function was requested, but a
non-zero value was specified for the ADTAB_LIKE parameter.
IKJADTAB issues an appropriate message.

80(50) Unsuccessful completion. The ALLTABLS function was requested, but a
non-zero value was specified for the ADTAB_LOADLIB parameter.
IKJADTAB issues an appropriate message.

84(54) Unsuccessful completion. The ALLTABLS function was requested, but a
non-zero value was specified for the ADTAB_COUNT parameter.
IKJADTAB issues an appropriate message.

88(58) Unsuccessful completion. The ALLTABLS function was requested, but a
non-zero value was specified for the ADTAB_ARRAY parameter.
IKJADTAB issues an appropriate message.

100(64) Unsuccessful completion. Parameters are in storage that cannot be
accessed.

104(68) Unsuccessful completion. An internal processing error occurred.

108(6C) Unsuccessful completion. IKJADTAB was not invoked in a TSO/E
environment.

112(70) Unsuccessful completion. IKJADTAB was invoked in an authorized
TSO/E environment.

Example Using IKJADTAB
Figure 138 on page 352 is an example showing how to invoke IKJADTAB to create
and initialize a new alternative library definition table. This new table is created
before the program invokes a new environment application.

The segment of assembler code shown sets up the parameter list for IKJADTAB
and invokes IKJADTAB using the CALLTSSR macro instruction.

Output from IKJADTAB

Chapter 16. Using IKJADTAB to Change Alternative Library Environments 351

**
* *
* ENTRY FROM THE TMP - REGISTER ONE CONTAINS A POINTER TO THE CPPL *
* *
**

LR R2,R1 SAVE THE ADDRESS OF THE CPPL
L R3,12(R2) PLACE THE ECT ADDRESS INTO A

REGISTER
**
* *
* SET UP THE PARAMETER LIST FOR IKJADTAB. THE FUNCTION PARAMETER IS *
* SET TO ’NEWTABLE’. THE ECTADDR PARAMETER IS SET TO THE ECT *
* ADDRESS OF THE ECT PASSED AS INPUT TO THE COMMAND PROCESSOR. *
* A VALUE OF ZERO IS PASSED FOR ALL OTHER PARAMETERS. *
* *
**

XC IKJADFMT(24),IKJADFMT INITIALIZE PARAMETER VALUES
MVC ADTAB_FUNCTION(8),NEWTABLE REQUEST NEWTABLE FUNCTION

LA R2,ADTAB_FUNCTION PLACE ADDRESS OF FUNCTION
ST R2,ADTAB_FUNCTION@ DATA IN PARAMETER LIST

LA R2,ADTAB_LIKE PLACE ADDRESS OF MODEL TABLE
ST R2,ADTAB_LIKE@ DATA IN PARAMETER LIST

LA R2,ADTAB_LOADLIB PLACE ADDRESS OF LOADLIB
ST R2,ADTAB_LOADLIB@ DATA IN PARAMETER LIST

LA R2,ADTAB_COUNT PLACE ADDRESS OF COUNT DATA
ST R2,ADTAB_COUNT@ IN PARAMETER LIST

LA R2,ADTAB_ARRAY PLACE ADDRESS OF ARRAY DATA
ST R2,ADTAB_ARRAY@ IN PARAMETER LIST

LA R2,ADTAB_ECTADDR PLACE ADDRESS OF ECTADDR DATA
ST R2,ADTAB_ECTADDR@ IN PARAMETER LIST

LA R2,ADTAB_ABEND PLACE ADDRESS OF ABEND DATA
ST R2,ADTAB_ABEND@ IN PARAMETER LIST

LA R2,ADTAB_REASON_WORD PLACE ADDRESS OF REASON_WORD
ST R2,ADTAB_REASON_WORD@ DATA IN PARAMETER LIST

OI ADTAB_REASON_WORD,B’10000000’
TURN ON HIGH-ORDER BIT

LA R1,IKJADFMT_PLIST REG 1 POINTS TO PARM LIST

CALLTSSR EP=IKJADTB INVOKE IKJADTAB, SPECIFYING
* ENTRY POINT IKJADTB.

ST R15,IKJADTAB_RC SAVE RETURN CODE

Figure 138. A Sample Program Using IKJADTAB (Part 1 of 2)

Example Using IKJADTAB

352 z/OS V1R4.0 TSO/E Programming Services

* *
* CHECK THE RETURN CODE FROM IKJADTAB. *
* *

LA R3,4 DETERMINE IF THE RETURN
CR R15,R3 CODE IS 4 OR LESS
BL NO_ERROR BRANCH IF RETURN CODE IS

* 0 OR 4.
B ERROR BRANCH IF RETURN CODE IS

* GREATER THAN 4.
NO_ERROR EQU *

ST R0,USER_TOKEN SAVE TOKEN FOR ALTERNATE
* LIBRARY DEFINITION TABLE

* *
* IKJADTAB HAS COMPLETED SUCCESSFULLY. *
* INVOKE THE ENVIRONMENT APPLICATION. *
* . *
* . *
* . *
* . *

IKJADFMT ADMAXCNT=1 IKJADTAB PARAMETER LIST -
* SPECIFY ONE ARRAY ELEMENT
NEWTABLE DC C’NEWTABLE’ CONSTANT FOR FUNCTION
IKJADTAB_RC DS F SAVE AREA FOR RETURN CODE
USER_TOKEN DS F SAVE AREA FOR TABLE TOKEN
R1 EQU 1 GENERAL REGISTER 1
R2 EQU 2 GENERAL REGISTER 2
R3 EQU 3 GENERAL REGISTER 3
R15 EQU 15 GENERAL REGISTER 15

Figure 138. A Sample Program Using IKJADTAB (Part 2 of 2)

Example Using IKJADTAB

Chapter 16. Using IKJADTAB to Change Alternative Library Environments 353

Example Using IKJADTAB

354 z/OS V1R4.0 TSO/E Programming Services

Chapter 17. Using the Dynamic Allocation Interface Routine
DAIR

Functions of the Dynamic Allocation Interface Routine 355
Passing Control to DAIR . 355

The DAIR Parameter List (DAPL) 356
The DAIR Parameter Block (DAPB) 356

Return Codes from DAIR. 376
Reason Codes from Dynamic Allocation 377

This chapter describes how to use the dynamic allocation interface routine (DAIR)
in a command processor to allocate, free, concatenate and deconcatenate data sets
during program execution.

Functions of the Dynamic Allocation Interface Routine
Dynamic allocation routines allocate, free, concatenate, and deconcatenate data
sets dynamically, that is, during problem program execution. In the TSO/E
environment, dynamic allocation permits the terminal monitor program, command
processors, and other problem programs executing in the foreground region to
allocate data sets after LOGON and free them before LOGOFF.

Programs that execute in the TSO/E environment can access dynamic allocation
directly, using SVC 99, or through the dynamic allocation interface routine (DAIR).
Though its use is not recommended because of reduced functions and additional
system overhead, DAIR is documented in this book to provide compatibility for
existing programs that use it. DAIR can be used to obtain information about a data
set and, if necessary, invoke dynamic allocation routines to perform the requested
function.

You can use DAIR to perform the following functions:
v Obtain the current status of a data set
v Allocate a data set
v Free a data set
v Concatenate data sets
v Deconcatenate data sets
v Build a list of attributes (DCB parameters) to be assigned to data sets
v Delete a list of attributes.

For a complete discussion of dynamic allocation, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Passing Control to DAIR
Your program can invoke DAIR by using the CALLTSSR macro instruction,
specifying IKJDAIR as the entry point name. However, you must first create the
DAIR parameter list (DAPL) and place its address into register 1. The DAPL is
described in “The DAIR Parameter List (DAPL)” on page 356.

The DAIR service routine can be invoked in either 24- or 31-bit addressing mode.
The caller’s parameters must be in the primary address space. When invoked in
31-bit addressing mode, DAIR can be passed input above 16 MB in virtual storage.

© Copyright IBM Corp. 1988, 2002 355

The DAIR Parameter List (DAPL)
At entry to DAIR, register 1 must point to a DAIR parameter list that you have built.
The addresses of the user profile table, environment control table, and protected
step control block can be obtained from the command processor parameter list
(CPPL) that the TMP passes to your command processor. Additional information on
the address and creation of the user profile table, environment control table, and
protected step control block is shown in Table 4 on page 18.

You can use the IKJDAPL DSECT, which is provided in SYS1.MACLIB to map the
fields in the DAPL. Table 85 shows the format of the DAPL.

Table 85. The DAIR Parameter List (DAPL)

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

0(0) 4 DAPLUPT The address of the user profile table.
4(4) 4 DAPLECT The address of the environment control

table.
8(8) 4 DAPLECB The address of the calling program’s event

control block. The ECB is one word of real
storage declared and initialized to zero by
the calling routine.

12(C) 4 DAPLPSCB The address of the protected step control
block.

16(10) 4 DAPLDAPB The address of the DAIR parameter block,
created by the calling routine.

The DAIR Parameter Block (DAPB)
The fifth word of the DAIR parameter list must contain a pointer to a DAIR
parameter block built by the calling routine.

It is a variable-size parameter block that contains, in the first two bytes, an entry
code that defines the operation requested by the calling routine. The remaining
bytes contain other information required by DAIR to perform the requested function.
You must initialize the DAIR parameter block before calling DAIR. Unused fields
should be set to zeros, or to blanks for character items. Table 86 lists the DAIR
entry codes and the functions requested by those codes.

Table 86. DAIR Entry Codes and Their Functions

Entry Code Function Performed by DAIR

X'00' Test if a given dsname or ddname is currently allocated to the caller.
X'04' Test if a given dsname is currently allocated to the caller, or is in system

catalog.
X'08' Allocate a data set by dsname.
X'0C' Concatenate data sets by ddname.
X'10' Deconcatenate data sets by ddname.
X'14' Search the system catalog for all qualifiers for a dsname. (The dsname

alone represents an unqualified index entry.)
X'18' Free a data set.
X'1C' Allocate a ddname to a terminal.
X'24' Allocate a data set by ddname or dsname.
X'28' Perform a list of operations.
X'2C' Mark data sets as not in use.
X'30' Allocate a SYSOUT data set.

Passing Control to DAIR

356 z/OS V1R4.0 TSO/E Programming Services

Table 86. DAIR Entry Codes and Their Functions (continued)

Entry Code Function Performed by DAIR

X'34' Associate DCB parameter with a specified name for use with subsequent
allocations.

The DAIR parameter blocks have the formats shown in the following tables. The
formats of the blocks depend upon the function requested by the calling routine.

Determining if Ddname or Dsname is Allocated (Entry Code
X'00')
Build the DAIR parameter block shown in Table 87 to request that DAIR determine
whether the specified dsname or ddname is allocated. Use the IKJDAP00 mapping
macro, which is provided in SYS1.MACLIB, to map this DAIR parameter block.

Table 87. DAIR Parameter Block for Entry Code X'00'

Number of
Bytes

Field Name Contents or Meaning

2 DA00CD Entry code X'0000'
2 DA00FLG A flag field set by DAIR before returning to the calling

routine. The flags have the following meaning:

Byte 1:
0000 Reserved. Set to zero.
.... 1... Dsname or ddname is permanently

allocated.
.... .1.. Ddname is a DYNAM.
.... ..1. The dsname is currently allocated.
.... ...1 The ddname is currently allocated to

the terminal.

Byte 2:
0000 0000 Reserved. Set to zero.

4 DA00PDSN Place in this field the address of the dsname buffer. The
dsname buffer is a 46-byte field with the following
format:

The first two bytes contain the length, in bytes of the
dsname; the next 44 bytes contain the dsname, left
justified, and padded to the right with blanks.

8 DA00DDN Contains the ddname for the requested data set. If a
dsname is present, the DAIR service routine ignores the
contents of this field.

1 DA00CTL A flag field:
00.0 0000 Reserved bits. Set to zero.
..1. Prefix user ID to dsname.

2 Reserved. Set these bytes to zero.

Passing Control to DAIR

Chapter 17. Using the Dynamic Allocation Interface Routine DAIR 357

Table 87. DAIR Parameter Block for Entry Code X'00' (continued)

Number of
Bytes

Field Name Contents or Meaning

1 DA00DSO A flag field. These flags describe the organization of the
data. They are returned to the calling routine by the
DAIR service routine.
1... Indexed sequential organization
.1.. Physical sequential organization
..1. Direct organization
...1 BTAM or QTAM line group
.... 1... QTAM direct access message queue
.... .1.. QTAM problem program message

queue
.... ..1. Partitioned organization
.... ...1 Unmovable

After DAIR searches the data set entry for the fully-qualified data set name, register
15 contains one of the following DAIR return codes: 0, 4, or 52. See “Return Codes
from DAIR” on page 376 for return code meanings.

Determining if Dsname is Allocated or is in the System Catalog
(Entry Code X'04')
Build the DAIR parameter block shown in Table 88 to request that DAIR determine
whether the specified dsname is allocated. DAIR also searches the system catalog
to find an entry for the dsname. Use the IKJDAP04 mapping macro, which is
provided in SYS1.MACLIB, to map this DAIR parameter block.

Table 88. DAIR Parameter Block for Entry Code X'04'

Number of
Bytes

Field Name Contents or Meaning

2 DA04CD Entry code X'0004'
2 DA04FLG A flag field set by DAIR before returning to the calling

routine. The flags have the following meaning:

Byte 1:
0000 0..0 Reserved. Set these bits to zero.
.... .1.. DAIR found the dsname in the

catalog.
.... ..1. The dsname is currently allocated.

Byte 2:
0000 0000 Reserved. Set to zero.

2 Reserved. Set to zero.
2 DA04CTRC These two bytes will contain an error code from the

catalog management routines if an error was
encountered by catalog management.

4 DA04PDSN Place in this field the address of the dsname buffer. The
dsname buffer is a 46-byte field with the following
format:

The first two bytes contain the length, in bytes, of the
dsname; the next 44 bytes contain the dsname, left
justified, and padded to the right with blanks.

Passing Control to DAIR

358 z/OS V1R4.0 TSO/E Programming Services

Table 88. DAIR Parameter Block for Entry Code X'04' (continued)

Number of
Bytes

Field Name Contents or Meaning

1 DA04CTL A flag field:
00.0 0000 Reserved. Set these bits to zero.
..1. Prefix user ID to dsname.

2 Reserved. Set these bytes to zero.
1 DA04DSO A flag field. These flags are set by the DAIR service

routine; they describe the organization of the data set to
the calling routine. These flags are returned only if the
data set is currently allocated.
1... Indexed sequential organization
.1.. Physical sequential organization
..1. Direct organization
...1 BTAM or QTAM line group
.... 1... QTAM direct access message queue
.... .1.. QTAM problem program message

queue
.... ..1. Partitioned organization
.... ...1 Unmovable

After attempting the requested function, DAIR returns, in register 15, one of the
following codes: 0, 4, 8, or 52. See “Return Codes from DAIR” on page 376 for
return code meanings.

Allocating a Data Set by Dsname (Entry Code X'08')
Build the DAIR parameter block shown in Table 89 on page 360 to request that
DAIR allocate a data set. Use the IKJDAP08 mapping macro, which is provided in
SYS1.MACLIB, to map this DAIR parameter block. The exact action taken by DAIR
depends upon the presence of the optional fields and the setting of bits in the
control byte.

If the data set is new and you specify DSNAME, (NEW, CATLG) the data set is
cataloged upon successful allocation. This is the only time a data set will be
cataloged at allocation time. If the catalog attempt is unsuccessful, the data set is
freed. If the proper indices are not present, the indices are built.

To allocate a utility data set use DAIR code X'08' and use a dsname of the form
&name. If the &name is already allocated, that data set is used. If the &name is not
found, a new data set is allocated.

To supply DCB information, provide the name of an attribute list that has been
defined previously by a X'34' entry into DAIR.

When setting disposition in a parameter list, only one bit should be on.

For partitioned data sets, specifying the data set name and the member name for
DAIR entry code X'08' causes the data set to be allocated, but no check is done to
see if the member exists.

For example, to verify that the member really exists:

1. Allocate the data set with the member name using DAIR entry code X'08'.

2. Open the data set with DSORG=PO, MACRF=R.

Passing Control to DAIR

Chapter 17. Using the Dynamic Allocation Interface Routine DAIR 359

3. Issue BLDL for the member. (The BLDL return code will indicate whether the
member is there or not.)

4. Close the data set.

5. If BLDL indicates that the member does not exist, deallocate the data set using
ddname and DAIR entry code X'18'.

The DAIR parameter block required for entry code X'08' has the format shown in
Table 89.

Table 89. DAIR Parameter Block for Entry Code X'08'

Number of
Bytes

Field Name Contents or Meaning

2 DA08CD Entry code X'0008'
2 DA08FLG A flag field set by DAIR before returning to the calling

routine. The flags have the following meaning:

Byte 1:
1... The data set is allocated but a

secondary error occurred. Register 15
contains an error code.

.000 0000 Reserved. Set these bits to zero.

Byte 2: Reserved. Set to zero.
2 DA08DARC This field contains the error code, if any, returned from

the dynamic allocation routines. (See “Reason Codes
from Dynamic Allocation” on page 377.)

2 DA08CTRC This field contains the error code, if any, returned from
catalog management routines. (See “Return Codes from
DAIR” on page 376.)

4 DA08PDSN Place in this field the address of the dsname buffer. The
dsname buffer is a 46-byte field with the following
format:

The first two bytes contain the length, in bytes, of the
dsname; the next 44 bytes contain the dsname, left
justified and padded to the right with blanks. If this field
(DA08PDSN) is zero, the system generates a data set
name unless bit 5 in DA08CTL is on, in which case a
DUMMY data set is allocated. The system also
generates a name if the DA08PDSN field points to a
dsname buffer which has a length of 44, is initialized to
blanks, and bit 5 in DA08CTL is off.

8 DA08DDN This field contains the ddname for the data set. If a
specific ddname is not required, fill this field with eight
blanks; DAIR will place in this field the ddname to which
the data set is allocated.

8 DA08UNIT
8 DA08SER Serial number desired. Only the first six bytes are

significant. If the serial number is less than six bytes, it
must be padded to the right with blanks. If the serial
number is omitted, the entire field must contain blanks.
In this case the following is done: if the data set is a
new data set, the system determines the volume to be
used for the data set based on the unit information. If
the data set already exists, volume and unit information
are obtained from the catalog. If the information is not
found in the catalog, the allocation request is denied.

Passing Control to DAIR

360 z/OS V1R4.0 TSO/E Programming Services

Table 89. DAIR Parameter Block for Entry Code X'08' (continued)

Number of
Bytes

Field Name Contents or Meaning

4 DA08BLK This is a 4-byte field used as follows: if the data set is a
new data set and bit 0 in DA08CTL is off and bit 1 in
DA08CTL is on, this field is used with DA08PQTY to
determine the amount of direct access space to be
allocated for the data set. If bit 6 of DA08CTL is off, the
field is also used as DCB blocksize specification. The
value for blocksize must be placed in the two low-order
bytes, and the high-order bytes must be zero.

4 DA08PQTY Primary space quantity desired. The high-order byte
must be set to zero and the three low-order bytes
should contain the space quantity required. If the
quantity is omitted, the entire field must be set to zero.
In the case of new direct access data sets, primary and
secondary space and type of space are defaulted.
Directory quantity is used if specified in DA08DQTY.

4 DA08SQTY Secondary space quantity desired. The high-order byte
must be set to zero; the three low-order bytes should
contain the secondary space quantity required. If the
quantity is omitted, the entire field must be set to zero.

4 DA08DQTY Directory quantity required. The high-order byte must be
set to zero; the three low-order bytes contain the
number of directory blocks desired. If the quantity is
omitted, the entire field must be set to zero.

8 DA08MNM Contains a member name of a partitioned data set. If
the name has less than eight characters, pad it to the
right with blanks. If the name is omitted, the entire field
must contain blanks.

8 DA08PSWD Contains the password for the data set. If the password
has less than eight characters, pad it to the right with
blanks. If the password is omitted, the entire field must
contain blanks.

1 DA08DSP1 Flag byte. Set the following bits to indicate the status of
the data set:
0000 Reserved. Set these bits to zero.
.... 1... SHR
.... .1.. NEW
.... ..1. MOD
.... ...1 OLD

If this byte is zero, OLD is assumed. NEW or MOD is
required if dsname is omitted.

1 DA08DPS2 Flag byte. Set the following bits to indicate the normal
disposition of the data set:
0000 Reserved. Set these bits to zero.
.... 1... KEEP
.... .1.. DELETE
.... ..1. CATLG
.... ...1 UNCATLG

If this byte is zero, it is defaulted as follows: if
DA08DSP1 is NEW, DELETE is used; otherwise, KEEP
is used.

Passing Control to DAIR

Chapter 17. Using the Dynamic Allocation Interface Routine DAIR 361

Table 89. DAIR Parameter Block for Entry Code X'08' (continued)

Number of
Bytes

Field Name Contents or Meaning

1 DA08DPS3 Flag byte. Set the following bits to indicate the abnormal
disposition of the data set:
0000 Reserved. Set these bits to zero.
.... 1... KEEP
.... .1.. DELETE
.... ..1. CATLG
.... ...1 UNCATLG

If this byte is zero, DA08DPS2 will be used.
1 DA08CTL Flag byte. These flags indicate to the DAIR service

routine what operations are to be performed:
xx.. Indicate the type of units desired for

the space parameters, as follows:
01.. Units are in average block length.
10.. Units are in tracks (TRKS).
11.. Units are in cylinders (CYLS).
..1. Prefix user ID to dsname.
...1 RLSE is desired.
.... 1... The data set is to be permanently

allocated; it is not to be freed until
specifically requested.

.... .1.. A DUMMY data set is desired.

.... ..1. Attribute list name supplied.

.... ...0 Reserved. Set this bit to zero.

3 Reserved. Set these bytes to zero.
1 DA08DSO A flag field. These flags are set by the DAIR service

routine; they describe the organization of the data set to
the calling routine.
1... Indexed sequential organization
.1.. Physical sequential organization
..1. Direct organization
...1 BTAM or QTAM line group
.... 1... QTAM direct access message queue
.... .1.. QTAM problem program message

queue
.... ..1. Partitioned organization
.... ...1 Unmovable

8 DA08ALN Attribute list name, or a ddname from which DCB
attributes should be copied (as in a JCL DCB
reference). If the name is less than 8 characters, it
should be padded to the right with blanks.

After attempting the requested function, DAIR returns, in register 15, one of the
following codes: 0, 4, 8, 12, 16, 20, 28, 32, 44, or 52. See “Return Codes from
DAIR” on page 376 for return code meanings.

Concatenating the Specified Ddnames (Entry Code X'0C')
Build the DAIR parameter block shown in Table 90 on page 363 to request that
DAIR concatenate data sets. Use the IKJDAP0C mapping macro, which is provided
in SYS1.MACLIB, to map this DAIR parameter block.

Passing Control to DAIR

362 z/OS V1R4.0 TSO/E Programming Services

The ddnames listed in the DAIR parameter block are concatenated in the order in
which they appear. All data sets listed by ddname in the DAIR parameter block
must be currently allocated.

Table 90. DAIR Parameter Block for Entry Code X'0C'

Number of
Bytes

Field Name Contents or Meaning

2 DA0CCD Entry code X'000C'
2 DA0CDARC This field contains the error code, if any, returned from

the dynamic allocation routines. (See “Reason Codes
from Dynamic Allocation” on page 377.)

2 Reserved field. Set this field to zero.
2 DA0CNUMB Place in this field the number of data sets to be

concatenated.
2 Reserved. Set this field to zero.
8 DA0CDDN Place in this field the ddname of the first data set to be

concatenated. This field is repeated for each ddname to
be concatenated.

After attempting the requested function, DAIR returns, in register 15, one of the
following codes: 0, 4, 12, or 52. See “Return Codes from DAIR” on page 376 for
return code meanings.

Deconcatenating the Indicated Ddname (Entry Code X'10')
Build the DAIR parameter block shown in Table 91 to request that DAIR
deconcatenate a data set. The ddname specified within the DAIR parameter block
must be concatenated previously, and is now to be deconcatenated.

Use the IKJDAP10 mapping macro, which is provided in SYS1.MACLIB, to map this
DAIR parameter block.

Table 91. DAIR Parameter Block for Entry Code X'10'

Number of
Bytes

Field Name Contents or Meaning

2 DA10CD Entry code X'0010'
2 DA10DARC This field contains the error code, if any, returned from

the dynamic allocation routines. (See “Reason Codes
from Dynamic Allocation” on page 377.)

2 Reserved field. Set this field to zero.
8 DA10DDN Place in this field the ddname of the data set to be

deconcatenated.

After attempting the requested function, DAIR returns, in register 15, one of the
following codes: 0, 4, 12, or 52. See “Return Codes from DAIR” on page 376 for
return code meanings.

Returning Qualifiers for the Specified Dsname (Entry Code X'14')
Build the DAIR parameter block shown in Table 92 to request that DAIR return all
qualifiers for the dsname specified. Use the IKJDAP14 mapping macro, which is
provided in SYS1.MACLIB, to map this DAIR parameter block.

You must also provide the return area pointed to by the DA14PRET field in the
DAIR parameter block. If the area you provide is larger than what is needed for all
returned information, the remaining bytes in the area are set to zero by DAIR. If the

Passing Control to DAIR

Chapter 17. Using the Dynamic Allocation Interface Routine DAIR 363

area is smaller than the required size, it is filled to its limit, and the return code
indicates this condition.

Table 92. DAIR Parameter Block for Entry Code X'14'

Number of
Bytes

Field Name Contents or Meaning

2 DA14CD Entry code X'0014'
4 DA14PDSN Place in this field the address of the dsname buffer. The

dsname buffer is a 46-byte field with the following
format:

The first two bytes contain the length, in bytes, of the
dsname; the next 44 bytes contain the dsname, left
justified and padded to the right with blanks. dsname
alone represents an unqualified index entry.

4 DA14PRET Place in this field the address of the return area in
which DAIR is to place the qualifiers found for the
dsname. Place the length of the return area in the first
two bytes of the return area. Set the next two bytes in
the return area to zero. DAIR returns each of the
qualifiers it finds in two fullwords of storage beginning at
the first word (offset 0) within the return area.

1 DA14CTL A flag field:
00.0 0000 Reserved. Set these bits to zero.
..1. Prefix user ID to dsname.

3 Reserved bytes. Set this field to zero.

After attempting the requested function, DAIR returns, in register 15, one of the
following codes: 0, 4, 36, or 40. See “Return Codes from DAIR” on page 376 for
return code meanings.

Freeing the Specified Data Set (Entry Code X'18')
Build the DAIR parameter block shown in Table 93 to request that DAIR free a data
set. Use the IKJDAP18 mapping macro, which is provided in SYS1.MACLIB, to map
this DAIR parameter block.

The data set name represented by dsname is to be freed. If no dsname is given,
the data set associated with the ddname is freed. If both ddname and dsname are
given, DAIR ignores the ddname.

If the specified dsname is allocated several times to the user, all such allocations
are freed.

When setting disposition in a parameter list, only one bit should be on.

Table 93. DAIR Parameter Block for Entry Code X'18'

Number of
Bytes

Field Name Contents or Meaning

2 DA18CD Entry code X'0018'

Passing Control to DAIR

364 z/OS V1R4.0 TSO/E Programming Services

Table 93. DAIR Parameter Block for Entry Code X'18' (continued)

Number of
Bytes

Field Name Contents or Meaning

2 DA18FLG A flag field set by DAIR before returning to the calling
routine. The flags have the following meanings:

Byte 1:
1... The data set is freed but a secondary

error occurred. Register 15 contains
zero and the error information is in
DA18DARC.

.000 0000 Reserved bits. Set to zero.

Byte 2: Reserved. Set to zero.
2 DA18DARC This field contains the error code, if any, returned from

the dynamic allocation routines. (See “Reason Codes
from Dynamic Allocation” on page 377.)

2 DA18CTRC This field contains the error code, if any, returned from
catalog management routines. (See “Return Codes from
DAIR” on page 376.)

4 DA18PDSN Place in this field the address of the dsname buffer. The
dsname buffer is a 46-byte field with the following
format:

The first two bytes contain the length, in bytes, of the
dsname; the next 44 bytes contain the dsname, left
justified and padded to the right with blanks. This field is
zero if the dsname is not specified.

8 DA18DDN Place in this field the ddname of the data set to be
freed, or blanks. If dsname is specified, this field is
ignored.

8 DA18MNM Contains the member name of a partitioned data set. If
the name has less than eight characters, pad it to the
right with blanks. If the name is omitted, the entire field
must contain blanks.

2 DA18SCLS SYSOUT class. The output class can be A-Z or 0-9 in
the first byte. The second byte in the field is ignored. If
SYSOUT is not specified, the first byte of this field must
contain zeros or blanks.

1 DA18DPS2 Flag byte. Set the following bits to override the normal
disposition of the data set:
0000 Reserved bits. Set them to zero.
.... 1... KEEP
.... .1.. DELETE
.... ..1. CATLG
.... ...1 UNCATLG

If the disposition specified at allocation is to be used,
this field must contain zero.

Passing Control to DAIR

Chapter 17. Using the Dynamic Allocation Interface Routine DAIR 365

Table 93. DAIR Parameter Block for Entry Code X'18' (continued)

Number of
Bytes

Field Name Contents or Meaning

1 DA18CTL Flag byte. These flags indicate to the DAIR service
routine what operations are to be performed:
..1. Prefix user ID to dsname (requires

DA18PDSN data be available).
00.. 0000 Reserved bits; set them to zero.
...1 If this bit is on, permanently allocated

data sets are deallocated. If the bit is
off, the data set will be marked “not in
use,” if it is permanently allocated.

8 Reserved bytes; set this field to hexadecimal zeros.

After attempting the requested function, DAIR returns, in register 15, one of the
following codes: 0, 4, 12, 24, 28, or 52 See “Return Codes from DAIR” on page 376
for return code meanings.

Allocating the Specified Ddname to the Terminal (Entry Code
X'1C')
Build the DAIR parameter block shown in Table 94 to request that DAIR allocate a
ddname to the terminal. Use the IKJDAP1C mapping macro, which is provided in
SYS1.MACLIB, to map this DAIR parameter block.

If the DDNAME field is left blank, DAIR returns the allocated ddname in that field.
To supply DCB information, provide the name of an attribute list that has been
defined previously by a X'34' entry into DAIR, or the ddname of a currently
allocated data set from which DCB attributes can be copied (as in a JCL DCB
reference).

Table 94. DAIR Parameter Block for Entry Code X'1C'

Number of
Bytes

Field Name Contents or Meaning

2 DA1CCD Entry code X'001C'
2 DA1CDARC This field contains the error code, if any, returned from

the dynamic allocation routines. (See “Reason Codes
from Dynamic Allocation” on page 377.)

1 Reserved field; set it to zero.
1 DA1CCTL Control byte:

.... 1... The data set is to be permanently
allocated; it is not to be freed until
specifically requested.

.... ..1. Attribute list name supplied.
0000 .0.0 Reserved; set to zero.

8 DA1CDDN Place in this field the ddname for the data set to be
allocated to the terminal or blanks if the allocated
ddname should be returned in this field.

Passing Control to DAIR

366 z/OS V1R4.0 TSO/E Programming Services

Table 94. DAIR Parameter Block for Entry Code X'1C' (continued)

Number of
Bytes

Field Name Contents or Meaning

8 DA1CALN Attribute list name that has been defined previously by a
X'34' entry into DAIR, or a ddname of a currently
allocated data set from which DCB attributes can be
copied. This field is used only if Bit 6 of DA1CCTL is set
to one.

After attempting the requested function, DAIR returns, in register 15, one of the
following codes: 0, 4, 12, 16, 20, 28, or 52. See “Return Codes from DAIR” on
page 376 for return code meanings.

Allocating a Data Set by Ddname (Entry Code X'24')
Build the DAIR parameter block shown in Table 95 to request that DAIR allocate a
data set by ddname. Use the IKJDAP24 mapping macro, which is provided in
SYS1.MACLIB, to map this DAIR parameter block.

If DAIR locates the ddname you specify and a dsname is currently associated with
it, the associated dsname is allocated overriding the dsname pointed to by the third
word of your DAIR parameter block. The ddname might be found associated with a
DUMMY, and if so an indicator is returned but no allocation takes place.

If DAIR cannot allocate by ddname, it will perform processing for code X'08' to
allocate by dsname and generate a new ddname.

When setting disposition in a parameter list, only one bit should be on.

Table 95. DAIR Parameter Block for Entry Code X'24'

Number of
Bytes

Field Name Contents or Meaning

2 DA24CD Entry code X'0024'
2 DA24FLG A flag field set by DAIR before returning to the calling

routine. The flags have the following meaning:

Byte 1:
1... The data set is allocated but a

secondary error occurred.
.... 1... Ddname requested is allocated as

DUMMY.
.000 .000 Reserved bits. Set to zero.

Byte 2: Reserved. Set to zero.
2 DA24DARC This field contains the error code, if any, returned from

the dynamic allocation routines. (See “Reason Codes
from Dynamic Allocation” on page 377.)

2 DA24CTRC This field contains the error code, if any, returned from
catalog management routines. (See “Return Codes from
DAIR” on page 376.)

Passing Control to DAIR

Chapter 17. Using the Dynamic Allocation Interface Routine DAIR 367

Table 95. DAIR Parameter Block for Entry Code X'24' (continued)

Number of
Bytes

Field Name Contents or Meaning

4 DA24PDSN Place in this field the address of the dsname buffer. The
dsname buffer is a 46-byte field with the following
format:

The first two bytes contain the length, in bytes, of the
dsname; the next 44 bytes contain the dsname, left
justified and padded to the right with blanks. If the
specified ddname is used, this field (DA24PDSN) is
ignored.

8 DA24DDN Place here the ddname for the data set to be allocated.
This ddname is required. If the specified ddname is not
allocated, then a generated ddname will be used with
the dsname and the generated ddname will be returned
in this field.

8 DA24UNIT
8 DA24SER Serial number desired. Only the first six bytes are

significant. If the serial number is less than six bytes, it
must be padded to the right with blanks. If the serial
number is omitted, the entire field must contain blanks.
In this case, the following is done:

If the data set is a new data set, the system determines
the volume to be used for the data set based on the unit
information. If the data set already exists, volume and
unit information are obtained from the catalog. If the
information is not found in the catalog, the allocation
request is denied.

4 DA24BLK This is a 4-byte field used as follows: If the data set is a
new data set and CONTROL bit 0 is off and bit 1 is on
(see below), this field is used with PRIMARY SPACE
QUANTITY to determine the amount of direct access
space to be allocated for the data set. If CONTROL bit 6
is off, the field is also used as a DCB blocksize
specification. The value for BLOCKSIZE must be placed
in the two low-order bytes. The high-order byte must be
zero.

4 DA24PQTY Primary space quantity desired. The high-order byte
must be set to zero; the three low-order bytes should
contain the space quantity required. If the quantity is
omitted, the entire field must be set to zero. In this case
for new direct access data sets primary and secondary
space, and type of space will be defaulted. Directory
quantity will be used if specified in DA24DQTY.

4 DA24SQTY Secondary space quantity desired. The high-order byte
must be set to zero; the three low-order bytes should
contain the secondary space quantity required. If the
quantity is omitted, the entire field must be set to zero.

4 DA24DQTY Directory quantity required. The high-order byte must be
set to zero; the three low-order bytes contain the
number of directory blocks desired. If the quantity is
omitted, the entire field must be set to zero.

8 DA24MNM Contains a member name of a partitioned data set. If
the name has less than eight characters, pad it to the
right with blanks. If the name is omitted, the entire field
must contain blanks.

Passing Control to DAIR

368 z/OS V1R4.0 TSO/E Programming Services

Table 95. DAIR Parameter Block for Entry Code X'24' (continued)

Number of
Bytes

Field Name Contents or Meaning

8 DA24PSWD Contains the password for the data set. If the password
has less than eight characters, pad it to the right with
blanks. If the password is omitted, the entire field must
contain blanks.

1 DA24DSP1 Flag byte. Set the following bits to indicate the status of
the data set:
0000 Reserved. Set these bits to zero.
.... 1... SHR
.... .1.. NEW
.... ..1. MOD
.... ...1 OLD

If this byte is zero, OLD is assumed.
1 DA24DPS2 Flag byte. Set the following bits to indicate the normal

disposition of the data set:
0000 Reserved bits. Set them to zero.
.... 1... KEEP
.... .1.. DELETE
.... ..1. CATLG
.... ...1 UNCATLG

If this byte is zero, it is defaulted as follows: if
DA24DSP1 is new, DELETE is used; otherwise KEEP is
used.

1 DA24DPS3 Flag byte. Set the following bits to indicate the abnormal
disposition of the data set:
0000 Reserved bits. Set them to zero.
.... 1... KEEP
.... .1.. DELETE
.... ..1. CATLG
.... ...1 UNCATLG

If this byte is omitted (set to zero), DA24DPS2 will be
used.

1 DA24CTL Flag byte. These flags indicate to the DAIR service
routine what operations are to be performed:
xx.. Indicate the type of units desired for

the space parameters, as follows:
01.. Units are in average block length.
10.. Units are in tracks (TRKS).
11.. Units are in cylinders (CYLS).
..1. Prefix user ID to dsname.
...1 RLSE is desired.
.... 1... The data set is to be permanently

allocated; it is not be freed until
specifically requested.

.... .1.. A DUMMY data set is desired.

.... ..1. Attribute list name supplied.

.... ...0 Reserved bit; set to zero.

3 Reserved bytes; set them to zero.

Passing Control to DAIR

Chapter 17. Using the Dynamic Allocation Interface Routine DAIR 369

Table 95. DAIR Parameter Block for Entry Code X'24' (continued)

Number of
Bytes

Field Name Contents or Meaning

1 DA24DSO A flag field. These flags are set by the DAIR service
routine; they describe the organization of the data set to
the calling routine.
1... Indexed sequential organization.
.1.. Physical sequential organization.
..1. Direct organization.
...1 BTAM or QTAM line group.
.... 1... QTAM direct access message queue.
.... .1.. QTAM problem program message

queue.
.... ..1. Partitioned organization.
.... ...1 Unmovable.

8 DA24ALN Attribute list name, or a ddname from which DCB
attributes should be copied (as in a JCL DCB
reference). If the name is less than eight characters, it
should be padded to the right with blanks.

After attempting the requested function, DAIR returns, in register 15, one of the
following codes: 0, 4, 8, 12, 16, 20, or 52. See “Return Codes from DAIR” on
page 376 for return code meanings.

Performing a List of DAIR Operations (Entry Code X'28')
Build the DAIR parameter block shown in Table 96 to request that DAIR perform a
list of operations. Use the IKJDAP28 mapping macro, which is provided in
SYS1.MACLIB, to map this DAIR parameter block. This DAIR parameter block
points to other DAPBs which request the operations to be performed.

All valid DAIR functions are acceptable; however, code X'14' or another code X'28'
are ignored.

DAIR processes the requested operations in the order they are requested. DAIR
processing stops with the first operation that fails.

Table 96. DAIR Parameter Block for Entry Code X'28'

Number of
Bytes

Field Name Contents or Meaning

2 DA28CD Entry code X'0028'
2 DA28NOP Place in this field the number of operations to be

performed.
4 DA28PFOP DAIR fills this field with the address of the DAIR

parameter block for the first operation that failed. If all
operations are successful, this field will contain zero
upon return from the DAIR service routine. If this field
contains an address, register fifteen contains a return
code.

4 DA28OPTR Place in this field the address of the DAIR parameter
block for the first operation you want performed. Repeat
this field, filling it with the addresses of the DAPBs, for
each of the operations to be performed.

Passing Control to DAIR

370 z/OS V1R4.0 TSO/E Programming Services

After attempting the requested function, DAIR returns, in register 15, one of the
following codes: 0, 4, 8, 12, 16, 20, 24, 28, 32, 44, or 52. For return code meanings
see “Return Codes from DAIR” on page 376.

Marking Data Sets as Not in Use (Entry Code X'2C')
Build the DAIR parameter block shown in Table 97 to request that DAIR mark data
sets associated with a task control block as not in use. This allows data set entries
to be reused.

This code should be issued by any command processor that attaches another
command processor and detaches that command processor directly.

Use the IKJDAP2C mapping macro, which is provided in SYS1.MACLIB, to map
this DAIR parameter block.

Table 97. DAIR Parameter Block for Entry Code X'2C'

Number of
Bytes

Field Name Contents or Meaning

2 DA2CCD Entry code X'002C'
2 DA2CFLG A flag field. Set the bits to indicate to the DAIR service

routine which data sets you want marked ‘not in use’.

Hex Setting Meaning

X'0000' Mark all data sets of the indicated
TCB ‘not in use’.

X'0001' Mark the specified ddname ‘not in
use’.

X'0002' Mark all data sets associated with
lower tasks ‘not in use’.

4 DA2CTCB Place in this field the address of the TCB for the task
whose data sets are to be marked ‘not in use’.
DA2CFLG must be set to X'0000'.

8 DA2CDDN Place in this field the ddname to be marked ‘not in use’.
DA2CFLG must be set to X'0001'.

After attempting the requested function, DAIR returns, in register 15, one of the
following codes: 0, 4, or 52. For return code meanings see “Return Codes from
DAIR” on page 376.

Allocating a SYSOUT Data Set to the Message Class (Entry Code
X'30')
Build the DAIR parameter block shown in Table 98 to request that DAIR allocate a
SYSOUT data set to the message class. Use the IKJDAP30 mapping macro, which
is provided in SYS1.MACLIB, to map this DAIR parameter block.

The action taken by DAIR is dependent upon the presence of the optional fields
and the setting of bits in the control byte. To supply DCB information, provide the
name of an attribute list that has been defined previously by a X'34' entry into
DAIR, or the ddname of a currently allocated data set from which DCB attributes
can be copied (as in a JCL DCB reference).

Passing Control to DAIR

Chapter 17. Using the Dynamic Allocation Interface Routine DAIR 371

To place a SYSOUT data set in a class other than the message class, use DAIR
entry code X'30' and when the output has been written, specify the desired class
either by using DAIR entry code X'18', or execute the FREE command, after the
program has completed processing.

When setting disposition in a parameter list, only one bit should be on.

Table 98. DAIR Parameter Block for Entry Code X'30'

Number of
Bytes

Field Name Contents or Meaning

2 DA30CD Entry code X'0030'
2 DA30FLG A flag field set by DAIR before returning to the calling

routine. The flags have the following meaning:

Byte 1:
1... The data set is allocated but a

secondary error occurred. Register 15
contains an error code.

.000 0000 Reserved bits. Set to zero.

Byte 2: Reserved. Set to zero.
2 DA30DARC This field contains the error code, if any, returned from

the dynamic allocation routines. (See “Reason Codes
from Dynamic Allocation” on page 377.)

2 Reserved. Set this field to zero.
4 DA30PDSN Place in this field the address of the dsname buffer or

zeros. The dsname buffer is a 46-byte field which must
appear as follows:

The first two bytes must contain 44 (X'2C'); the next 44
bytes contain blanks.

8 DA30DDN This field contains the ddname for the data set. If a
specific ddname is not required, fill this field with eight
blanks; DAIR will place in this field the ddname to which
the data set is allocated.

8 DA30UNIT This is an 8-byte field containing an esoteric group
name, a generic group name, or a specific device
number (in EBCDIC). If the unit information is less than
eight characters, it must be padded to the right with
blanks. If no information is to be provided, the field must
be blank. In this case, DAIR will use a default set up at
the time your TSO/E session is created.

Since MVS/ESA SP 5.1 device numbers can be up to
four digits long for increased addressability of I/O
devices. If the string representing a device number is
longer than three hexadecimal characters (for example,
X'1ABC' or X'3390'), it must be preceded by a slash (/).
A device number may be preceded by a slash even if it
less than four characters long.

This distinguishes numeric-only device numbers from
generic device types that contain only four-character
numerics.

For example, a four-digit device number of X'1ABC',
preceded by a slash, is represented in the 8-byte field
as /1ABC..., where periods (.) represent blanks.

Passing Control to DAIR

372 z/OS V1R4.0 TSO/E Programming Services

Table 98. DAIR Parameter Block for Entry Code X'30' (continued)

Number of
Bytes

Field Name Contents or Meaning

8 DA30SER Serial number desired. Only the first six bytes are
significant. If the serial number is less than six bytes, it
must be padded to the right with blanks. If no volume
serial number is specified, the field must be blank. In
this case, the following is done: If the data set is a new
data set, the system determines the volume to be used
for the data set based on the unit information. If the
data set already exists, volume and unit information are
obtained from the catalog. If the information is not found
in the catalog, the allocation request is denied.

4 DA30BLK Block size requested. This figure represents the average
record length desired.

4 DA30PQTY Primary space quantity desired. The high-order byte
must be set to zero; the three low-order bytes should
contain the space quantity required. If the quantity is
omitted, the entire field must be set to zero. In this case
for new direct access data sets primary and secondary
space, and type of space will be defaulted.

4 DA30SQTY Secondary space quantity desired. The high-order byte
must be set to zero; the three low-order bytes should
contain the secondary space quantity required. If the
quantity is omitted, the entire field must be set to zero.

8 DA30PGNM Place in this field the member name of a special user
program to handle SYSOUT operations. Fill this field
with blanks if you do not provide a program name.

4 DA30FORM Form number. This form number indicates that the
output should be printed or punched on a specific output
form. It is a four character number. This field must be
filled with blanks if this parameter is omitted.

2 DA30OCLS SYSOUT class. The data set will be allocated to the
message class, regardless of the class you specify
here. To place a SYSOUT data set in a class other than
the message class, use DAIR entry code X'30' and
when the output has been written, specify the desired
class by using DAIR entry code X'18'.

1 Reserved. Set this field to zero.
1 DA30CTL Flag byte. These flags indicate to the DAIR service

routine what operations are to be performed:
xx.. Indicate the type of units desired for

the space parameters, as follows:
01.. Units are in average block length.
10.. Units are in tracks (TRKS).
11.. Units are in cylinders (CYLS).
..1. Prefix user ID to dsname.
...1 RLSE is desired.
.... 1... The data set is to be permanently

allocated; it is not to be freed until
specifically requested.

.... .1.. A DUMMY data set is desired.

.... ..1. Attribute list name specified.

.... ...0 Reserved bit; set to zero.

Passing Control to DAIR

Chapter 17. Using the Dynamic Allocation Interface Routine DAIR 373

Table 98. DAIR Parameter Block for Entry Code X'30' (continued)

Number of
Bytes

Field Name Contents or Meaning

8 DA30ALN Attribute list name, or a ddname from which DCB
attributes should be copied (as in a JCL DCB
reference). If the name is less than eight characters, it
should be padded to the right with blanks.

After attempting the requested function, DAIR returns, in register 15, one of the
following codes: 0, 4, 12, 16, 20, 28, or 52. See “Return Codes from DAIR” on
page 376 for return code meanings.

Associating DCB Parameters with a Specified Name (Entry Code
X'34')
Build the DAIR parameter block shown in Table 99 to request that DCB parameters
to be used with subsequent allocations are associated with a specified attribute
name. Use the IKJDAP34 mapping macro, which is provided in SYS1.MACLIB, to
map this DAIR parameter block.

The following functions related to attribute names are available using code X'34':
v Associate a set of DCB parameters to be used in subsequent allocations.
v Search on the attribute name.
v Delete the attribute name.

Note: When you request that DAIR associate DCB parameters with a specified
name, you must also build a DAIR attribute control block (DAIRACB).

Table 99. DAIR Parameter Block for Entry Code X'34'

Number of
Bytes

Field Name Contents or Meaning

2 DA34CD Entry code X'0034'
2 DA34FLG A flag field set by DAIR before returning to the calling

routine. The flags have the following meaning:
DA34FIND Byte 1:

1... An attribute list name was found.
0... An attribute list name was not found.
.000 0000 Reserved bits. Set to zero.

Byte 2: Reserved. Set to zero.
2 DA34DARC This field contains the code returned from the dynamic

allocation routines. (See “Reason Codes from Dynamic
Allocation” on page 377.)

1 DA34CTRL Flag byte. These flags indicate to DAIR what operations
are to be performed:

DA34SRCH 1... Search for the attribute list name
specified in field DA34NAME.

DA34CHN .1.. Build and chain an attribute list.

DA34UNCH ..1. Delete an attribute list name.
...0 0000 Reserved bits. Set to zero.

Passing Control to DAIR

374 z/OS V1R4.0 TSO/E Programming Services

Table 99. DAIR Parameter Block for Entry Code X'34' (continued)

Number of
Bytes

Field Name Contents or Meaning

1 Reserved. Set to zero.
8 DA34NAME This field contains the name for the list of attributes.
4 DA34ADDR This field contains the address of the DAIR attribute

control block (DAIRACB). This field need only be
specified if bit 1 of DA34CTRL is on.

After attempting the requested function, DAIR returns, in register 15, one of the
following codes: 0, 4, 12, or 52. See “Return Codes from DAIR” on page 376 for
return code meanings.

The DAIR Attribute Control Block (DAIRACB)
Build the DAIRACB shown in Table 100 when you request that DAIR construct an
attribute list. Place the address of the DAIRACB into the DA34ADDR field of the
code X'34' DAIR parameter block shown in Table 99. Use the IKJDACB mapping
macro, which is provided in SYS1.MACLIB, to map the DAIRACB.

Table 100. DAIR Attribute Control Block (DAIRACB)

Number of
Bytes

Field Name Contents or Meaning

8 Reserved.
8 DAIMASK First 6 bytes and eighth byte are reserved.

DAILABEL Seventh-byte flags. These flags indicate the
INOUT/OUTIN options of the OPEN macro.

DAIINOUT 1... Use the INOUT option.
.1.. Use the OUTIN option.
..00 0000 Reserved bits. Should be set to zero.

3 Reserved. Should be set to zero.
3 DAIEXPDT This field contains a data set expiration date specified in

binary.
DAIYEAR The first byte contains the expiration year.
DAIDAY The next 2 bytes contain the expiration day, left justified.

For example, the date 99352 is specified ‘630160’B.
2 Reserved. Should be set to zero.
1 DAIBUFNO This field contains the number of buffers required.
1 DAIBFTEK This field contains the buffer type and alignment.

.1.. Simple buffering (S).

.11. Automatic record area construction
(A).

..1. Record buffering (R).

...1 Exchange buffering (E).

.... ..1. Doubleword boundary (D).

.... ...1 Fullword boundary (F).
0... 00.. Reserved bits. Should be set to zero.

2 DAIBUFL This field contains the buffer length.

Passing Control to DAIR

Chapter 17. Using the Dynamic Allocation Interface Routine DAIR 375

Table 100. DAIR Attribute Control Block (DAIRACB) (continued)

Number of
Bytes

Field Name Contents or Meaning

1 DAIEROPT This field indicates the error options:
1... Accept error record.
.1.. Skip error record.
..1. Abnormal EOT.
...0 0000 Reserved bits. Should be set to zero.

1 DAIEKYLE This field contains the key length.
6 Reserved. Should be set to zero.
1 DAIRECFM This field indicates the record format:

1... Fixed (F)
.1.. Variable (V).
11.. Undefined (U).
..1. Track overflow (T).
...1 Blocked (B).
.... 1... Standard blocks (S).
.... .1.. ASCII printer characters (A).
.... ..1. Machine control characters (M).
.... ...0 Reserved bit. Should be set to zero.

1 DAIOPTCD This field contains the error option codes:
1... Write validity check (W).
..1. Chained scheduling (C).
.... 1... ASCII translate (Q).
.... .1.. User totaling (T).
.0.0 .0.0 Reserved bits. Should be set to zero.

2 DAIBLKSI This field contains the maximum block size.
2 DAILRECL This field contains the logical record length.
1 DAINCP This field contains the maximum number of READ or

WRITE channel programs before check.
4 Reserved. Should be set to zero.

The fields that you do not use must be initialized to zero.

Return Codes from DAIR
DAIR returns a code in general register 15 to the calling routine. In addition, further
return code information is in the DAxxCTRC field in the DAIR parameter block if the
return code is 8, or in the DAxxDARC field if the return code is 12.

The DAIR return codes have the following meaning:

Table 101. Return Codes from DAIR

Return Code
Dec(Hex)

Meaning

0(0) DAIR completed successfully.

4(4) The parameter list passed to DAIR was not valid.

Passing Control to DAIR

376 z/OS V1R4.0 TSO/E Programming Services

Table 101. Return Codes from DAIR (continued)

Return Code
Dec(Hex)

Meaning

8(8) An error occurred in a catalog management routine; the catalog
management error code is stored in the CTRC field of the DAIR
parameter block.

12(C) An error occurred in dynamic allocation; the dynamic allocation error
code is stored in the DARC field of the DAIR parameter block.

16(10) No TIOT entries were available for use.

20(14) The ddname requested is unavailable.

24(18) The dsname requested is a member of a concatenated group.

28(1C) The ddname or dsname specified is not currently allocated, or the
attribute list name specified was not found.

32(20) The requested data set was previously permanently allocated, or was
allocated with a disposition of new, and was not deleted. DISP=NEW
cannot now be specified.

36(24) An error occurred in a catalog information routine (IKJEHCIR).

40(28) The return area you provided for qualifiers was exhausted and more
index blocks exist. If you require more qualifiers, provide a larger return
area.

44(2C) The previous allocation specified a disposition of DELETE for this
non-permanently allocated data set. Request specified OLD, MOD, or
SHR with no volume serial number.

52(34) Request denied by installation exit.

The return codes from catalog management, which are found in the DAxxCTRC
field if the register 15 return code is 8, are documented in z/OS MVS Programming:
Authorized Assembler Services Guide.

Reason Codes from Dynamic Allocation
When a DAIR return code of 12 is returned, the codes returned in the DAxxDARC
field of the DAIR parameter block are the dynamic allocation error reason codes.
See z/OS MVS Programming: Authorized Assembler Services Guide for
explanations of dynamic allocation error reason codes. In addition to those codes,
which are converted from dynamic allocation codes back to the same codes which
were used in previous releases, the following reason codes can also be returned:

Table 102. Reason Codes from Dynamic Allocation

Reason Code
(Hexadecimal)

Meaning

0304 The ddname was not specified by the calling routine.

0308 The ddname specified by the calling routine was not found.

0314 Restoring ddnames, as per this request, would have resulted in
duplicate ddnames. Duplicate ddnames are not permitted.

0318 Incorrect characters are present in the ddname provided by the caller.

031C Incorrect characters are present in the membername provided by the
caller.

0320 Incorrect characters are present in the dsname provided by the caller.

Return Codes from DAIR

Chapter 17. Using the Dynamic Allocation Interface Routine DAIR 377

Table 102. Reason Codes from Dynamic Allocation (continued)

Reason Code
(Hexadecimal)

Meaning

0324 Incorrect characters are present in the SYSOUT program name
provided by the caller.

0328 Incorrect characters are present in the SYSOUT form number provided
by the caller.

032C An incorrect SYSOUT class was specified by the caller.

0330 A membername was specified but the data set is not a partitioned data
set.

0334 The supplied data set name exceeded 44 characters in length.

0338 The data set disposition specified by the caller is not valid.

Reason Codes from Dynamic Allocation

378 z/OS V1R4.0 TSO/E Programming Services

Chapter 18. Using IKJEHCIR to Retrieve System Catalog
Information

Functions of the Catalog Information Routine 379
Passing Control to the Catalog Information Routine 379

The Catalog Information Routine Parameter List (CIRPARM) 380
Output from the Catalog Information Routine 381
Return Codes from IKJEHCIR 382
Return Codes from LOCATE 383

This chapter describes how to use the catalog information routine (IKJEHCIR) to
retrieve information from the system catalog.

Functions of the Catalog Information Routine
Use the catalog information routine to retrieve information from the system catalog.
This information can include data set name, index name, control volume address, or
volume ID. The information can be requested from a specific user catalog, or, if no
catalog is specified, the system default catalog search is used. The following kinds
of information can be requested:

v The next-level qualifiers for a name

v All names having the same name as the high-level qualifier and the data set type
associated with each name

v The volume serial numbers and device types associated with a name.

You can also ask for combinations of the information above.

Passing Control to the Catalog Information Routine
Your program can invoke the catalog information routine by using either the
CALLTSSR or LINK macro instructions, specifying IKJEHCIR as the entry point
name. However, you must first create the catalog information routine parameter list
(CIRPARM) and place its address into register 1. Register 13 must contain the
address of an 18-word save area.

IKJEHCIR can be invoked in either 24- or 31-bit addressing mode. However, all
input passed to IKJEHCIR must reside below 16 MB in virtual storage. The caller’s
parameters must be in the primary address space. IKJEHCIR returns control in the
same addressing mode in which it is invoked.

The output area for IKJEHCIR can be in two formats, format 1 or format 2:

v The format 1 output area provides for a 65535-byte output area. This is due to
halfword length fields in the output area itself. If the amount of data retrieved is
less than 65535 bytes, the format 1 output area is sufficient.

v The format 2 output area should be used if your program is requesting to retrieve
all data set names (entry code, CIROPT, = X'02') and the amount of data
retrieved could exceed 65535 bytes. A format 2 output area is only supported
with entry code = X'02'. Your program can indicate that a format 2 output area is
being passed as input by setting on the CIRWA2 bit in the parameter list. This
will indicate that the length fields (ccc and CCC) in the output area are signed
32-bit numbers. Your program can test to determine whether the code supporting
a format 2 work area is available by testing the DFACIR2 flag in the Data
Facilities Area (DFA) control block.

© Copyright IBM Corp. 1988, 2002 379

The Catalog Information Routine Parameter List (CIRPARM)
The catalog information routine parameter list (CIRPARM) is shown in Table 103.

Table 103. The Catalog Information Routine Parameter List

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

0(0) 1 CIROPT Entry code indicating the option requested.
For a description of the entry codes, see
Table 104 on page 381.

1(1) 1 CIRFLAGS
CIRWA2

Processing Flags:
1... indicates user work area format

(on) - Format 2 user work area
(off) - Format 1 user work area

2(2) 1 Reserved.
3(3) 1 CIRLOCRC LOCATE return code.
4(4) 4 CIRSRCH Address of the search argument.

For entry codes X'01' and X'02', the search
argument is either a prefix (user ID) or a
name of the form prefix.user-supplied-
name. In this case, the search argument is
not a fully-qualified TSO/E data set name.

For entry code X'04', the search argument is
a fully-qualified data set name.

For entry codes X'05' and X'06', the search
argument is a prefix, optionally followed by
a period.

For information on data set naming
conventions for TSO/E, see z/OS TSO/E
User’s Guide.

8(8) 4 CIRVOL Address of the USERCAT name. The name
is 44 bytes long with blanks padded to the
right.

12(C) 4 CIRWA Address of the user work area. See
Table 105 on page 382 or Table 106 on
page 382 for a description of the user work
area.

16(10) 4 Reserved.
20(14) 4 CIRPSWD Address of an 8-byte data set or catalog

password (or zero).

Passing Control to the Catalog Information Routine

380 z/OS V1R4.0 TSO/E Programming Services

Output from the Catalog Information Routine
The catalog information routine returns the requested information to the caller in a
user work area that is based on CIRWA. The data that is returned for each entry
code value is described in Table 104.

Table 104. The Data Returned for each Entry Code

Entry Code Meaning Data Returned

X'01' Retrieve the data set names having
one more level of qualifier above
what the caller specified.

Nine bytes of data per data set
name. Each entry in the list contains
a 1-byte prefix, which can be
ignored, followed by an 8-byte
qualifier.

X'02' Retrieve all data set names. 45-byte data set names are moved
into the user work area.

X'04' Retrieve the volume information
associated with a given data set
name.

Volume information is moved into
the user work area. See Table 107
on page 382 for volume information
format.

X'05' Retrieve the next level data set
name and volume information.
(Excludes data set names with no
volume information, for example,
cluster, and GDG base.)

A list of variable-length entries, one
entry per data set name. Each entry
in the list contains a 1-byte prefix,
which can be ignored, followed by
the 8-byte qualifiers making up the
data set name (including periods if
they occur), and then volume
information. See Table 107 for the
format of the volume data.

X'06' Retrieve all data set names and
volume information. (Excludes data
set names with no volume
information, for example, cluster,
and GDG base.)

45-byte data set name followed by
volume information is moved to the
user work area for all levels.

Note: For codes X'02' and X'06', a 1-byte field precedes a 44-byte name field. The
type field has one of the following values:
v V for volume
v C for cluster
v G for alternate index
v R for path
v F for FREE
v Y for upgrade
v B for GDG base
v X for alias name
v P for page space
v M for master catalog
v U for user catalog
v A for non-VSAM data set
v D for data component
v I for index component

A format 1 user work area that is based on CIRWA is shown in Table 105 on
page 382.

Output from the Catalog Information Routine

Chapter 18. Using IKJEHCIR to Retrieve System Catalog Information 381

Table 105. Format 1 User Work Area for CIRPARM

Number of
Bytes

Field Name Contents or Meaning

2 AREALN Length of work area (an unsigned, 16-bit number).
2 DATALIN Length of data returned +4 (an unsigned, 16-bit

number).
Variable DATA An array of entries where data is stored. Each entry

consists of a 1-byte type field followed by a 44-byte
name field. The array has an end indicator of X'FF'.

A format 2 user work area that is based on CIRWA is shown in Table 106.

Table 106. Format 2 User Work Area for CIRPARM

Number of
Bytes

Field Name Contents or Meaning

4 AREALN2 Length of work area (a signed, 32-bit number).
4 DATALIN2 Length of data returned +8 (a signed, 32-bit number).

Variable DATA An array of entries where data is stored. Each entry
consists of a 1-byte type field followed by a 44-byte
name field. The array has an end indicator of X'FF'.

When you specify a data set name, a volume list is built in your work area. A
volume list consists of an entry for each volume on which part of the data set
resides; it is preceded by a 1-byte field that contains a count of the number of
volumes in the list. The count field is followed by a variable number of 12-byte
entries, with one entry for each volume. Each 12-byte entry consists of a four-byte
device code, a six-byte volume serial number, and a two-byte sequence number. As
many as 255 of these 12-byte entries can be built in your work area. The volume
list has an end indicator of X'FF'. Table 107 shows the format of the volume list.

Table 107. Volume Information Format

Number of
Bytes

Field Name Contents or Meaning

1 Number of volumes on which part of the data set
resides.

4 DEVTYP Device type.
6 VOLSER Volume serial number.
2 FILESEQ File sequence number. (This field is provided for

compatibility with the OS/VS catalog, and is used for
non-VSAM data sets that reside on tape volumes.)

Return Codes from IKJEHCIR
When IKJEHCIR returns to its caller, register 15 contains one of the following return
codes:

Table 108. Return Codes from IKJEHCIR

Return Code
Dec(Hex)

Meaning

0(0) The request was successfully completed.

Output from the Catalog Information Routine

382 z/OS V1R4.0 TSO/E Programming Services

Table 108. Return Codes from IKJEHCIR (continued)

Return Code
Dec(Hex)

Meaning

4(4) The LOCATE macro instruction has failed. The LOCATE return code is
stored in CIRLOCRC.

12(C) Volumes were returned by LOCATE, indicating that a fully-qualified data
set name was passed in the parameter list, but options other than
volumes were requested. The list of the volumes returned by LOCATE is
in the work area.

Return Codes from LOCATE
The LOCATE return codes have the following meaning:

Table 109. Return Codes from LOCATE to IKJEHCIR

Return Code
Dec(Hex) Meaning

0(0) The request was successfully completed.

4(4) The required catalog does not exist, it cannot be opened, or there is a
closed chain of OS CVOL pointers.

8(8) One of the following occurred:

v The entry was not found. If in an OS CVOL, register 0 contains the
number of valid index levels. If in an ICF or a VSAM catalog, register
0 contains the catalog return code.

v The user is not authorized to perform this operation. Register 0
contains hexadecimal 38.

v A generation data group (GDG) alias was found. Register 0 contains
the number of valid index levels. The alias name was replaced by the
true name.

12(C) One of the following occurred:

v An index or generation data group base entry was found when the list
of qualified names was exhausted. Register 0 contains the number of
valid index levels. The work area contains the first block of the
specified index.

v An alias entry was found. The alias name was replaced in the user
parameter list by the true name.

v An incorrect low-level GDG name was found.

16(10) A data set exists at other than the lowest index level specified. Register
0 contains the number of the index level where the data set was
encountered.

20(14) A syntax error exists in the name.

24(18) One of the following occurred:

v Permanent I/O error occurred. Register 0 contains the VSAM or ICF
return code, or 0 if in an OS CVOL.

v Non-zero ESTAE return code.

v Error in parameter list.

Return Codes from IKJEHCIR

Chapter 18. Using IKJEHCIR to Retrieve System Catalog Information 383

Table 109. Return Codes from LOCATE to IKJEHCIR (continued)

Return Code
Dec(Hex) Meaning

28(1C) The relative track address supplied to the LOCATE routine is outside of
the SYSCTLG data set extents.

44(2C) The length of the work area (AREALN) is not large enough to contain
the output data returned by LOCATE.

Note: Register 0 data described above will NOT be returned to the caller of IKJEHCIR.

For additional LOCATE return codes, see the description of message IDC3009I in
z/OS MVS System Messages, Vol 6 (GOS-IEA).

Return Codes from LOCATE

384 z/OS V1R4.0 TSO/E Programming Services

Chapter 19. Constructing a Fully-Qualified Data Set Name with
IKJEHDEF

Functions of the Default Service Routine 385
Passing Control to the Default Service Routine 385

The Default Parameter List (DFPL) 385
The Default Parameter Block (DFPB) 386

Output from the Default Service Routine 388
Return Codes from IKJEHDEF 388

This chapter describes how to use the default service routine (IKJEHDEF) in a
command processor to construct a fully-qualified data set name.

Functions of the Default Service Routine
Your command processor can use the default service routine when a terminal user
refers to a data set without giving a fully-qualified name. The default service routine
constructs a fully-qualified data set name from a partially-qualified name that it
receives from a command processor. A fully-qualified data set name has three
fields: a user ID, a data set name, and a descriptive qualifier. IKJEHDEF prefixes
the user ID to the data set name, checks the data set name against the system
catalog, and if necessary, either inserts the proper qualifier or prompts the terminal
user to enter a qualifier.

Passing Control to the Default Service Routine
Your command processor can invoke the default service routine by using either the
CALLTSSR, LINK, or CALL macro instruction, specifying IKJEHDEF as the entry
point name. However, you must first create the default parameter list (DFPL) and
place its address into register 1. Register 13 must contain the address of an
18–word save area.

IKJEHDEF can be invoked in either 24- or 31-bit addressing mode. However, all
input passed to IKJEHDEF must reside below 16 MB in virtual storage. The caller’s
parameters must be in the primary address space. IKJEHDEF returns control in the
same addressing mode in which it is invoked.

The Default Parameter List (DFPL)
At entry to IKJEHDEF, register 1 must point to a default parameter list that you
have built. The addresses of the user profile table, environment control table and
event control block can be obtained from the command processor parameter list
(CPPL) that the TMP passes to your command processor.

The default parameter list (DFPL) is shown in Table 110 on page 386. You can use
the IKJDFPL mapping macro, which is provided in SYS1.MACLIB, to map the fields
of the DFPL.

© Copyright IBM Corp. 1988, 2002 385

Table 110. The Default Parameter List

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

0(0) 4 DFPLUPT The address of the user profile table (UPT).
4(4) 4 DFPLECT The address of the environment control

table (ECT).
8(8) 4 DFPLECB The address of the command processor’s

event control block (ECB).
12(C) 4 DFPLDFPB The address of the default parameter block

(DFPB).

The Default Parameter Block (DFPB)
The fourth word of the default parameter list must contain a pointer to the default
parameter block (DFPB) built by the calling routine.

The default parameter block (DFPB) is shown in Table 111. You can use the
IKJDFPB mapping macro, which is provided in SYS1.MACLIB, to map the DFPB.

Table 111. The Default Parameter Block

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

0(0) 4 DFPBDSN The high-order byte of this field
(DFPBCODE) is the entry code indicating
the option requested. Table 112 on
page 387 describes the options and their
meanings.

The remaining three bytes contain the
address of the data set name buffer. Your
command processor must build a data set
name buffer that contains the length of the
unqualified data set name in the first two
bytes followed by the data set name that
was entered by the terminal user. If the
data set name is less than 44 bytes in
length, it must be left justified and padded
on the right with blanks.

Passing Control to the Default Service Routine

386 z/OS V1R4.0 TSO/E Programming Services

Table 111. The Default Parameter Block (continued)

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

4(4) 4 DFPBPSCB The high-order byte of this field
(DFPBCNTL) contains control codes that
your command processor sets to indicate
the functions requested.

Code Meaning

DFPBUID (X'20')
The user ID is to be prefixed to
the data set name.

DFPBRET (X'04')
Return a copy of the added
qualifier. A copy of this qualifier is
stored in the location pointed to by
the DFPBQUAL field.

DFPBADD (X'02')
Add the qualifier supplied by the
terminal user, which is pointed to
by the DFPBQUAL field.

DFPBMSG (X'01')
Issue a message to the terminal
user.

The remaining three bytes contain the
address of the protected step control block
(PSCB). You can obtain this address from
the command processor parameter list
(CPPL) that the TMP passes to your
command processor.

8(8) 4 DFPBQUAL The high-order byte (DFPBLOCR) contains
the LOCATE return code.

The remaining three bytes contain the
address of the default qualifier.

12(C) 4 DFPBCAT The address of the user catalog.

16(10) 4 DFPBPSWD The address of the password.

Your command processor must specify an entry code in the DFPBCODE field of the
DFPB to specify the functions requested. Table 112 describes the entry codes.

Table 112. The Default Service Routine Entry Codes

Entry
Code

Meaning Functions Performed by IKJEHDEF

X'00' Use the qualifier provided by the caller. Uses the qualifier in the DFPB that is
provided by the caller.

Passing Control to the Default Service Routine

Chapter 19. Constructing a Fully-Qualified Data Set Name with IKJEHDEF 387

Table 112. The Default Service Routine Entry Codes (continued)

Entry
Code

Meaning Functions Performed by IKJEHDEF

X'04' Find a qualifier. If there is more than
one, prompt the terminal user to
choose one.

Performs the following functions:

1. Builds a list of possible qualifiers.

2. Prompts the terminal user to
choose one.

3. Checks the terminal user’s
response against the list.

X'08' Find a descriptive qualifier, but do not
interrupt the terminal user.

Performs the following functions:

v Builds a list of possible qualifiers.

v Returns control to the caller with a
return code indicating that more than
one qualifier was found; therefore,
prompting is necessary.

X'0C' Either use the qualifier specified in the
DFPB, find one from the system
catalog, or use a new one submitted by
the terminal user.

Does one of the following:

v If a qualifier is provided in the DFPB,
IKJEHDEF uses it.

v If no qualifier is provided:

1. Builds a list of possible qualifiers.

2. Sends list to terminal.

3. Prompts terminal user to choose
one from the list or submit a new
one.

Note: Entry codes X'80', X'84', X'88', and X'8C' are the same as X'00', X'04', X'08',
and X'0C' respectively, except that a catalog name and a password are
obtained from the DFPB when X'80', X'84', X'88', or X'8C' are specified. For
entry codes X'00', X'04', X'08', and X'0C', the system catalog is searched.

Output from the Default Service Routine
The default service routine returns the fully-qualified data set name to the caller in
the data set name buffer, which is pointed to by DFPBDSN. The first two bytes of
the data set name buffer are set by IKJEHDEF to the length of the fully-qualified
data set name. The following bytes contain the fully-qualified data set name in the
form:
USERID.DSNAME.QUALIFIER

Return Codes from IKJEHDEF
When IKJEHDEF returns to its caller, register 15 contains one of the following
return codes:

Table 113. Return Codes from IKJEHDEF

Return Code
Dec(Hex)

Meaning

0(0) Successful completion of the request.

Passing Control to the Default Service Routine

388 z/OS V1R4.0 TSO/E Programming Services

Table 113. Return Codes from IKJEHDEF (continued)

Return Code
Dec(Hex)

Meaning

4(4) Unable to obtain a qualifier from the terminal user.

8(8) With qualifiers added, the length of the data set name exceeds 44
bytes.

12(C) One of the following occurred:

v A permanent I/O error occurred in the system catalog.

v The catalog data set is not available.

v There was a syntax error in the data set name.

16(10) The data set exists at some level of index other than the lowest level
specified.

20(14) One of the data set names was not found.

24(18) An attention interruption occurred.

28(1C) An incorrect parameter was specified for one of the following reasons:

v The entry code was not valid.

v The data set length was not halfword aligned.

v The data set length was greater than 44 bytes, or the data set length
was 0 (except with an entry code of X'00'.)

32(20) Prompting is necessary to qualify the data set name.

36(24) No qualifiers were found.

Return Codes from IKJEHDEF

Chapter 19. Constructing a Fully-Qualified Data Set Name with IKJEHDEF 389

Return Codes from IKJEHDEF

390 z/OS V1R4.0 TSO/E Programming Services

Chapter 20. Using the DAIRFAIL Routine IKJEFF18

Functions of DAIRFAIL . 391
Passing Control to DAIRFAIL 391

The Parameter List . 391
Return Codes from DAIRFAIL 393

This chapter describes how to use the DAIRFAIL routine to analyze return codes
from dynamic allocation (SVC 99) or the dynamic allocation interface routine
(DAIR).

Functions of DAIRFAIL
The DAIRFAIL routine analyzes return codes from SVC 99 or DAIR, and performs
one of the following functions, as requested:
v Issues an error message when appropriate.
v Returns the error message to the caller.
v Issues an error message and returns the message to the caller.

This process of returning the message(s) to the caller is referred to as extracting
the message.

DAIRFAIL issues a message using write-to-programmer (WTP) or PUTLINE. You
can indicate to DAIRFAIL what service is to be used to issue the message, or you
can allow the default, PUTLINE, to be used. Issuing a write-to-programmer
message is especially useful for analyzing errors in a batch invocation of SVC 99.

Passing Control to DAIRFAIL
Your program can invoke the DAIRFAIL routine by using the LINK macro instruction,
specifying IKJEFF18 as the entry point name. However, you must first create the
parameter list and place its address into register 1.

DAIRFAIL can be invoked in either 24- or 31-bit addressing mode. The caller’s
parameters must be in the primary address space. When invoked in 31-bit
addressing mode, DAIRFAIL accepts input that resides above 16 MB in virtual
storage.

The Parameter List
Use the IKJEFFDF macro to map the parameter list for IKJEFF18. This mapping
macro, which is provided in SYS1.MACLIB, has the following syntax:

DFDSECT=YES | NO
Use the DFDSECT=YES option to map the DFDSECTD DSECT, instead of
obtaining storage. DFDSECT=NO is the default.

DFDSEC2=YES | NO
Use the DFDSEC2=YES option to map the DFDSECT2 DSECT, instead of
obtaining storage. DFDSEC2=NO is the default.

IKJEFFDF [DFDSECT={YES}]
[{NO }]

[,DFDSEC2={YES}]
[{NO }]

© Copyright IBM Corp. 1988, 2002 391

The IKJEFFDF macro generates the following six-word parameter list:

Table 114. The Parameter List (DFDSECTD DSECT)

Offset
Dec(Hex)

Field Name Contents or Meaning

0(0) DFS99RBP or
DFDAPLP

Address of the failing SVC 99 request block or address
of the failing DAIR parameter list.

4(4) DFRCP Address of a fullword containing either the SVC 99 or
DAIR return code.

8(8) DFJEFF02 Address of a fullword. The fullword contains the entry
point address of IKJEFF02 (message issuer routine). If
the entry point address of IKJEFF02 is unknown, the
fullword must contain zeros.

12(C) DFIDP Address of a two-byte area containing:

Byte 1 Switches

Bit 0: 0 - PUTLINE issued

Bit 0: 1 - WTP issued

Bit 1: 1 - Caller wants message extracted only.

Bit 2: 1 - Caller wants message extracted as well as
issued using PUTLINE or write-to-programmer
(WTP).

Byte 2 Caller identification number
X'01' - DAIR
X'32' - SVC 99
X'33' - SVC 99 invoked by the FREE command

16(10) DFCPPLP Address of the CPPL. This is needed only when
IKJEFF18 is called with an SVC 99 error and the user is
not requesting a write-to-programmer message.

20(14) DFBUFP Address of DFBUFS buffer if bit 2 (DFBUFSW) or bit 3
(DFBUFS2) of DFIDP is on. This is required when the
message is to be extracted and returned to the caller. If
the DFBUFSW is on, the message(s) will only be
extracted. If DFBUFS2 is on, the message(s) will be
issued as well as extracted and returned to the caller. It
will be possible to extract the first-level and one
second-level message.

DFDSECT2, which is described in Table 115, defines a storage area supplied by the
caller. DAIRFAIL will return the requested informational message(s) in the
associated buffers. It is not necessary to initialize these buffers. On return from
DAIRFAIL, the buffers will contain the extracted message(s).

Table 115. The Parameter List (DFDSECT2 DSECT)

Offset
Dec(Hex)

Field Name Contents or meaning

0(0) DFBUFS or
DFBUFL1

A 2-byte field that will contain the total length of the
first-level message, plus 4 bytes for length and offset
fields.

2(2) DFBUF01 A 2-byte field containing the offset field. It will be set to
zero when a message is extracted.

4(4) DFBUFT1 A 251-byte buffer that will contain the text of the first-level
message extracted. If the message is greater than 251
bytes, the message will be truncated.

Passing Control to DAIRFAIL

392 z/OS V1R4.0 TSO/E Programming Services

Table 115. The Parameter List (DFDSECT2 DSECT) (continued)

Offset
Dec(Hex)

Field Name Contents or meaning

256(100) DFBUFL2 A 2-byte field containing the total length of the first
second-level message plus four bytes. If there is no
second-level message, this field will contain HEX zeros.

258(102) DFBUF02 A 2-byte field containing the offset. It will be set to zero
when a message is extracted.

260(104) DFBUFT2 A 251-byte field that will contain the text of the first
second-level message extracted. If the message is
greater than 251 bytes, the message will be truncated.

If the high-order bit of the caller identification area (pointed to by DFIDP) is on, a
write-to-programmer message will be issued instead of a PUTLINE. When the
write-to-programmer feature is used, the address of the CPPL (DFCPPLP) need not
be specified.

Return Codes from DAIRFAIL
When DAIRFAIL returns to its caller, register 15 contains one of the following return
codes:

Table 116. Return Codes from DAIRFAIL

Return Code
Dec(Hex)

Meaning

0(0) A message was issued successfully.

4(4) An incorrect caller identification number was passed to DAIRFAIL.

8(8) The message writer detected an error while attempting to issue a
message.

12(C) The extracted message buffer parameter list is in error.

Passing Control to DAIRFAIL

Chapter 20. Using the DAIRFAIL Routine IKJEFF18 393

Return Codes from DAIRFAIL

394 z/OS V1R4.0 TSO/E Programming Services

Chapter 21. Analyzing Error Conditions with
GNRLFAIL/VSAMFAIL

Functions of GNRLFAIL/VSAMFAIL 395
Passing Control to GNRLFAIL/VSAMFAIL 395

The Parameter List . 395
Return Codes from GNRLFAIL/VSAMFAIL 397

This chapter describes how to use the GNRLFAIL/VSAMFAIL routine (IKJEFF19) to
analyze error conditions and issue appropriate error messages.

Functions of GNRLFAIL/VSAMFAIL
The GNRLFAIL/VSAMFAIL routine analyzes VSAM macro instruction failures,
subsystem request (SSREQ) failures, parse service routine or PUTLINE failures,
and abend codes, and issues an appropriate error message. It inserts the meaning
of return codes from the VSAM/job entry subsystem interface. Other VSAM codes
are explained in z/OS DFSMS Macro Instructions for Data Sets.

Passing Control to GNRLFAIL/VSAMFAIL
Your program can invoke the GNRLFAIL/VSAMFAIL routine by using the LINK
macro, specifying IKJEFF19 as the entry point name. However, you must first
create the parameter list, then place the address of the parameter list into a
fullword, and then place the address of the fullword into register 1.

GNRLFAIL/VSAMFAIL can be invoked in either 24- or 31-bit addressing mode. The
caller’s parameters must be in the primary address space. When invoked in 31-bit
addressing mode, GNRLFAIL/VSAMFAIL can be passed input that resides above 16
MB in virtual storage.

The Parameter List
The GNRLFAIL/VSAMFAIL routine returns a single parameter that contains the
requested diagnostic information. You can use the IKJEFFGF macro, which is
provided in SYS1.MACLIB, to map this diagnostic information. Specify the
GFDSECT=YES option to map the GFDSECTD DSECT instead of obtaining
storage; GFDSECT=NO is the default.

The IKJEFFGF macro generates the following diagnostic information:

Table 117. Diagnostic Information Returned by GNRLFAIL/VSAMFAIL (GFDSECTD DSECT)

Offset
Dec(Hex)

Field Name Contents or meaning

0(0) GFCBPTR Pointer to VSAM ACB if GFOPEN or GFCLOSE callerid.
Pointer to VSAM RPL for other VSAM macro failures.
Pointer to SSOB if GFSSREQ caller id.

4(4) GFRCODE Error return code from register 15 or ABEND code if
GFCALLID is GFABEND.

8(8) GF02PTR Zero, or address of TSO/E message issuer routine
(IKJEFF02) if already loaded.

© Copyright IBM Corp. 1988, 2002 395

Table 117. Diagnostic Information Returned by GNRLFAIL/VSAMFAIL (GFDSECTD
DSECT) (continued)

Offset
Dec(Hex)

Field Name Contents or meaning

12(C) GFCALLID ID for caller’s failing VSAM macro, or other failure. This
field can have the following values:

Value Meaning
GFCHECK (X'0001')

VSAM CHECK macro error
GFCLOSE (X'0002')

VSAM CLOSE macro error
GFENDREQ (X'0003')

VSAM ENDREQ macro error
GFERASE (X'0004')

VSAM ERASE macro error
GFGET (X'0005')

VSAM GET macro error
GFOPEN (X'0006')

VSAM OPEN macro error
GFPOINT (X'0007')

VSAM POINT macro error
GFPUT (X'0008')

VSAM PUT macro error
GFPARSE (X'0015')

Parse service routine error, other than a return
code of 4 or 20.

GFPUTL (X'0016')
PUTLINE service routine error

GFABEND (X'001F')
Issue ABEND message

GFSSREQ (X'0020')
Subsystem interface request (SSREQ) error

14(E) GFBITS Special processing switches. This field can have the
following values:

Value Meaning

GFKEYN08 (X'80')
Caller not in key 0 or 8.

GFSUBSYS (X'40')
Caller used VS2 VSAM/job entry subsystem
interface.

GFWTPSW (X'20')
Issue error message as write-to-programmer
instead of PUTLINE.

16(10) GFCPPLP Pointer to TMP’s CPPL control block (needed if PUTLINE
is issued, or to have command name inserted in the
failure message).

20(14) GFECBP Pointer to ECB for PUTLINE (optional).
24(18) GFDSNLEN Length of data set name.
26(1A) GFPGMNL Length of program name.
28(1C) GFDSNP Pointer to data set name to insert in VSAMFAIL error

messages (optional; default is ddname).

Passing Control to GNRLFAIL/VSAMFAIL

396 z/OS V1R4.0 TSO/E Programming Services

Table 117. Diagnostic Information Returned by GNRLFAIL/VSAMFAIL (GFDSECTD
DSECT) (continued)

Offset
Dec(Hex)

Field Name Contents or meaning

32(20) GFPGMNP Pointer to program name for insertion in all error
messages (optional; default is ddname).

Return Codes from GNRLFAIL/VSAMFAIL
When GNRLFAIL/VSAMFAIL returns to its caller, register 15 contains one of the
following return codes:

Table 118. Return Codes from GNRLFAIL/VSAMFAIL

Return Code
Dec(Hex)

Meaning

0(0) The message was issued successfully.

80(50) The input parameter list for IKJEFF19 is not valid. A message is also
issued.

Other This error return code is from either PUTLINE, PUTGET or the message
issuer routine (IKJEFF02).

Passing Control to GNRLFAIL/VSAMFAIL

Chapter 21. Analyzing Error Conditions with GNRLFAIL/VSAMFAIL 397

Return Codes from GNRLFAIL/VSAMFAIL

398 z/OS V1R4.0 TSO/E Programming Services

Chapter 22. Using the Table Look-up Service IKJTBLS

Functions of IKJTBLS . 399
Passing Control to IKJTBLS 399
The IKJTBLS Parameter List 400
Return Codes from IKJTBLS 401
Example Using IKJTBLS . 401

This chapter describes how an application program can use the table look-up
service to search the lists of authorized commands and programs and commands
not supported in the background.

Functions of IKJTBLS
Use the table look-up service (IKJTBLS) to determine if the name of a command or
program is present in one of the following lists:

v Names of authorized command processors that the terminal monitor program
executes

v Names of authorized programs that the CALL command executes

v Names of authorized programs that can be invoked by the TSO/E service facility
(IKJEFTSR)

v Names of commands not supported in the background

These lists, which are maintained by your installation, allow users to issue
authorized commands and programs, and restrict users from executing certain
commands in background jobs.

You can use IKJTBLS in an unauthorized program to determine whether a particular
command or program is authorized. Based on whether the command or program is
authorized, your program can determine if the command or program must be
invoked through the TSO/E service facility (IKJEFTSR). Usually only authorized
programs can invoke an authorized command or program. However, the TSO/E
service facility allows any program to invoke an authorized command or program.
The TSO/E service facility is described in Chapter 23, “Using the TSO/E Service
Facility IKJEFTSR” on page 405.

Passing Control to IKJTBLS
Your program can invoke the table look-up service by using either the CALLTSSR
or LINK macro instructions, specifying IKJTBLS as the entry point name.

However, you must first create the IKJTBLS parameter list and place its address
into general register 1. Figure 139 on page 400 shows the standard parameter list
structure for IKJTBLS.

IKJTBLS can be invoked in either 24- or 31-bit addressing mode. IKJTBLS accepts
input above or below 16 MB in virtual storage. The caller’s parameters must be in
the primary address space.

© Copyright IBM Corp. 1988, 2002 399

The IKJTBLS Parameter List
Use the IKJTLS macro, provided in SYS1.MACLIB, to map the parameter list for
IKJTBLS.

TLSTAB
An 8-byte character string that indicates the table to be searched. Set the
contents of this 8-byte field to one of the following EBCDIC values:

AUTHCMD
Search the table of authorized commands.

AUTHPGM
Search the table of programs that are authorized when invoked via the
CALL command.

AUTHTSF
Search the table of programs that are authorized when invoked through the
TSO/E service facility.

NOTBKGND
Search the table of commands not supported in the background.

TLSCMD
An 8-byte character string that contains the name of the program or command
to search for. Set the contents of the 8-byte field to the EBCDIC representation
of the program or command name. If the name of the program or command is
less than eight characters, either it must be left- justified if the table was built
from a SYS1.PARMLIB member or it must appear exactly as it does in the table
built using the CSECT.

TLSABND
A fullword containing the hexadecimal abend code issued by IKJTBLS. If
IKJTBLS returns to its caller with a return code of 20 (decimal), this field
contains the abend code. For all other return codes, IKJTBLS sets this field to
zero.

TLSREAS
A fullword containing the hexadecimal abend reason code issued by IKJTBLS. If

ABEND reason code

Table name

Program name

ABEND code

Name of command or program

Name of table

ABEND code

ABEND reason code

Figure 139. Parameter List Structure for IKJTBLS

The IKJTBLS Parameter List

400 z/OS V1R4.0 TSO/E Programming Services

IKJTBLS returns to its caller with a return code of 20 (decimal), this field
contains the abend reason code. For all other return codes, IKJTBLS sets this
field to zero.

Return Codes from IKJTBLS
When IKJTBLS returns control to its caller, general register 15 contains one of the
following return codes:

Table 119. Return Codes from IKJTBLS

Return Code
Dec(Hex)

Meaning

0(0) Successful completion. The command or program was found in the
specified table.

4(4) Successful completion. The command or program was not found in the
specified table.

8(8) Unsuccessful completion. The specified table does not exist.

20(14) Unsuccessful completion. An error occurred while processing the
request. IKJTBLS passes the abend code and abend reason code to its
caller in the TLSABND and TLSREAS fields of the parameter list.

Example Using IKJTBLS
Figure 140 on page 402 is an example showing how to invoke IKJTBLS. The
segment of assembler code shown sets up the parameter list for IKJTBLS and
invokes IKJTBLS using the CALLTSSR macro instruction.

The IKJTBLS Parameter List

Chapter 22. Using the Table Look-up Service IKJTBLS 401

* *
*MODULE-NAME - TLSSAMP *
* *
*DESCRIPTION - TSO/E TABLE LOOK-UP SERVICE EXAMPLE *
* *
*FUNCTION/OPERATION = THIS MODULE INVOKES THE TSO/E *
* TABLE LOOK-UP SERVICE TO SEE IF THE USER-WRITTEN *
* COMMAND USERCMD IS FOUND IN THE AUTHORIZED COMMAND TABLE. *
* *
* *
*PROCESSOR = HIGH LEVEL ASSEMBLER *
* *
* *
*ATTRIBUTES = *
* STATE = PROBLEM *
* AMODE = 31 *
* RMODE = ANY *
* KEY = 8 *
* TYPE = REFRESHABLE *
* *

*
TLSSAMP CSECT
TLSSAMP AMODE 31
TLSSAMP RMODE ANY

STM R14,R12,12(R13) SAVE CALLER’S REGISTERS
BALR R12,0 ESTABLISH ADDRESSABILITY WITHIN
USING *,R12 THIS CSECT
ST R13,SAVEAREA+4 PERFORM SAVE AREA CHAINING
LA R11,SAVEAREA
ST R11,8(,R13)
LA R13,SAVEAREA

@MAIN EQU *

* *
* SET UP THE PARAMETER LIST FOR IKJTBLS USING THE IKJTLS MAPPING *
* MACRO. *
* *

LA R2,AUTHCMD SEARCH THE AUTHORIZED COMMAND
ST R2,TLSPTAB TABLE (IKJEFTE2)
LA R2,USERCMD SEARCH FOR A PROGRAM NAME
ST R2,TLSPCMD CALLED "USERCMD"
LA R2,TLSABND
ST R2,TLSPABND PASS FIELD FOR ABEND CODE
LA R2,TLSREAS
ST R2,TLSPREAS PASS FIELD FOR ABEND REASON CODE
LA R1,TLSPARM REGISTER 1 POINTS TO PARAMETER LIST
CALLTSSR EP=IKJTBLS INVOKE TABLE LOOK-UP SERVICE
LTR R15,R15 CHECK RETURN CODE FROM IKJTBLS
BZ @OK IF NAME FOUND IN TABLE, BRANCH

@NOTFND EQU *

Figure 140. A Sample Program Using IKJTBLS (Part 1 of 2)

Example Using IKJTBLS

402 z/OS V1R4.0 TSO/E Programming Services

* *
* PROCESS NON-ZERO RETURN CODES FROM THE TABLE LOOK-UP SERVICE. *
* POSSIBLE RETURN CODES ARE: *
* *
* 4 - COMMAND NOT FOUND *
* 8 - TABLE NOT FOUND *
* 20 - ERROR IN REQUEST *
* IN THIS CASE, THE ABEND CODE AND ABEND REASON CODE FIELDS *
* ARE SET UP TO THE APPROPRIATE INFORMATION. *
* *

B @DONE
@OK EQU *

* *
* THE COMMAND WAS FOUND IN THE TABLE. PERFORM APPROPRIATE ACTIONS *
* *

@DONE EQU *

L R13,4(,R13) OBTAIN RETURN ADDRESS
LM R14,R12,12(R13) RESTORE REGISTERS
SLR R15,R15
BR R14

* *
* GENERAL REGISTER EQUATES *
* *

R0 EQU 0 GENERAL REGISTER 0
R1 EQU 1 GENERAL REGISTER 1
R2 EQU 2 GENERAL REGISTER 2
R3 EQU 3 GENERAL REGISTER 3
R4 EQU 4 GENERAL REGISTER 4
R5 EQU 5 GENERAL REGISTER 5
R6 EQU 6 GENERAL REGISTER 6
R7 EQU 7 GENERAL REGISTER 7
R8 EQU 8 GENERAL REGISTER 8
R9 EQU 9 GENERAL REGISTER 9
R10 EQU 10 GENERAL REGISTER 10
R11 EQU 11 GENERAL REGISTER 11
R12 EQU 12 GENERAL REGISTER 12
R13 EQU 13 GENERAL REGISTER 13
R14 EQU 14 GENERAL REGISTER 14
R15 EQU 15 GENERAL REGISTER 15
* *
* *
SAVEAREA DS 18F
USERCMD DC CL8’USERCMD ’

IKJTLS
CVT DSECT=YES
IKJTSVT

END

Figure 140. A Sample Program Using IKJTBLS (Part 2 of 2)

Example Using IKJTBLS

Chapter 22. Using the Table Look-up Service IKJTBLS 403

Example Using IKJTBLS

404 z/OS V1R4.0 TSO/E Programming Services

Chapter 23. Using the TSO/E Service Facility IKJEFTSR

Overview of the TSO/E Service Facility 405
The TSO/E Service Facility Routines 406
Program Authorization and Isolation. 407

Using the Command/Program Invocation Platform 408
Creating the Platform with IKJEFTSI 409
Executing Commands or Programs on the Platform with IKJEFTSR 410
Terminating the Platform with IKJEFTST 410

TSO/E Service Facility Initialization Routine IKJEFTSI 410
Passing Control to IKJEFTSI 410
IKJEFTSI Parameter List . 410
Output from IKJEFTSI . 412

TSO/E Service Facility Routine IKJEFTSR 413
Passing Control to IKJEFTSR 413
IKJEFTSR Parameter List 414
Output from IKJEFTSR . 419
Considerations on Attention Interruptions with IKJEFTSR 421

TSO/E Service Facility Termination Routine IKJEFTST 422
Passing Control to IKJEFTST 422
IKJEFTST Parameter List 422
Output from IKJEFTST . 424

Application Program Interface to IKJEFTSR 425
Call Invocations Using TSOLNK 425

Examples of Invoking the TSO/E Service Facility 427
Assembler Program Using IKJEFTSI 428
Assembler Program Using IKJEFTSR to Invoke a Command 428
Assembler Program Using IKJEFTST 431
Assembler Program Using IKJEFTSI, IKJEFTSR, IKJEFTST to Invoke a

Command . 432
FORTRAN Program Using TSOLNK to Invoke a Command (FORTRAN G1) 436
FORTRAN Program Using TSOLNK to Invoke a Command (VS FORTRAN) 438
COBOL Program Using TSOLNK to Invoke a Command 440
Assembler Program Using IKJEFTSR to Invoke a Program 444
PL/I Program Using TSOLNK to Invoke a Program 445
PASCAL Program Using TSOLNK to Invoke a Program 447
COBOL Program Using TSOLNK to Invoke a Program 449
PL/I Program Using TSOLNK to Invoke a CLIST 452
PL/I Program Calling a CLIST 454
PASCAL Program Using TSOLNK to Invoke a CLIST 454
Assembler Program Using IKJEFTSR to Invoke a REXX Exec 456

This chapter provides an overview about the TSO/E service facility and describes
how to use it in an application program to invoke commands, programs, CLISTs and
REXX execs.

Overview of the TSO/E Service Facility

The TSO/E service facility is an interface that allows application programmers to
invoke commands, programs, CLISTs, and REXX execs from within their application
programs. The application programs can be written in assembler, or in a high-level
language such as PL/I, COBOL, FORTRAN, or PASCAL. Application programs
using the TSO/E service facility can be run in foreground or background TSO/E
sessions.

© Copyright IBM Corp. 1988, 2002 405

The TSO/E service facility also provides a mechanism to invoke authorized
commands, programs, or CLISTs (consisting of only authorized commands or
programs) from unauthorized application programs. Usually, authorized commands,
programs, or CLISTs can be invoked only from authorized environments. The
TSO/E service facility allows you to invoke authorized commands, programs, and
CLISTs and unauthorized commands, programs, CLISTs, and REXX execs from
unauthorized application programs.

Note: REXX execs cannot be invoked authorized in either the foreground or the
background.

Further, with the TSO/E service facility you can create a command/program
invocation platform to run the invoked commands, programs, CLISTs, and REXX
execs on it. The use of a command/program invocation platform bypasses some
internal processing for repeated MVS task initialization and termination caused by
the invocation of commands, programs, CLISTs, or REXX execs. Use of the
command/program invocation platform can result in a potential performance benefit.

The TSO/E service facility permits you to access ISPF services.

The TSO/E Service Facility Routines
The TSO/E service facility consists of three routines:

1. IKJEFTSI - TSO/E service facility initialization routine

The routine IKJEFTSI creates a command/program invocation platform to run
commands, programs, CLISTs, or REXX execs, invoked by the TSO/E service
facility routine, on it. The initialization routine is optional. It is useful if you want
to bypass internal processing and gain potential performance benefit.

IKJEFTSI lets you specify a command/program invocation platform environment
you want to use.

IKJEFTSI returns a token to the calling application program that identifies the
specified platform environment to the TSO/E service facility routine IKJEFTSR
and the termination routine IKJEFTST.

2. IKJEFTSR - TSO/E service facility routine

The routine IKJEFTSR executes a specified authorized or unauthorized
command, program, CLIST, or REXX exec.

An unauthorized command, program, CLIST, or REXX exec, called by
IKJEFTSR, will run on the command/program invocation platform, if one has
been initialized; thus gaining from the benefits described before. IKJEFTSR will
use the token passed to it by the IKJEFTSI initialization routine, to identify the
command/program invocation platform.

An authorized command, program, or CLIST, called by IKJEFTSR does not use
a command/program invocation platform, even if one has been initialized. It will
run in its own isolated environment.

You can use IKJEFTSR multiple times to run unauthorized commands,
programs, CLISTs, or REXX execs on the initialized command/program
invocation platform before you terminate the platform with IKJEFTST.

3. IKJEFTST - TSO/E service facility termination routine

The routine IKJEFTST cleans up and terminates the command/program
invocation platform set up by IKJEFTSI. It uses the token, passed to it by the
initialization routine IKJEFTSI, to identify the platform to be terminated.

Overview of the TSO/E Service Facility

406 z/OS V1R4.0 TSO/E Programming Services

The TSO/E service facility routines can be nested as required. The token, passed
from the initialization routine IKJEFTSI to IKJEFTSR and IKJEFTST, remains valid
on the same task level. Every initialized command/program invocation platform must
be properly terminated with IKJEFTST.

“Using the Command/Program Invocation Platform” on page 408 provides more
details on how the TSO/E service facility routines work together.

Program Authorization and Isolation
Commands, programs, CLISTs, or REXX execs can either be authorized or
unauthorized functions to an application program. Application programs are most
often unauthorized functions to the system they are running on, rarely authorized
functions. For system security reasons, an authorized function can normally invoke
only authorized functions.

IKJEFTSR specifically allows you to invoke authorized functions from an
unauthorized application program. It maintains system security by running an
invoked authorized function in its own isolated environment.

However, to maintain system security, an authorized application program can use
the TSO/E service facility to invoke only authorized programs or commands, or
CLISTs consisting of only authorized programs and commands.

While the invocation of authorized functions automatically makes the TSO/E service
facility to run the function in an isolated environment, you can specify the type of
environment for the invocation of unauthorized functions (parameter 1 in “IKJEFTSR
Parameter List” on page 414).

v If you want the TSO/E service facility to run the unauthorized function in an
unisolated environment, the unauthorized function itself can invoke other
(authorized or unauthorized) functions through IKJEFTSR. This also provides for
access to ISPF services and TSO/E REXX programming services. However, after
an authorized function is invoked, it is run in its own isolated environment (see
below).

v If you want the TSO/E service facility to run the unauthorized function in an
isolated environment, the invoked function itself can only invoke authorized
functions. This makes the TSO/E service facility to run the requested function as

Figure 141. Invoking Authorized Functions with the TSO/E Service Facility

Overview of the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 407

an isolated subtask of the TSO terminal monitor program. The existing
environment is suspended until the requested function completes. It is the
existing environment’s responsibility to release any resources that may have
been required by the requested function (such as serialization resources).

TSO/E determines the authorization of commands and programs and the execution
environment they are running in by analyzing the following statements in member
IKJTSOxx of SYS1.PARMLIB:

AUTHCMD
identifies authorized commands to TSO/E

AUTHPGM
identifies programs that are authorized when invoked via the CALL
command

AUTHTSF
identifies programs that are authorized when invoked through the TSO/E
service facility.

PLATCMD
identifies authorized and unauthorized commands that can run on a
command/program invocation platform.

PLATPGM
identifies authorized and unauthorized programs that can run on a
command/program invocation platform.

Further details about the statements in SYS1.PARMLIB member IKJTSOxx can be
found in z/OS TSO/E Customization.

You may want to use the table look-up service, described in Chapter 22, in your
application programs to determine if a program or command name is identified by
one or more of these statements.

Using the Command/Program Invocation Platform
The routines IKJEFTSI and IKJEFTST set up and terminate, respectively, a
specified command/program invocation platform. Routine IKJEFTSR allows eligible
commands and programs to run on that platform.

Eligible commands and programs are those having an entry in SYS1.PARMLIB,
member IKJTSOxx. Commands and programs are specified in this member using
the PLATCMD and PLATPGM statements, respectively. Installations can add their
own commands and programs to the appropriate platform statement, but they must
first ensure that these commands and programs do not require the services of MVS
task termination. If an application program terminates before the environment
created by IKJEFTSI terminates, a system abend A03 can result. For more
information about PLATCMD, PLATPGM, SYS1.PARMLIB, and about adding
installation-defined commands and programs, see z/OS TSO/E Customization.

The following three sections describe how the TSO/E service facility routines
interact with each other and with the application program using them. Refer also to
Figure 142 on page 409.

Overview of the TSO/E Service Facility

408 z/OS V1R4.0 TSO/E Programming Services

Creating the Platform with IKJEFTSI
Use the TSO/E service facility initialization routine (IKJEFTSI) or its alias (TSOLKI)
to create a command/program invocation platform. This routine returns a token to
the caller that identifies the command/program invocation platform that was created.
This token must be passed to the TSO/E service facility routine (IKJEFTSR) to
enable the commands or programs to execute on the command/program invocation
platform. This token is valid only for calls to IKJEFTSR that occur on the same task
level as that for which the initialization routine was invoked.

Application
Program

TSF Initialization
Routine IKJEFTSI

TSF Service
Routine IKJEFTSR

TSF Termination
Routine IKJEFTST

Program, Command,
CLIST or REXX Exec

Parameters

Parameters

Parameters

Token

Token

Register 0

Register 15

Register 0

Register 15

Register 0

Register 15

Register 0

Register 15

Figure 142. Interaction of the TSO/E Service Facility Routines

Using the Command/Program Invocation Platform

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 409

Executing Commands or Programs on the Platform with IKJEFTSR
Use the TSO/E service facility routine (IKJEFTSR) or its alias (TSOLNK) to execute
eligible commands or programs on the command/program invocation platform. This
routine accepts the token passed from IKJEFTSI to identify the command/program
invocation environment. IKJEFTSR searches the list of eligible commands or
programs that can run on the command/program invocation platform. If the
command or program is eligible and located in a system library, it will be invoked on
the command/program invocation platform. If it is located in a step library, it will not
be invoked from the platform task, because commands or programs in a step library
might not be system commands or programs intended for this kind of invocation.

Terminating the Platform with IKJEFTST
Use the TSO/E service facility termination routine (IKJEFTST) or its alias (TSOLKT)
to clean up and terminate the command/program invocation platform. This routine
accepts the token passed from IKJEFTSI and terminates the environment at the
task level created by IKJEFTSI.

TSO/E Service Facility Initialization Routine IKJEFTSI
The TSO/E service facility initialization routine (IKJEFTSI) initializes a
command/program invocation platform. It returns a token to the caller that identifies
the command/program invocation platform that was created.

Passing Control to IKJEFTSI
Invoke the TSO/E service facility initialization routine using one of the following
methods:

v The CALLTSSR macro instruction, specifying IKJTSFI as the entry point name

v The LINK macro instruction, specifying IKJEFTSI (or TSOLKI, the alias of
IKJEFTSI), as the entry point name

v The address of IKJEFTSI that is in the TSVTTSFI field of the TSVT.

You must first create the IKJEFTSI parameter list and place its address into general
register 1.

Standard linkage conventions are:
v Register 1 must contain the address of a parameter list.
v Register 13 must contain the address of an 18-word save area.
v Register 14 must contain the return address.
v Register 15 must contain the entry point address.

IKJEFTSI must receive control in 31-bit addressing mode. IKJEFTSI accepts input
above or below 16 MB in virtual storage. The caller’s parameters must be in the
primary address space.

IKJEFTSI Parameter List
Use the IKJEFTSJ macro to map the parameter list for IKJEFTSI. This mapping
macro is provided in SYS1.MACLIB. Use the TJDSECT=YES option to map the
TJDSECTD DSECT, instead of obtaining storage.
IKJEFTSJ TJDSECT=YES

TJDSECT=NO is the default.

Using the Command/Program Invocation Platform

410 z/OS V1R4.0 TSO/E Programming Services

Figure 143 describes the parameter list passed to the TSO/E service facility
initialization routine (IKJEFTSI) pointed to by register 1.

The parameters are:

Parameter 1
IKJEFTSI (also IKJEFTSR and IKJEFTST) needs to invoke TSO/E I/O services
(STACK, PUTLINE, GETLINE, PUTGET). It needs to tell these underlying
services which environment control table (ECT) to use. You have a choice at
this point which ECT these services are to use.

The first parameter specifies the environment control table (ECT) to be used. It
can be set to a fullword of either:

v The address of the user’s current environment control table (ECT)

v A value of X'00000000', specifying that the original ECT, created when your
TSO/E session was initialized, is to be used.

The address of the original ECT is placed in this parameter on return to the
caller.

v A value of X'FFFFFFFF', specifying that a new ECT is to be created. This
new ECT uses the original ECT (created when your TSO/E session was
initialized) as a model.

The address of the new ECT is placed in this parameter on return to the
caller.

Note that it is important for you to pass this same ECT address in parameter 8
to IKJEFTSR so that it also uses the same ECT.

Parameter 2
The second parameter is a reserved fullword. Although this parameter is not
used, it must contain X'00000000' on input.

Parameter 3
On input to IKJEFTSI this parameter must be set to four fullwords of
X'00000000'.

On output from IKJEFTSI, this parameter consists of a token of four fullwords
that identifies the TSO/E command/program invocation platform that is created
by the initialization routine. The use of the token is an option with the calls to
the TSO/E service facility routine (IKJEFTSR) and the TSO/E service facility
termination routine (IKJEFTST).

Register 1

Parameter List

ECT

Reserved

Token

Error Code

Abend Code

Reason Code

ECT

Reserved

Token

Error Code

Abend Code

Reason Code

Figure 143. Parameter List for IKJEFTSI

TSO/E Service Facility Initialization Routine IKJEFTSI

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 411

Parameter 4
The fourth parameter is a fullword containing an error code if IKJEFTSI
completes unsuccessfully. The error code is used with return codes of decimal
12 or 24 to give a more detailed diagnosis of the cause of the failure.

All following parameters are optional. Note that the high-order bit of the address of
the last parameter used must be on to indicate the end of the parameter list.

Parameter 5
The fifth parameter is optional. It is a fullword containing the abend code
returned from IKJEFTSI when terminated abnormally.

Parameter 6
The sixth parameter is optional. It is a fullword containing the reason code
returned from IKJEFTSI when terminated abnormally.

Output from IKJEFTSI
IKJEFTSI passes a return code to the calling program in general register 15. For
high-level languages that cannot interrogate register 15, IKJEFTSI also places the
return code in general register 0.

After IKJEFTSI successfully completes (return code 0), parameter 3 contains a
token that identifies the command/program invocation platform. To execute
commands or programs on the command/program invocation platform, pass this
token to IKJEFTSR (TSOLNK). To terminate the platform, pass the token to
IKJEFTST (TSOLKT).

Return Codes from IKJEFTSI
The TSO/E service facility initialization routine return codes are shown in Table 120.

Table 120. Return Codes from IKJEFTSI

Return Code
Dec(Hex)

Meaning

0(0) TSO/E service facility initialization was successful:

v When the ECT address (parameter 1) contains X'00000000' on input,
the field is updated to contain the address of the original ECT created
when your TSO/E session was initialized.

v When the ECT address (parameter 1) contains X'FFFFFFFF' on
input, the field is updated to contain the address of the new ECT.

v The TOKEN field contains four fullwords to be passed to IKJEFTSR
and IKJEFTST.

v The ERROR field contains zero.

12(C) TSO/E service facility initialization was unsuccessful because of
inconsistent or incorrect parameters. The ERROR field shows the
reason for the error:

Error code = 1 (dec) Non-zero reserved parameter
passed to IKJEFTSI.

Error code = 2 (dec) Non-zero token parameter passed to
IKJEFTSI.

Note: The high-order bits of all parameters in the parameter list pointed
to by register 1 must be off except for the last parameter. If IKJEFTSI
detects this error, it sets return code = 12, but it cannot set the ERROR
field.

TSO/E Service Facility Initialization Routine IKJEFTSI

412 z/OS V1R4.0 TSO/E Programming Services

Table 120. Return Codes from IKJEFTSI (continued)

Return Code
Dec(Hex)

Meaning

20(14) TSO/E service facility initialization was unsuccessful because of an
environmental error. The ERROR field shows the reason for the error:

Error code = 20 (dec) IKJEFTSI invoked in a non-TSO/E
environment.

Error code = 21 (dec) IKJEFTSI invoked in an authorized
TSO/E environment.

Error code = 22 (dec) Storage for a TSF environment
could not be obtained.

Error code = 23 (dec) A value of X'FFFFFFFF' was passed
to IKJEFTSI in parameter 1 (ECT
address), but IKJEFTSI was unable
to create the new ECT.

92(5C) TSO/E service facility initialization was unsuccessful. A recovery
environment could not be established.

96(60) TSO/E service facility initialization was unsuccessful. A parameter is not
accessible; see the abend code and reason code parameters for the
abend and reason codes.

100(64) TSO/E service facility initialization was unsuccessful. Abnormal
termination; see the abend code and reason code parameters for the
abend and reason codes.

TSO/E Service Facility Routine IKJEFTSR
The TSO/E service facility routine (IKJEFTSR) allows a user to invoke functions
such as commands, programs, CLISTs, or REXX execs from an application
program.

Passing Control to IKJEFTSR
Invoke the TSO/E service facility routine (IKJEFTSR) using one of the following
methods:

v The LINK macro instruction. Use this, for example, from an assembler program.

Specify IKJEFTSR or its alias TSOLNK as the entry point name. TSOLNK is
useful if the programming language you are using does not allow you to use
names longer than six characters.

v The address of IKJEFTSR that is in the TSVTASF field of the TSVT

Use this, for example, when you want to get addressability to the common copy
of IKJEFTSR for all applications.

v Link-editing IKJEFTSR with your application program.

Be aware that if you use this method and a change, for example, a release
upgrade, occurs, then it is your responsibility to link-edit again to pick up the new
level. For link-editing the user program, the SYSLIB concatenation must contain
SYS1.LPALIB, in which TSOLNK and IKJEFTSR reside.

Standard linkage conventions are:
v Register 1 must contain the address of a parameter list.
v Register 13 must contain the address of an 18-word save area.

TSO/E Service Facility Initialization Routine IKJEFTSI

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 413

v Register 14 must contain the return address.
v Register 15 must contain the entry point address.

The parameter list pointed to by register 1 consists of a list of addresses. Each
address points to a parameter. If you want to use a command, program, CLIST, or
REXX exec, you must specify the first six parameters. If you want to pass
parameters to a program, you can specify an optional seventh parameter when you
invoke the TSO/E service facility. The seventh parameter is intended for use with
assembler programs. The eighth and ninth parameters are optional, and are
intended for use when invoking a command, REXX exec, or CLIST in an
unauthorized environment. To indicate the end of the parameter list, you must set
the high-order bit of the last address to 1.

Your application program can invoke IKJEFTSR in 24-bit or 31-bit addressing mode.
IKJEFTSR returns control to its caller in the same addressing mode with which it
was invoked.

The caller’s parameters must be in the primary address space. Input can reside
above or below 16 MB in virtual storage. IKJEFTSR treats input addresses
according to the addressing mode in which IKJEFTSR was invoked.

IKJEFTSR Parameter List
Figure 144 on page 415 describes the parameter list passed to the TSO/E service
facility routine (IKJEFTSR) pointed to by register 1.

TSO/E Service Facility Routine IKJEFTSR

414 z/OS V1R4.0 TSO/E Programming Services

The parameters are:

Parameter 1
This parameter contains a fullword of flags.

1. Byte 1 is all zeros.

Fullword

Up to 32,767 bytes

Fullword

Fullword

Fullword

Fullword

Up to 4 Fullwords

4 Fullwords

4 Fullwords

Function Buffer

Function Buffer

Function RC

Reason Code

Abend Code

Function PLIST

CPPL

Token

(See below)

Parameter 7

Len in bytesParameter 1

Parameter 2

Parameter 3

Parameter 4

Len in bytes

Len in bytes

X’0000’

Data

Data

Data

Len in
Fullwords Data

Register 1

Parameter List

2 bytes2 bytes

2 bytes

Flags

Function Buffer

Buffer Length

Function RC

Reason Code

Abend Code

Function plist

CPPL

Token

Flags

Optional

*

*

*

*

* = The high-order bit must be turned on in one of these addresses to show the end of the list of addresses.

Figure 144. Parameter List for IKJEFTSR

TSO/E Service Facility Routine IKJEFTSR

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 415

2. Byte 2 is the internal processing options flag byte. This flag indicates
whether the TSO/E service facility should establish an isolated or unisolated
environment before invoking the requested function. Set byte 2 to one of the
following values:

v X'00' to show that the TSO/E service facility should invoke the requested
function in an isolated environment.

Use X'00' when you invoke the TSO/E service facility from an authorized
program or command.

v X'01' to show that the TSO/E service facility should invoke the requested
function in an unisolated environment.

Use X'01' when you invoke the TSO/E service facility from an
unauthorized program or command.

When invoked from an unauthorized program or command, the TSO/E
service facility can invoke the requested function in either an isolated or an
unisolated environment. Therefore, either value for byte 2 is accepted.
However, you should consider the following:

v It is recommended that you set byte 2 to X'01' because invoking the
requested function in an unisolated environment may result in a potential
performance gain.

v You must set byte 2 to X'01' when invoking commands or programs that
are to run on the command/program invocation platform specified by
IKJEFTSI.

v If your application program invokes a function that invokes ISPF services
or TSO/E REXX programming services, you must indicate to the TSO/E
service facility that an unisolated environment be established (X'01'). In
an unauthorized environment all ISPF services and REXX services are
available.

In an isolated environment no ISPF services are available and no REXX
services that depend on an environment other than the first TSO/E
environment created at LOGON time (for example, you cannot get to the
data stack of an ISPF environment).

Note: If you are running in the foreground, all input/output is received from
the terminal, respectively sent to the terminal. If you are running in
the background, all input/output is received from SYSTSIN,
respectively sent to SYSTSPRT.

3. Byte 3 is the error processing flag byte. Set byte 3 to one of the following
values:

v X'00' to show that no dump should be taken if the invoked function
abends.

v X'01' to show that a dump should be taken if the invoked function
abends.

4. Byte 4 is the function flag byte. This flag indicates the type of function being
invoked. Set byte 4 to one of the following values:

v X'01' to show that a TSO/E command, REXX exec, or CLIST is being
invoked. The processing of the requested function may depend on the
value of byte 2 of parameter 1:

– If the requested function is a CLIST and byte 2 of parameter 1 is set
to X'00', the CLIST is placed on the TSO/E input stack and is not run
before the return from the TSO/E service facility.

TSO/E Service Facility Routine IKJEFTSR

416 z/OS V1R4.0 TSO/E Programming Services

– If the requested function is a CLIST and byte 2 of parameter 1 is set
to X'01', the CLIST is placed on the TSO/E input stack and is run
before the return from the TSO/E service facility.

v X'02' to show that a program is being invoked.

v X'05' to show that a TSO/E command, REXX exec, or CLIST is being
invoked. This value should only be used when byte 2 of parameter 1 is
set to X'00'. If the requested function is a CLIST, the CLIST is placed on
the TSO/E input stack and is run before the return from the TSO/E
service facility.

Note: To maintain compatibility with TSO/E Version 1 (The term “Version
1” here is not to be confused with one of the MVS, OS/390 or
z/OS versions. TSO/E Version 1 was the initial TSO/E version on
the early MVS System Products.), the TSO/E service facility
interprets a value of X'05' to mean that a CLIST is being invoked if
the requested function cannot be found as a command. However,
use a value of X'05' only when the internal processing options flag
(byte 2 of parameter 1) is set to X'00'.

For non-assembler language programmers, parameter 1 can be thought of as
an integer containing the sum of all the following:
v The value of byte 2, multiplied by 65 536
v The value of byte 3, multiplied by 256
v The value of byte 4.

Parameter 2
The second parameter contains a character string containing the name of the
command, program, CLIST or REXX exec being invoked. If a command is
invoked, the character string must also contain all the parameters for the
command. If you are invoking an authorized program, the invoked program
must be in a member of a partitioned data set allocated to STEPLIB or
LINKLIB. If the authorized program resides as a member in the STEPLIB
concatenation, all of the data sets in the concatenation must be authorized in
order for the system to give control to the program in an authorized state.

Note: The execution of the LOGON and LOGOFF commands remains pending
until the program environment terminates. That is, if invoked from within
a program, these commands would take effect after the program
finishes, where you would ordinarily see a READY prompt. These
commands provide a return code of 0 in parameter 4 if the syntax is
accurate.

Parameter 3
The third parameter is a fullword containing the length of the name of the
invoked command, program, CLIST or REXX exec (parameter 2). This is
automatically provided in some FORTRAN compilers.

Parameter 4
The fourth parameter is an output parameter. It is a fullword containing the
return code of the invoked function specified in parameter 2. If a CLIST is
invoked, parameter 4 will contain the value of the CLIST variable LASTCC, or
the value specified in an exit code statement.

The TSO/E service facility initially sets this parameter to -1 on entry, and resets
its value to be the return code as appropriate on return.

Parameter 5
Parameter 5 is an output parameter. The meaning of it depends on the service

TSO/E Service Facility Routine IKJEFTSR

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 417

facility return code found in register 15. If the service facility return code is 12,
parameter 5 is a fullword containing the abend reason code of the invoked
function. If the service facility return code is either decimal 20 or 24, parameter
5 contains the service facility reason code. If the return code is either decimal
20 or 24, save the return code and notify your IBM service representative. See
Table 122 on page 420 for the meaning of the service facility reason codes.

The TSO/E service facility initially sets this parameter to -1 on entry, and resets
its value to be the return code as appropriate on return.

Parameter 6
Parameter 6 is an output parameter. If the requested program or command
ends unsuccessfully, it is a fullword containing the abend code.

The TSO/E service facility initially sets this parameter to -1 on entry, and resets
its value to be the return code as appropriate on return.

All following parameters are optional. Note that the high-order bit of the address of
the last parameter used must be on to indicate the end of the parameter list.

Parameter 7
The seventh parameter is optional. It is used to pass parameters to the invoked
program. It is intended for use with assembler language programs. Use
parameter 7 when a program (not a TSO/E command, CLIST, or REXX exec) is
being invoked.

Set parameter 7 to a fullword containing zeros when your application program:

v Is invoking a command (as opposed to a program)

v Has set byte 2 of parameter 1 to indicate that the TSO/E service facility
should establish an unauthorized environment to invoke the function, and

v Uses the eighth parameter.

If you choose to code parameter 7 to pass parameters to your program, comply
with the following rules. Parameter 7 is a variable-length list consisting of the
addresses of from one to four parameters. The high- order bit of the last
address must be on to indicate the end of the list. Each entry in the list points
to a parameter whose format is described below.

v Parameters 1-3

– A halfword containing the parameter length in bytes, immediately followed
by

– A variable-length data string

v Parameter 4

– A fullword containing 2 bytes of zeros, immediately followed by

– Two bytes containing the number of fullwords of data, immediately
followed by

– A variable-length data string

The exact format of this parameter list will vary depending on the program
being invoked. For most assembler programs, only the first parameter is used.
Figure 144 on page 415 above shows the format of the function parameter list
within the parameter list.

If parameter 7 is not coded when invoking a program, the TSO/E service facility
passes one parameter to the program. Before invoking the requested program,

TSO/E Service Facility Routine IKJEFTSR

418 z/OS V1R4.0 TSO/E Programming Services

the TSO/E service facility sets this parameter to the address of a halfword
containing zeros. The high-order bit of the address of the halfword is on to
indicate the end of the list.

Parameter 8
The eighth parameter is optional. It is four fullwords containing the command
processor parameter list (CPPL). It is intended for use when requesting the
TSO/E service facility to establish an unauthorized environment to invoke the
function. Use parameter 8 only when byte 2 of parameter 1 is set to a value of
1.

Your choices when deciding whether to code parameter 8 are as follows:

v Choice 1: Set parameter 8 to four fullwords of zeros (that is, parameter 8 is a
dummy parameter) when your application program uses the ninth parameter
and you request that IKJEFTSR construct a CPPL for you.

v Choice 2: Set parameter 8 to four fullwords containing a valid CPPL that
IKJEFTSR will use in the unauthorized environment. For a description of the
CPPL, see “Interfacing with the TSO/E Service Routines” on page 16.

If you are invoking a command and use parameter 8, you must set parameter 7
to a fullword containing zeros.

Parameter 9
The ninth parameter is optional. It is four fullwords containing the token that
was passed to the application program by IKJEFTSI. It is intended for use when
requesting the TSO/E service facility to invoke an unauthorized command on
the command invocation platform. Use parameter 9 only when byte 2 of
parameter 1 is set to a value of 1.

Your choices when deciding whether to code parameter 9 are as follows:

v Choice 1: To omit parameter 9 altogether by turning on the high-order bit in
either parameter 7 or 8 (as appropriate).

v Choice 2: To send a null token, set parameter 9 to four fullwords of zeroes.

v Choice 3: Use parameter 9 to specify the token from IKJEFTSI.

If you are invoking a command and use either parameter 8 or 9, you must set
parameter 7 to the address of a fullword containing zeroes.

If you request that an unauthorized environment be used to invoke the function
and you do not code parameter 9, the requested command or program will not
execute on the command/program invocation platform.

Output from IKJEFTSR

Return Codes from IKJEFTSR
Table 121 contains the return codes from the TSO/E service facility.

Table 121. Return Codes from IKJEFTSR

Return Code
Dec(Hex)

Meaning

0(0) IKJEFTSR and the requested program, command, CLIST or REXX exec
completed successfully.

4(4) The invoked program, command, CLIST or REXX exec had a non-zero
return code, which is in parameter 4.

TSO/E Service Facility Routine IKJEFTSR

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 419

Table 121. Return Codes from IKJEFTSR (continued)

Return Code
Dec(Hex)

Meaning

8(8) The invoked function was terminated because of an attention
interruption. If the application programmer wants to notify the end user,
the application program should issue a message.

12(C) The invoked function terminated abnormally. The sixth parameter
contains the abend code. The fifth parameter contains the reason code
associated with the abend.

16(10) One of the first 6 parameters in the parameter list contains addresses of
storage not accessible to the calling program.

20(14) The IKJEFTSR parameter list contains an error. The fifth parameter
contains the reason code associated with the error.

24(18) The TSO/E routines associated with IKJEFTSR encountered an
unexpected failure. The fifth parameter contains the reason code
associated with the error.

28(1C) The caller of IKJEFTSR is executing in 24-bit addressing mode, but the
parameter list contains 31-bit addresses.

Reason Codes from IKJEFTSR
Table 122 shows the reason codes that are found in parameter 5 if IKJEFTSR
completes with a return code of 20.

Table 122. Reason Codes from IKJEFTSR (When Return Code is Decimal 20)

Reason Code
Dec(Hex)

Meaning

4(4) The length of the parameter list is not valid. One of the following is true:

v The invoker of the TSO/E service facility did not turn on the first bit of
the last parameter to indicate the end of the list.

v The high-order bit is on in any of the first five parameters.

v More than nine parameters are coded.

8(8) The first byte of the flag field pointed to by the first parameter is
non-zero.

12(C) The function flag byte (byte 4) of the flag field pointed to by the first
parameter is not valid. It should contain a 1 for a command, CLIST or
REXX exec, or a 2 for a program.

16(10) The function flag byte (byte 4) of the flag field pointed to by the first
parameter specified a command (contained a 1). However, a seventh
parameter (program parameter list) was also coded. The seventh
parameter can only be coded when the function being invoked is a
program.

20(14) The abend processing flag byte is not valid. This byte (byte 3) of the
flag field pointed to by the first parameter should contain either a zero to
request a dump, or a 1 to indicate no dump is to be taken.

24(18) IKJEFTSR was invoked from a non-TSO/E environment. This service
can only be used in a foreground or background TSO/E environment.

28(1C) The function buffer length is not valid. The function buffer pointed to by
the second parameter must be greater than zero and less than 32K-5.

TSO/E Service Facility Routine IKJEFTSR

420 z/OS V1R4.0 TSO/E Programming Services

Table 122. Reason Codes from IKJEFTSR (When Return Code is Decimal 20) (continued)

Reason Code
Dec(Hex)

Meaning

32(20) The program parameter list (pointed to by the seventh parameter of the
TSO/E service facility parameter list) contains addresses of storage not
accessible to the calling program.

36(24) The program parameter list pointed to by the seventh parameter is not
valid.

40(28) The requested function (program, command, CLIST or REXX exec) was
not found.

44(2C) A syntax error in the function (program, command, CLIST or REXX
exec) name was detected.

48(30) The command name began with “%”. However, CLIST processing was
not requested in parameter 1.

52(34) Unsupported background function (program or command).

56(38) The function (either a program or command) is authorized, but a copy of
the function could not be found in an authorized library.

60(3C) One of the following occurred:

v An authorized program or command requested that an unauthorized
function be invoked.

v An authorized program or command invoked the TSO/E service
facility, but indicated that the requested function be invoked from an
unauthorized environment. An authorized program must set the
internal processing options flag (byte two of parameter one) to zero.

64(40) An incorrect token was passed to IKJEFTSR.

68(44) The invoker of the TSF asked for parallel TMP processing under the
dynamic TSO environment. Programs running in this environment
cannot use the TSO/E service facility (IKJEFTSR) to invoke functions
from an authorized environment.

Considerations on Attention Interruptions with IKJEFTSR
If you choose isolated environment TSO/E also isolates the active attention exits. If
you choose unisolated environment this is not the case and you may find that the
wrong attention exit gets control.

The application program issuing the TSO/E service facility routines may as well use
the STAX macro to process attention interruptions. The STAX macro is to specify
the address of an attention exit routine in your application program that gains
control when an attention interruption occurs.

On the other hand, the commands, programs, CLISTs, or REXX execs invoked with
the TSO/E service facility routine IKJEFTSR may have their own attention
interruption processing.

If your application program issues its own STAX macro it may be required to
temporarily relinquish its control if you want the invoked function’s attention
interruption processing to take control. Consider the following sequence, which
shows how an application relinquishes control of its attention exit while the TSO/E
service facility is executing:

1. The application indicates that its attention exit is to receive control:

TSO/E Service Facility Routine IKJEFTSR

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 421

STAX exit_address, USADDR= ...

During application processing, its attention exit will receive control if an attention
interruption occurs.

2. The application relinquishes control of its attention exit before invoking
IKJEFTSR:

STAX

3. The application invokes IKJEFTSR.

4. After IKJEFTSR has finished the application reestablishes its own attention
processing:

STAX exit_address, USADDR= ...

If the TSO/E service facility is invoked and an ISPF service is invoked from within, it
is required to temporarily relinquish control; else ISPF will not be able to perform its
attention processing.

For further details see Chapter 12, “Using the STAX Service Routine to Handle
Attention Interrupts” on page 317 and z/OS TSO/E Programming Guide about
processing attention interruptions.

TSO/E Service Facility Termination Routine IKJEFTST
The TSO/E service facility termination routine (IKJEFTST) terminates the
environment that IKJEFTSI creates for this task level. It is required when using the
command/program invocation platform support. If an application program terminates
before the environment created by IKJEFTSI terminates, a system abend A03 can
result.

Passing Control to IKJEFTST
Invoke the TSO/E service facility termination routine using one of the following
methods:

v The CALLTSR macro instruction, specifying IKJTSFT as the entry point name

v The LINK macro instruction, specifying IKJEFTST (or TSOLKT, the alias of
IKJEFTST), as the entry point name

v The address of IKJEFTST that is in the TSVTTSFT field of the TSVT

You must first create the IKJEFTST parameter list and place its address into
general register 1.

Standard linkage conventions are:
v Register 1 must contain the address of a parameter list.
v Register 13 must contain the address of an 18-word save area.
v Register 14 must contain the return address.
v Register 15 must contain the entry point address.

IKJEFTST executes and must receive control in 31-bit addressing mode. It accepts
input above or below 16 MB in virtual storage and executes in primary address
space control (ASC) mode.

IKJEFTST Parameter List
Use the IKJEFTSV macro to map the parameter list for IKJEFTST. This mapping
macro is provided in SYS1.MACLIB. Use the TVDSECT=YES option to map the
TVDSECTD DSECT, instead of obtaining storage.
IKJEFTSV TVDSECT=YES

TSO/E Service Facility Routine IKJEFTSR

422 z/OS V1R4.0 TSO/E Programming Services

TVDSECT=NO is the default.

Figure 145 describes the parameter list passed to the TSO/E service facility
termination routine (IKJEFTST) pointed to by register 1.

The parameters are:

Parameter 1
IKJEFTST (and IKJEFTSI and IKJEFTSR) need to invoke TSO/E I/O services
(STACK, PUTLINE, GETLINE, PUTGET). It need to tell these underlying
services which environment control table (ECT) to use. You have a choice at
this point which ECT these services are to use.

The first parameter is a fullword containing a pointer to the environment control
table (ECT) for the current environment. The ECT address can be set to one of
the following values:
v The user’s current environment control table (ECT)
v A value of X'00000000'

If the ECT address is set to X'00000000', the original ECT created when your
TSO/E session was initialized is used. The address of the ECT is placed in this
parameter on return to the caller.

Parameter 2
The second parameter is a reserved fullword. Although this parameter is not
used, it must contain X'00000000'.

Parameter 3
The third parameter is a token consisting of four fullwords that identifies the
TSO/E command/program invocation platform. This token must identify a
command/program invocation platform that exists on the current task.

Parameter 4
The fourth parameter is a fullword containing an error code if IKJEFTST
completes unsuccessfully.

All following parameters are optional. Note that the high-order bit of the address of
the last parameter used must be on to indicate the end of the parameter list.

Register 1

Parameter List

ECT

Reserved

Token

Error Code

Abend Code

Reason Code

ECT

Reserved

Token

Error Code

Abend Code

Reason Code

Figure 145. Parameter List for IKJEFTST

TSO/E Service Facility Termination Routine IKJEFTST

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 423

Parameter 5
The fifth parameter optional. It is a fullword containing the abend code returned
from IKJEFTST to the application program when IKJEFTST terminates
abnormally.

Parameter 6
The sixth parameter is optional. It is a fullword containing the reason code
returned from IKJEFTST to the application program when IKJEFTST terminates
abnormally.

Output from IKJEFTST
IKJEFTST passes a return code to the calling program in general register 15. For
high-level languages that cannot interrogate register 15, IKJEFTST also places the
return code in general register 0.

Return Codes from IKJEFTST
The TSO termination routine return codes are shown in Table 123.

Table 123. Return Codes from IKJEFTST

Return Code
Dec(Hex)

Meaning

0(0) TSO/E service facility termination was successful:

v If an ECT was created during TSO/E service facility initialization, the
ECT is destroyed.

v The TOKEN field contains a zero, indicating the token is no longer
valid.

v The ERROR field contains zero.

12(C) TSO/E service facility termination was unsuccessful because of
inconsistent or incorrect parameters. The ERROR field shows the
reason for the error:

Error code = 1 (dec) A non-zero reserved parameter (2)
passed to IKJEFTST.

Error code = 2 (dec) A null token parameter passed to
IKJEFTST.

Note: The high-order bits of all the parameters in the parameter list
pointed to by register 1 must be off, except for the last parameter. If
IKJEFTST detects this error, it sets return code = 12, but it cannot set
the ERROR field.

20(14) TSO/E service facility termination was unsuccessful because of an
environmental error. The ERROR field shows the reason for the error:

Error code = 20 (dec) IKJEFTST invoked in a non-TSO/E
environment.

Error code = 21 (dec) IKJEFTST invoked in an authorized
environment.

Error code = 22 (dec) An incorrect token was passed to
IKJEFTST.

Error code = 23 (dec) IKJEFTST was unable to release all
resources related to the passed TSF
token.

TSO/E Service Facility Termination Routine IKJEFTST

424 z/OS V1R4.0 TSO/E Programming Services

Table 123. Return Codes from IKJEFTST (continued)

Return Code
Dec(Hex)

Meaning

92(5C) TSO/E service facility termination was unsuccessful. A recovery
environment could not be established.

96(60) TSO/E service facility termination was unsuccessful. A parameter is not
accessible; see the abend code and reason code parameters for the
abend and reason codes.

100(64) TSO/E service facility termination was unsuccessful. Abnormal
termination; see the abend code and reason code parameters for the
abend and reason codes.

Application Program Interface to IKJEFTSR
IKJEFTSR can be invoked according to the rules of the application programming
language in use. For example, certain programming languages can accept only up
to six characters in a name. The alias TSOLNK may be used for IKJEFTSR for this
purpose.

Call Invocations Using TSOLNK
The TSO/E service facility supports the call invocation formats for PL/I, COBOL,
FORTRAN, PASCAL, and Assembler. Therefore, you should use the syntax that is
appropriate for the language you are using.

The language you choose may include language-specific constructs for invoking
external programs. For example, PL/I contains the FETCH statement to get
dynamic addressability to external programs. You may choose to use these
statements. Other languages may have compiler options that allow for dynamic
invocation of subroutines. Use these methods, if possible, to avoid link-editing
TSOLNK with your application program. See also “Passing Control to IKJEFTSR”
on page 413.

PL/I
For calls in PL/I the format for invoking the TSO/E service facility from functions by
using TSOLNK is:
CALL TSOLNK (PARM1,PARM2,PARM3,PARM4,PARM5,PARM6);

In PL/I programs, you should include the following declare statements:

TSO/E Service Facility Termination Routine IKJEFTST

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 425

COBOL
For calls in COBOL the format for invoking the TSO/E service facility from functions
by using TSOLNK is:
CALL ’TSOLNK’ USING PARM1 PARM2 PARM3 PARM4 PARM5 PARM6.

In COBOL programs, you should include the following:

FORTRAN
For calls in FORTRAN the format for invoking the TSO/E service facility from
functions by using TSOLNK is:
I = TSOLNK(PARM1,PARM2,PARM3,PARM4,PARM5,PARM6)

In FORTRAN programs, you should include the following:

DECLARE 1 PARM1,
2 PARM11 FIXED BINARY (15,0), /* RESERVED */
2 PARM13 BIT(8), /* ABEND FLAG */

/* 0 -ABEND WITHOUT DUMP */
/* 1 -ABEND WITH DUMP */

2 PARM14 BIT(8); /* FUNCTION CODE */
DECLARE PARM2 CHARACTER(8); /* NAME OF FUNCTION */
DECLARE PARM3 FIXED BINARY(31,0); /* LENGTH OF CMD OR PROG */
DECLARE PARM4 FIXED BINARY(31,0); /* FUNCTION RETURN CODE */
DECLARE PARM5 FIXED BINARY(31,0); /* TSF REASON CODE */
DECLARE PARM6 FIXED BINARY(31,0); /* FUNCTION ABEND CODE */
DECLARE (FILEOUT) FILE; /* PL/I OUTPUT FILE */
DECLARE TSOLNK ENTRY(/* */

1, /* STRUCTURE OF 4 BYTES */
2 FIXED BINARY(15,0), /* BYTE 1 RESERVED */
2 BIT(8), /* BYTE 3 ABEND FLAG */
2 BIT(8), /* BYTE 4 FUNCTION FLAG */

CHARACTER (*), /* NAME OF PROGRAM OR CMD */
FIXED BINARY(31,0), /* LENGTH OF CMD OR PROG */
FIXED BINARY(31,0), /* FUNCTION RETURN CODE */
FIXED BINARY(31,0), /* TSF REASON CODE */
FIXED BINARY(31,0) /* FUNCTION ABEND CODE */
)
EXTERNAL OPTIONS(ASSEMBLER RETCODE INTER);

Figure 146. Format of the Parameter List Written in PL/I

* DEFINE STORAGE FOR PARMS
* PARM1 IS DECIMAL VALUE OF FLAGS
* PARM2 IS COMMAND TEXT
* PARM3 IS COMMAND LENGTH (SET TO 80)
* PARM4 IS FUNCTION RETURN CODE VALUE FROM TSOLNK
* PARM5 IS TSF REASON CODE VALUE FOR ABEND FROM TSOLNK
* PARM6 IS FUNCTION ABEND CODE VALUE FROM TSOLNK

01 PARM1 PICTURE S9(9) COMP.
01 PARM2 PICTURE X(80).
01 PARM3 PICTURE S9(9) VALUE +80 COMP.
01 PARM4 PICTURE S9(9) VALUE +0 COMP.
01 PARM5 PICTURE S9(9) VALUE +0 COMP.
01 PARM6 PICTURE S9(9) VALUE +0 COMP.

Figure 147. Format of the Parameter List Written in COBOL

Application Program Interface to IKJEFTSR

426 z/OS V1R4.0 TSO/E Programming Services

PASCAL
For calls in PASCAL the format for invoking the TSO/E service facility from
functions by using TSOLNK is:
TSOLNK(PARM1,PARM2,PARM3,PARM4,PARM5,PARM6)

In PASCAL programs you should include the following:

Examples of Invoking the TSO/E Service Facility
The following sample programs and CLIST demonstrate the use of the TSO/E
service facility to invoke commands, programs, CLISTs, and REXX execs in:
v Assembler
v FORTRAN
v COBOL
v PL/I
v PASCAL

In these examples, the term ‘function’ means the program, command, CLIST, or
REXX exec IKJEFTSR invokes.

EXTERNAL TSOLNK
INTEGER TSOLNK
INTEGER PARM1,PARM3,PARM4,PARM5
INTEGER PARM2(20),FILL

Figure 148. Format of the Parameter List Written in FORTRAN

PROCEDURE TSOLNK(VAR PARM1:PA4;
VAR PARM2:PA80;
VAR PARM3:INTEGER;
VAR PARM4:INTEGER;
VAR PARM5:INTEGER;
VAR PARM6:INTEGER);

FORTRAN; (* THIS KEYWORD IS REQUIRED TO ESTABLISH LINKAGE TO TSF *)
VAR
PARM1:PA4; (* WORD OF CONTROL BITS *)
PARM2:PA80; (* PROGRAM BUFFER *)
PARM3:INTEGER; (* LENGTH OF PROGRAM *)
PARM4:INTEGER; (* FUNCTION RETURN CODE *)
PARM5:INTEGER; (* TSO SERVICE FACILITY REASON CODE *)
PARM6:INTEGER; (* FUNCTION ABEND CODE *)
FILEOUT:TEXT; (* DECLARE OUTPUT FILE NAME *)

Figure 149. Format of the Parameter List Written in PASCAL

Application Program Interface to IKJEFTSR

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 427

Assembler Program Using IKJEFTSI

Assembler Program Using IKJEFTSR to Invoke a Command

**
* *
* SET UP THE PARAMETER LIST FOR IKJEFTSI. A VALUE OF ZERO IS *
* PASSED FOR ALL PARAMETERS. *
* *
**

XC IKJEFTSJ(72),IKJEFTSJ INITIALIZE PARAMETER VALUES

LA R2,EFTSI_ECTPARM PLACE ADDRESS OF ECTPARM
ST R2,EFTSI_ECTPARM@ IN PARAMETER LIST
LA R2,EFTSI_RESERVED PLACE ADDRESS OF RESERVED
ST R2,EFTSI_RESERVED@ DATA IN PARAMETER LIST
LA R2,EFTSI_TOKEN PLACE ADDRESS OF TOKEN
ST R2,EFTSI_TOKEN@ DATA IN PARAMETER LIST
LA R2,EFTSI_ERROR PLACE ADDRESS OF ERROR
ST R2,EFTSI_ERROR@ DATA IN PARAMETER LIST
LA R2,EFTSI_ABEND PLACE ADDRESS OF ABEND
ST R2,EFTSI_ABEND@ DATA IN PARAMETER LIST
LA R2,EFTSI_REASON PLACE ADDRESS OF REASON
ST R2,EFTSI_REASON@ DATA IN PARAMETER LIST
OI EFTSI_REASON@,X’80’ SET HIGH ORDER BIT

LA R1,IKJEFTSJ REG 1 POINTS TO PARM LIST
CALLTSSR EP=IKJTSFI INVOKE IKJEFTSI, SPECIFYING

* ENTRY POINT IKJTSFI.

ST R15,IKJEFTSI_RC SAVE RETURN CODE
*

**
* *
* CHECK THE RETURN CODE FROM IKJEFTSI. *
* *
**

SR R3,R3 DETERMINE IF THE RETURN
CR R15,R3 CODE IS ZERO
BL NO_ERROR BRANCH ON ZERO RC
B ERROR BRANCH ON NON-ZERO RC

Figure 150. Assembler Language Program Demonstrating the Use of IKJEFTSI

TSF CSECT
STM R14,R12,12(R13)
BALR R12,0
USING *,R12
ST R13,SAVEAREA+4
LA R11,SAVEAREA
ST R11,8(,R13)
LA R13,SAVEAREA

*

Figure 151. Assembler Language Program Demonstrating the Use of IKJEFTSR to Invoke a
Command (Part 1 of 3)

Examples of Invoking the TSO/E Service Facility

428 z/OS V1R4.0 TSO/E Programming Services

MAIN DS 0H
.
.
.
L R15,CVTPTR ESTABLISH
L R15,CVTTVT(,R15) ADDRESSABILITY TO THE
L R15,TSVTASF-TSVT(,R15) TSO SERVICE FACILITY

*
* INVOKE THE TSO SERVICE FACILITY -- EXECUTE LISTBC COMMAND
*

CALL (15),(FLAGS,CMDBUF,BUFLEN,RETCODE,RSNCODE,ABNDCODE),VL
LTR R15,R15 CHECK TSR RETURN CODE
BNZ ERRORRTN BAD RETURN CODE FROM TSR
CLC RETCODE,ZERO CHECK COMMAND PROCESSOR ERROR
BH ERRORCMD BAD RETURN CODE FROM COMMAND
B ENDUP NO ERROR --- EXIT

ERRORRTN DS 0H
*

*
* ANALYZE TSO SERVICE FACILITY ERROR

.

.

.
*
*

B ENDUP
ERRORCMD DS 0H
*

* ANALYZE COMMAND PROCESSOR ERROR
.
.
.

*
ENDUP DS 0H

L R13,4(,R13)
LM R14,R12,12(R13)
SLR R15,R15
BR R14

*

Figure 151. Assembler Language Program Demonstrating the Use of IKJEFTSR to Invoke a
Command (Part 2 of 3)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 429

* DATA AREAS
*
ZERO DC F’0’ ZERO CONSTANT
FLAGS DS 0F MAPS FIRST PARM TO IKJEFTSR
RESFLAGS DC H’0’ FLAG WORD
ABFLAGS DC X’01’ DUMP IF ABEND OCCURS
FNCFLAGS DC X’01’ TELL TSR TO EXECUTE THE COMMAND

*

CMDBUF DC C’LISTBC’ NAME OF COMMAND TO BE EXECUTED
*

BUFLEN DC F’6’ LENGTH OF COMMAND BUFFER
RETCODE DS F RETURN CODE FROM COMMAND
RSNCODE DS F REASON CODE
ABNDCODE DS F ABEND CODE
SAVEAREA DS 18F SAVE AREA

.

.

.

CVTPTR EQU 16
CVTTVT EQU X’9C’
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
R11 EQU 11
R9 EQU 9
R8 EQU 8

IKJTSVT
END

Figure 151. Assembler Language Program Demonstrating the Use of IKJEFTSR to Invoke a
Command (Part 3 of 3)

Examples of Invoking the TSO/E Service Facility

430 z/OS V1R4.0 TSO/E Programming Services

Assembler Program Using IKJEFTST

**
* *
* SET UP THE PARAMETER LIST FOR IKJEFTST. A VALUE OF ZERO IS *
* PASSED FOR ALL PARAMETERS, EXCEPT FOR THE TOKEN THAT IS *
* GOTTEN FROM IKJEFTSI. *
* *
**

XC IKJEFTSV(72),IKJEFTSV INITIALIZE PARAMETER VALUES

LA R2,EFTST_ECTPARM PLACE ADDRESS OF ECTADDR
ST R2,EFTST_ECTPARM@ DATA IN PARAMETER LIST
LA R2,EFTST_RESERVED PLACE ADDRESS OF RESERVED
ST R2,EFTST_RESERVED@ DATA IN PARAMETER LIST
LA R2,EFTST_TOKEN PLACE ADDRESS OF TOKEN
ST R2,EFTST_TOKEN@ DATA IN PARAMETER LIST
MVC EFTST_TOKEN(16),EFTSI_TOKEN PASS TOKEN FROM IKJEFTSI
LA R2,EFTST_ERROR PLACE ADDRESS OF ERROR
ST R2,EFTST_ERROR@ DATA IN PARAMETER LIST
LA R2,EFTST_ABEND PLACE ADDRESS OF ABEND
ST R2,EFTST_ABEND@ DATA IN PARAMETER LIST
LA R2,EFTST_REASON PLACE ADDRESS OF REASON
ST R2,EFTST_REASON@ DATA IN PARAMETER LIST
OI EFTST_REASON@,X’80’ SET HIGH ORDER BIT

LA R1,IKJEFTSV REG 1 POINTS TO PARM LIST
CALLTSSR EP=IKJTSFT INVOKE IKJEFTST, SPECIFYING

* ENTRY POINT IKJTSFT.

ST R15,IKJEFTST_RC SAVE RETURN CODE

**
* *
* CHECK THE RETURN CODE FROM IKJEFTST. *
* *
**

SR R3,R3 DETERMINE IF THE RETURN
CR R15,R3 CODE IS ZERO
BL NO_ERROR BRANCH ON ZERO RC
B ERROR BRANCH ON NON-ZERO RC

Figure 152. Assembler Language Program Demonstrating the Use of IKJEFTST

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 431

Assembler Program Using IKJEFTSI, IKJEFTSR, IKJEFTST to Invoke a
Command

COMPOS4 CSECT ,
COMPOS4 AMODE 31
COMPOS4 RMODE ANY
@MAINENT DS 0H

STM R14,R12,12(R13) ENTRY LINKAGE
LR R12,R15

@PSTART EQU COMPOS4
USING @PSTART,R12
ST R13,SAVEAREA+4
LA R11,SAVEAREA
ST R11,8(,R13)
LA R13,SAVEAREA

*

*
MAIN DS 0H
*
**
* *
* SET UP THE PARAMETER LIST FOR IKJEFTSI. A VALUE OF ZERO IS *
* PASSED FOR ALL PARAMETERS. *
* *
**

XC IKJEFTSJ(72),IKJEFTSJ INITIALIZE PARAMETER VALUES
LA R2,EFTSI_ECTPARM PLACE ADDRESS OF ECTPARM
ST R2,EFTSI_ECTPARM@ IN THE PARAMETER LIST
LA R2,EFTSI_RESERVED PLACE ADDRESS OF RESERVED
ST R2,EFTSI_RESERVED@ DATA IN PARAMETER LIST
LA R2,EFTSI_TOKEN PLACE ADDRESS OF TOKEN
ST R2,EFTSI_TOKEN@ DATA IN PARAMETER LIST
LA R2,EFTSI_ERROR PLACE ADDRESS OF ERROR
ST R2,EFTSI_ERROR@ DATA IN PARAMETER LIST
LA R2,EFTSI_ABEND PLACE ADDRESS OF ABEND
ST R2,EFTSI_ABEND@ DATA IN PARAMETER LIST
LA R2,EFTSI_REASON PLACE ADDRESS OF REASON
ST R2,EFTSI_REASON@ DATA IN PARAMETER LIST
OI EFTSI_REASON@,X’80’ SET HIGH ORDER BIT
LA R1,IKJEFTSJ REG 1 POINTS TO PARM LIST
CALLTSSR EP=IKJTSFI INVOKE IKJEFTSI, SPECIFYING

* ENTRY POINT IKJTSFI.
* ---- Provide for error conditions here ----
*

Figure 153. Assembler Language Program Demonstrating the Use of IKJEFTSI, IKJEFTSR,
and IKJEFTST to Invoke a Command (Part 1 of 4)

Examples of Invoking the TSO/E Service Facility

432 z/OS V1R4.0 TSO/E Programming Services

**
* *
* SET UP THE PARAMETER LIST FOR IKJEFTSR. *
* *
**

LA R2,TSR1 PLACE ADDR OF TSR1
ST R2,TSR1@ IN THE PARAMETER LIST
LA R2,TSR2 PLACE ADDR OF TSR2
ST R2,TSR2@ IN THE PARAMETER LIST
LA R2,TSR3 PLACE ADDR OF TSR3
ST R2,TSR3@ IN THE PARAMETER LIST
LA R2,TSR4 PLACE ADDR OF TSR4
ST R2,TSR4@ IN THE PARAMETER LIST
LA R2,TSR5 PLACE ADDR OF TSR5
ST R2,TSR5@ IN THE PARAMETER LIST
LA R2,TSR6 PLACE ADDR OF TSR6
ST R2,TSR6@ IN THE PARAMETER LIST
LA R2,TSR7 PLACE ADDR OF TSR7
ST R2,TSR7@ IN THE PARAMETER LIST
LA R2,TSR8 PLACE ADDR OF TSR8
ST R2,TSR8@ IN THE PARAMETER LIST
LA R2,EFTSI_TOKEN PLACE ADDR OF THE TOKEN
ST R2,TSR9@ IN THE PARAMETER LIST
OI TSR9@,X’80’ SET HIGH ORDER BIT
LA R1,TSR1@ REG 1 POINTS TO PARM LIST
L R15,CVTPTR
L R15,CVTTVT(,R15)
L R15,TSVTASF-TSVT(,R15)
BALR R14,R15 CALL IKJEFTSR

* ---- Provide for error conditions here ----

*
L R15,CVTPTR
L R15,CVTTVT(,R15)
L R15,TSVTASF-TSVT(,R15)
BALR R14,R15 CALL IKJEFTSR
CALL (15),(TSR1,TSR2,TSR3,TSR4,TSR5,TSR6,TSR7,TSR8,

EFTSI_TOKEN),VL
* ---- Provide for error conditions here ----
*

Figure 153. Assembler Language Program Demonstrating the Use of IKJEFTSI, IKJEFTSR,
and IKJEFTST to Invoke a Command (Part 2 of 4)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 433

**
* *
* SET UP THE PARAMETER LIST FOR IKJEFTST. A VALUE OF ZERO IS *
* PASSED FOR ALL PARAMETERS, EXCEPT FOR THE TOKEN THAT IS *
* GOTTEN FROM IKJEFTSI. *
* *
**

XC IKJEFTSV(72),IKJEFTSV INITIALIZE PARAMETER VALUES
LA R2,EFTST_ECTPARM PLACE ADDRESS OF ECTPARM
ST R2,EFTST_ECTPARM@ IN THE PARAMETER LIST
LA R2,EFTST_RESERVED PLACE ADDRESS OF RESERVED
ST R2,EFTST_RESERVED@ DATA IN PARAMETER LIST
LA R2,EFTST_TOKEN PLACE ADDRESS OF TOKEN
ST R2,EFTST_TOKEN@ DATA IN PARAMETER LIST
MVC EFTST_TOKEN(16),EFTSI_TOKEN PASS TOKEN

* FROM IKJEFTSI
LA R2,EFTST_ERROR PLACE ADDRESS OF ERROR
ST R2,EFTST_ERROR@ DATA IN PARAMETER LIST
LA R2,EFTST_ABEND PLACE ADDRESS OF ABEND
ST R2,EFTST_ABEND@ DATA IN PARAMETER LIST
LA R2,EFTST_REASON PLACE ADDRESS OF REASON
ST R2,EFTST_REASON@ DATA IN PARAMETER LIST
OI EFTST_REASON@,X’80’ SET HIGH ORDER BIT
LA R1,IKJEFTSV REG 1 POINTS TO PARM LIST
CALLTSSR EP=IKJTSFT INVOKE IKJEFTST, SPECIFYING

* ENTRY POINT IKJTSFT.
* ---- Provide for error conditions here ----
*

DS 0H
L R13,4(,R13) EXIT LINKAGE
LM R14,R12,12(R13)
SLR R15,R15
BR R14

*

*
SAVEAREA DS 18F
*

*
ZERO DC F’0’
*

Figure 153. Assembler Language Program Demonstrating the Use of IKJEFTSI, IKJEFTSR,
and IKJEFTST to Invoke a Command (Part 3 of 4)

Examples of Invoking the TSO/E Service Facility

434 z/OS V1R4.0 TSO/E Programming Services

* IKJEFTSI Input:
IKJADFMT
IKJEFTSJ

* 000
* IKJEFTSR Input:
TSR1@ DS F o Address of Parm 1
TSR2@ DS F o Address of Parm 2
TSR3@ DS F o Address of Parm 3
TSR4@ DS F o Address of Parm 4
TSR5@ DS F o Address of Parm 5
TSR6@ DS F o Address of Parm 6
TSR7@ DS F o Address of Parm 7
TSR8@ DS F o Address of Parm 8
TSR9@ DS F o Address of Parm 9
TSR1 DS 0F o Parm 1:
RESFLAGS DC X’00’ Byte 1 - Reserved
UNAUTHFL DC X’01’ Byte 2 - Unauthorized environment
ABFLAGS DC X’01’ Byte 3 - Dump indicator
FNCFLAGS DC X’01’ Byte 4 - Cmd, REXX, CLIST indicator
*

TSR2 DC C’ALTLIB DISPLAY ’
*
TSR3 DC F’20’ o Parm 3 - Buffer Len
TSR4 DS F o Parm 4 - Return code
TSR5 DS F o Parm 5 - Reason code
TSR6 DS F o Parm 6 - Abend code
TSR7 DC F’0’ o Parm 7 - Parm for pgms
TSR8 DC 4F’0’ o Parm 8 - CPPL
* let IKJEFTSR get appropriate values
* o Parm 9 - Token
* obtained from IKJEFTSI Parm 3
*

* IKJEFTST Input:
IKJEFTSV

*
CVTPTR EQU 16
CVTTVT EQU X’9C’
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
R11 EQU 11
R10 EQU 10
R9 EQU 9
R8 EQU 8
R7 EQU 7
R6 EQU 6
R5 EQU 5
R4 EQU 4
R3 EQU 3
R2 EQU 2
R1 EQU 1

IKJTSVT
END

Figure 153. Assembler Language Program Demonstrating the Use of IKJEFTSI, IKJEFTSR,
and IKJEFTST to Invoke a Command (Part 4 of 4)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 435

FORTRAN Program Using TSOLNK to Invoke a Command (FORTRAN
G1)

C THIS FORTRAN PROGRAM WILL INTERFACE WITH THE TSO SERVICE FACILITY.
C THE PROGRAM ISSUES THE LISTD COMMAND IN TSO/E AND THEN PRINTS OUT
C THE COMMAND BUFFER AND THE RETURN, REASON AND ABEND CODES
C RESULTING FROM THE EXECUTION OF THE TSO SERVICE FACILITY.
C BECAUSE THIS PROGRAM DOES ITS OWN I/O AFTER IT CALLS THE
C TSO SERVICE FACILITY, THE USER MIGHT WANT TO ALLOCATE THE FILE
C NAME FT06F001 TO THE TERMINAL WITH THE TSO/E COMMAND:
C ALLOC F(FT06F001) DSN(*)
C THIS PROGRAM WAS COMPILED ON THE FORTRAN G1 COMPILER
C

EXTERNAL TSOLNK
INTEGER TSOLNK
INTEGER PARM11,PARM12,PARM13,PARM14
INTEGER PARM1,PARM3,PARM4,PARM5
INTEGER PARM2(20),FILL

Figure 154. FORTRAN Program Demonstrating the Use of TSOLNK to Invoke a Command
(FORTRAN G1) (Part 1 of 2)

Examples of Invoking the TSO/E Service Facility

436 z/OS V1R4.0 TSO/E Programming Services

C PLACE COMMAND NAME IN PARM2
DATA PARM2 /’LIST’,’D ’S’,’YS1.’,’LINK’,’LIB’,’ ’,’ ’,
+’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,
+’ ’,’ ’,’ ’,’ ’/
DATA FILL /’ ’/
PARM11 = 0
PARM12 = 0
PARM13 = 0

C SPECIFY THAT A COMMAND IS TO BE EXECUTED
PARM14 = 1

C FILL IN THE CONTROL BITS OF THE FIRST PARAMETER
C TO REQUEST DUMP OFF

PARM1 = (PARM11*16**6)+(PARM12*16**4)+(PARM13*16**2)+PARM14
C PUT THE COMMAND LENGTH INTO THE THIRD PARAMETER

PARM3 = 80

C ZERO OUT THE RETURNED VALUES BEFORE THE CALL
PARM4 = 0
PARM5 = 0
PARM6 = 0

C EXECUTE THE TSO SERVICE FACILITY
I = TSOLNK(PARM1,PARM2,PARM3,PARM4,PARM5,PARM6)
WRITE (6,104)

C PRINT OUT THE COMMAND EXECUTED
104 FORMAT (’ ’,’COMMAND EXECUTED: ’)
C PRINT OUT THE RETURNED VALUES

WRITE (6,103) I
103 FORMAT (’ ’,’THE TSOLNK RETURN CODE IS ’,I6)

WRITE (6,105) FILL,(PARM2(I),I=1,20)
105 FORMAT (21A4)

WRITE (6,100) PARM4
100 FORMAT (’ ’,’THE FUNCTION RETURN CODE IS ’,I6)

WRITE (6,101) PARM5
101 FORMAT (’ ’,’ THE TSF REASON CODE IS ’,I6)

WRITE (6,102) PARM6
102 FORMAT (’ ’,’THE ABEND CODE IS ’,I6)

STOP
END

Figure 154. FORTRAN Program Demonstrating the Use of TSOLNK to Invoke a Command
(FORTRAN G1) (Part 2 of 2)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 437

FORTRAN Program Using TSOLNK to Invoke a Command (VS
FORTRAN)

C THIS FORTRAN PROGRAM WILL INTERFACE WITH THE TSO SERVICE FACILITY.
C ISSUE COMMAND LISTD ’SYS1.LINKLIB’ AND THEN PRINT THE
C COMMAND BUFFER, RETURN CODE, REASON CODE AND ABEND CODE
C FORTRAN FILE FT06FT001 IS USED FOR OUTPUT
C THIS PROGRAM WAS COMPILED ON THE VS FORTRAN COMPILER

EXTERNAL TSOLNK 00001000
INTEGER TSOLNK 00001000
INTEGER PARM11,PARM12,PARM13,PARM14 00001000
INTEGER PARM1,PARM3,PARM4,PARM5 00001000
CHARACTER*80 PARM2
CHARACTER*4 FILL

C PLACE COMMAND IN PARM2
DATA PARM2 /’LISTD ’SYS1.LINKLIB’/
DATA FILL /’ ’/

C COMPUTE PARM1
C SPECIFY RESERVED BITS (ALL ZERO)

PARM11 = 0
C SPECIFY AUTHORIZATION = YES TO BE USED

PARM12 = 0
C SPECIFY THAT A DUMP IS NOT TO BE TAKEN

PARM13 = 0
C SPECIFY THAT A COMMAND IS BEING INVOKED

PARM14 = 1
C SPECIFY THAT A PROGRAM IS BEING INVOKED

PARM14 = 2
C SPECIFY THAT A REXX EXEC IS BEING INVOKED

PARM14 = 5
C FILL IN THE CONTROL BITS OF PARM1

PARM1 = (PARM11*16**6)+(PARM12*16**4)+(PARM13*16**2)+PARM14

C PUT THE COMMAND LENGTH INTO THE THIRD PARAMETER
PARM3 = 80

C ZERO OUT THE RETURNED VALUES BEFORE THE CALL
PARM4 = 0
PARM5 = 0
PARM6 = 0

Figure 155. FORTRAN Program Demonstrating the Use of TSOLNK to Invoke a Command
(VS FORTRAN) (Part 1 of 2)

Examples of Invoking the TSO/E Service Facility

438 z/OS V1R4.0 TSO/E Programming Services

C EXECUTE THE TSO SERVICE FACILITY
I = TSOLNK(PARM1,PARM2,PARM3,PARM4,PARM5,PARM6)

C PRINT OUT THE COMMAND EXECUTED
WRITE (6,100)

100 FORMAT (’ ’,’COMMAND EXECUTED: ’)
WRITE (6,101) FILL,PARM2

101 FORMAT (A4,A80)
WRITE (6,102) PARM3

102 FORMAT (’ ’,’LENGTH OF COMMAND BUFFER IS ’,I6)

C PRINT OUT THE RETURNED VALUES
WRITE (6,103) I

103 FORMAT (’ ’,’ THE TSOLNK RETURN CODE IS ’,I6)
WRITE (6,104) PARM4

104 FORMAT (’ ’,’THE FUNCTION RETURN CODE IS ’,I6)
WRITE (6,105) PARM5

105 FORMAT (’ ’,’ THE TSF REASON CODE IS ’,I6)
WRITE (6,106) PARM6

106 FORMAT (’ ’,’ THE ABEND CODE IS ’,I6)
STOP
END

Figure 155. FORTRAN Program Demonstrating the Use of TSOLNK to Invoke a Command
(VS FORTRAN) (Part 2 of 2)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 439

COBOL Program Using TSOLNK to Invoke a Command

ID DIVISION.
PROGRAM-ID. TSOSVR.
* THIS COBOL PROGRAM WILL INTERFACE WITH THE TSO SERVICE FACILITY.
* THIS PROGRAM WILL ISSUE THE LISTBC COMMAND.
* BECAUSE THIS PROGRAM DOES
* ITS OWN I/O AFTER THE TSO/E COMMAND IS EXECUTED TO DISPLAY RETURN
* CODES, USER SHOULD ALLOCATE FILE "SYSPRT" TO THE TERMINAL.

* THIS PROGRAM WILL RUN ON THE OS/VS COBOL COMPILER RELEASE 3 OR
* HIGHER

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

* DEFINE OUTPUT DEVICE

SELECT TRMPRT ASSIGN TO UT-S-SYSPRT.
DATA DIVISION.
FILE SECTION.

DEFINE OUTPUT FILE

FD TRMPRT
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 133 CHARACTERS.

* DEFINE OUTPUT RECORD

01 OUTREC.
02 OUT-LINE PICTURE X(133).

WORKING-STORAGE SECTION.

* DEFINE OUTPUT RECORD FORM

01 OUT-RECORD.
02 CONTROL-CHAR PICTURE X VALUE SPACE.
02 COMMENT PICTURE X(25).
02 OUT-VALUE PICTURE +++++++++9.
02 FILLER PICTURE X(111) VALUE SPACES.

Figure 156. COBOL Program Demonstrating the Use of TSOLNK to Invoke a Command (Part
1 of 4)

Examples of Invoking the TSO/E Service Facility

440 z/OS V1R4.0 TSO/E Programming Services

* DEFINE COMMENT VALUES FOR OUTPUT RECORD FORM

01 RETURN-COMMENT PICTURE X(25) VALUE ’FUNCTION RETURN CODE IS ’.
01 REASON-COMMENT PICTURE X(25) VALUE ’ TSF REASON CODE IS ’.
01 ABEND-COMMENT PICTURE X(25) VALUE ’FUNCTION ABEND CODE IS ’.

* DEFINE FLAGS TO BE FULL WORDS WITH APPROPRIATE BITS ON

01 FLAG1-ON PICTURE S9(9) VALUE +16777216 COMP.
01 FLAG2-ON PICTURE S9(9) VALUE +65536 COMP.
01 FLAG3-ON PICTURE S9(9) VALUE +256 COMP.
01 FLAG4-ON PICTURE S9(9) VALUE +2 COMP.
01 FLAG1-OFF PICTURE S9(9) VALUE +0 COMP.
01 FLAG2-OFF PICTURE S9(9) VALUE +0 COMP.
01 FLAG3-OFF PICTURE S9(9) VALUE +0 COMP.
01 FLAG4-OFF PICTURE S9(9) VALUE +1 COMP.

* DEFINE STORAGE FOR PARMS
* PARM1 IS DECIMAL VALUE OF FLAGS
* PARM2 IS COMMAND TEXT
* PARM3 IS COMMAND LENGTH (SET TO 80)
* PARM4 IS FUNCTION RETURN CODE VALUE FROM TSOLNK
* PARM5 IS TSF REASON CODE VALUE FOR ABEND FROM TSOLNK
* PARM6 IS FUNCTION ABEND CODE VALUE FROM TSOLNK

01 PARM1 PICTURE S9(9) COMP.
01 PARM2 PICTURE X(80).
01 PARM3 PICTURE S9(9) VALUE +80 COMP.
01 PARM4 PICTURE S9(9) VALUE +0 COMP.
01 PARM5 PICTURE S9(9) VALUE +0 COMP.
01 PARM6 PICTURE S9(9) VALUE +0 COMP.

Figure 156. COBOL Program Demonstrating the Use of TSOLNK to Invoke a Command (Part
2 of 4)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 441

PROCEDURE DIVISION.

* MOVE DESIRED COMMAND TO PARM2

READY-COMMAND.
MOVE SPACES TO PARM2.
MOVE ’LISTBC’ TO PARM2.

* SET FLAGS BY ADDING APPROPRIATELY VALUED FLAG VARIABLES

READY-FLAGS.
MOVE 0 TO PARM1.

* RESERVED FLAG

ADD FLAG1-OFF TO PARM1.

* RESERVED FLAG

ADD FLAG2-OFF TO PARM1.

* FLAG3-ON TO REQUEST ABEND WITH DUMP

ADD FLAG3-ON TO PARM1.

* FLAG4-OFF TO REQUEST A TSO/E COMMAND (NOT A PROGRAM) BE INVOKED

ADD FLAG4-OFF TO PARM1.

* CALL TSOLNK

Figure 156. COBOL Program Demonstrating the Use of TSOLNK to Invoke a Command (Part
3 of 4)

Examples of Invoking the TSO/E Service Facility

442 z/OS V1R4.0 TSO/E Programming Services

CALL-TSOLNK.
CALL ’TSOLNK’ USING PARM1 PARM2 PARM3 PARM4 PARM5 PARM6.

* PRINT RESULTS

PRINT-COMMENTS.
OPEN OUTPUT TRMPRT.

* PRINT THE FUNCTION RETURN CODE

MOVE RETURN-COMMENT TO COMMENT.
MOVE PARM4 TO OUT-VALUE.
WRITE OUTREC FROM OUT-RECORD.

* PRINT THE TSF REASON CODE

MOVE REASON-COMMENT TO COMMENT.
MOVE PARM5 TO OUT-VALUE.
WRITE OUTREC FROM OUT-RECORD.

* PRINT THE FUNCTION ABEND CODE

MOVE ABEND-COMMENT TO COMMENT.
MOVE PARM6 TO OUT-VALUE.
WRITE OUTREC FROM OUT-RECORD.

CLOSE TRMPRT.
STOP RUN.

Figure 156. COBOL Program Demonstrating the Use of TSOLNK to Invoke a Command (Part
4 of 4)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 443

Assembler Program Using IKJEFTSR to Invoke a Program

* THIS ASSEMBLER PROGRAM CALLS THE TSO SERVICE FACILITY TO *
* EXECUTE THE LINKAGE EDITOR PROGRAM (SYS1.LINKLIB(IEWL)). *
* THIS PROGRAM PASSES ONE PARAMETER TO THE LINKAGE EDITOR. *
* TO SUCCESSFULLY EXECUTE THE PROGRAM, THE USER SHOULD *
* ALLOCATE THE FOLLOWING FILES: SYSUT1, SYSLMOD, SYSLIN AND *
* SYSPRINT. *

TSFPROG CSECT

STM 14,12,12(13) ENTRY LINKAGE
BALR 12,0
USING *,12 USE R12 AS BASE REG
ST 13,SAVE+4 SAVE CALLERS SAVE AREA
LA 13,SAVE HAVE POINTER TO THIS SAVE AREA
L 15,=V(IKJEFTSR) GET ADDRESS OF IKJEFTSR

CALL (15),(FLAGS,PGM,PGMLEN,RETCODE,REASONC,ABENDCD,PARMLIST),VL
LTR 15,15 WAS RETURN CODE FROM IKJEFTSR = 0?
BZ NOERROR NO ERROR ---- PROCEED ON

*
*
* CHECK RETCODE, REASONC, AND ABENDCD AT THIS POINT
*
*
NOERROR EQU * CONTINUE ON WITH PROGRAM
*
*
*

L 13,SAVE+4 GET CALLERS SAVE AREA
LM 14,12,12(13) EXIT LINKAGE
BR 14 RETURN TO SUPERVISOR

* DECLARES
SAVE DS 18F
FLAGS DS 0F

DC XL2’0000’ INITIALIZE TO ZERO
DC XL1’01’ SPECIFY DUMP TO BE TAKEN
DC XL1’02’ PROGRAM TO BE EXECUTED

PGM DC C’IEWL’ NAME OF PROGRAM / LINKAGE EDITOR
PGMLEN DC F’4’ LENGTH OF PROGRAM NAME
RETCODE DS F FUNCTION RETURN CODE
REASONC DS F TSF REASON CODE
ABENDCD DS F ABEND CODE
PGMPARM1 DS 0F FIRST AND ONLY PARAMETER TO IEWL

DC H’8’ LENGTH OF PARM TO IEWL
DC C’MAP,XREF’ THE ACTUAL PARM TO IEWL

PARMLIST CALL ,(PGMPARM1),VL,MF=L SET UP PARM LIST TO IEWL
END

Figure 157. Assembler Program Demonstrating the Use of IKJEFTSR to Invoke a Program

Examples of Invoking the TSO/E Service Facility

444 z/OS V1R4.0 TSO/E Programming Services

PL/I Program Using TSOLNK to Invoke a Program

/***/
/* THIS PL/I PROGRAM ISSUES THE IEBCOPY PROGRAM IN TSO/E AND THEN */
/* PRINTS OUT THE COMMAND BUFFER AND THE RETURN, REASON AND */
/* ABEND CODES RESULTING FROM THE EXECUTION OF THE TSO SERVICE */
/* FACILITY. TO USE THE EXAMPLE THE USER MUST ALLOCATE THE */
/* FOLLOWING FILES: */
/* ALLOC F(FILEOUT) DSN(*) */
/* ALLOC F(SYSIN) DSN(YOUR.SYSIN) */
/* ALLOC F(SYSPRINT) DSN(*) */
/* ALLOC F(INDD) DSN(YOUR.INPDS) */
/* ALLOC F(OUTDD) DSN(YOUR.OUTPDS) */
/* THE EXAMPLE REQUIRES THE FOLLOWING CARD IN YOUR.SYSIN FILE: */
/* EXAMPLE COPY OUTDD=OUTDD,INDD=INDD */
/* */
/* THIS PROGRAM WILL RUN ON THE OS/VS PL/I COMPILER RELEASE 2 OR */
/* HIGHER. */
/***/
TSOCALL:

PROCEDURE OPTIONS(MAIN);
DECLARE 1 PARM1,

2 PARM11 FIXED BINARY (15,0), /* RESERVED */
2 PARM13 BIT(8), /* ABEND FLAG */

/* 0 -ABEND WITHOUT DUMP */
/* 1 -ABEND WITH DUMP */

2 PARM14 BIT(8); /* FUNCTION CODE */
DECLARE PARM2 CHARACTER(8); /* NAME OF FUNCTION */
DECLARE PARM3 FIXED BINARY(31,0); /* LENGTH OF CMD OR PROG */
DECLARE PARM4 FIXED BINARY(31,0); /* FUNCTION RETURN CODE */
DECLARE PARM5 FIXED BINARY(31,0); /* TSF REASON CODE */
DECLARE PARM6 FIXED BINARY(31,0); /* FUNCTION ABEND CODE */
DECLARE (FILEOUT) FILE; /* PL/I OUTPUT FILE */
DECLARE TSOLNK ENTRY(/* */

1, /* STRUCTURE OF 4 BYTES */
2 FIXED BINARY(15,0), /* BYTE 1 RESERVED */
2 BIT(8), /* BYTE 3 ABEND FLAG */
2 BIT(8), /* BYTE 4 FUNCTION FLAG */

CHARACTER (*), /* NAME OF PROGRAM OR CMD */
FIXED BINARY(31,0), /* LENGTH OF CMD OR PROG */
FIXED BINARY(31,0), /* FUNCTION RETURN CODE */
FIXED BINARY(31,0), /* TSF REASON CODE */
FIXED BINARY(31,0) /* FUNCTION ABEND CODE */
)
EXTERNAL OPTIONS(ASSEMBLER RETCODE INTER);

DECLARE PLIRETV BUILTIN;

Figure 158. PL/I Program Demonstrating the Use of TSOLNK to Invoke a Program (Part 1 of
2)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 445

/**/
/* START OF EXECUTABLE CODE */
/**/
PARM13=’00000001’B; /* DUMP YES OR NO */
PARM14=’00000010’B; /* FUNCTION IS A PROGRAM */
PARM2 = ’IEBCOPY’; /* FUNCTION NAME */
PARM3 = 7; /* LENGTH OF PROGRAM */
CALL TSOLNK(PARM1,PARM2,PARM3,PARM4,PARM5,PARM6);

/* CALL TSO SERVICE FACILITY */
PUT FILE (FILEOUT) EDIT (’ THE TSOLNK RETURN CODE IS ’,PLIRETV)

(A,F(3)); /* PRINT OUT RETURN CODE OF
TSO SERVICE FACILITY */

PUT FILE (FILEOUT) EDIT (’ THE FUNCTION RETURN CODE IS ’,PARM4)
(SKIP, A, F(3)); /* PRINT OUT RETURN CODE OF

IEBCOPY PROGRAM */
PUT FILE (FILEOUT) EDIT (’ THE TSF REASON CODE IS ’,PARM5)

(SKIP, A, F(3)); /* PRINT OUT TSF REASON CODE*/
PUT FILE (FILEOUT) EDIT (’ THE FUNCTION ABEND CODE IS ’,PARM6)

(SKIP, A, F(3)); /* PRINT OUT ABEND CODE
FOR IEBCOPY */

END TSOCALL;

Figure 158. PL/I Program Demonstrating the Use of TSOLNK to Invoke a Program (Part 2 of
2)

Examples of Invoking the TSO/E Service Facility

446 z/OS V1R4.0 TSO/E Programming Services

PASCAL Program Using TSOLNK to Invoke a Program

(***)
(* *)
(* THIS PASCAL PROGRAM ISSUES THE IEBCOPY PROGRAM IN TSO/E AND *)
(* THEN PRINTS OUT THE COMMAND BUFFER AND THE RETURN, REASON *)
(* AND ABEND CODES RESULTING FROM THE EXECUTION OF THE TSO *)
(* SERVICE FACILITY. TO USE THE EXAMPLE THE USER MUST ALLOCATE *)
(* THE FOLLOWING FILES: *)
(* ALLOC F(OUTPUT) DSN(*) *)
(* ALLOC F(SYSIN) DSN(YOUR.SYSIN) *)
(* ALLOC F(SYSPRINT) DSN(*) *)
(* ALLOC F(INDD) DSN(YOUR.INPDS) *)
(* ALLOC F(OUTDD) DSN(YOUR.OUTPDS) *)
(* THE EXAMPLE REQUIRES THE FOLLOWING CARD IN YOUR.SYSIN FILE: *)
(* EXAMPLE COPY OUTDD=OUTDD,INDD=INDD *)
(* *)
(* *)
(***)
PROGRAM TSOINTER;
TYPE

PA4=PACKED ARRAY (.1..4.) OF CHAR;
PA80=PACKED ARRAY (.1..80.) OF CHAR;

(***)
(* *)
(* SET UP CALL TO TSOLNK - THE TSO SERVICE FACILITY. *)
(* WITH PARAMETER LIST. *)
(* *)
(***)
PROCEDURE TSOLNK(VAR PARM1:PA4;

VAR PARM2:PA80;
VAR PARM3:INTEGER;
VAR PARM4:INTEGER;
VAR PARM5:INTEGER;
VAR PARM6:INTEGER);

FORTRAN; (* THIS KEYWORD IS REQUIRED TO ESTABLISH LINKAGE TO TSF *)
VAR
PARM1:PA4; (* WORD OF CONTROL BITS *)
PARM2:PA80; (* PROGRAM BUFFER *)
PARM3:INTEGER; (* LENGTH OF PROGRAM *)
PARM4:INTEGER; (* FUNCTION RETURN CODE *)
PARM5:INTEGER; (* TSO SERVICE FACILITY REASON CODE *)
PARM6:INTEGER; (* FUNCTION ABEND CODE *)
FILEOUT:TEXT; (* DECLARE OUTPUT FILE NAME *)

Figure 159. PASCAL Program Demonstrating the Use of TSOLNK to Invoke a Program (Part
1 of 2)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 447

BEGIN
PARM1(.1.):=CHR(0); (* ZERO OUT *)
PARM1(.2.):=CHR(0); (* ZERO OUT BYTE *)
PARM1(.3.):=CHR(1); (* SPECIFY DUMP *)
PARM1(.4.):=CHR(2); (* SPECIFY PROGRAM TO BE EXECUTED *)
PARM2:=’IEBCOPY’; (* FILL IN PROGRAM BUFFER *)
PARM3:=7; (* SPECIFY PROGRAM LENGTH *)
PARM4:=0; (* ZERO OUT FUNCTION RETURN CODE *)
PARM5:=0; (* ZERO OUT TSF REASON CODE *)
PARM6:=0; (* ZERO OUT FUNCTION ABEND CODE *)
TSOLNK(PARM1,

PARM2,
PARM3,
PARM4,
PARM5,
PARM6); (* INTERFACE WITH TSO SERVICE FACILITY *)

WRITELN(FILEOUT, ’THE FUNCTION RETURN CODE IS ’,PARM4);
(* PRINT OUT FUNCTION RETURN CODE *)

WRITELN(FILEOUT, ’ THE TSF REASON CODE IS ’,PARM5);
(* PRINT OUT TSF REASON CODE *)

WRITELN(FILEOUT, ’THE FUNCTION ABEND CODE IS ’,PARM6);
(* PRINT OUT FUNCTION ABEND CODE *)

END.

Figure 159. PASCAL Program Demonstrating the Use of TSOLNK to Invoke a Program (Part
2 of 2)

Examples of Invoking the TSO/E Service Facility

448 z/OS V1R4.0 TSO/E Programming Services

COBOL Program Using TSOLNK to Invoke a Program

ID DIVISION.
PROGRAM-ID. TSOSVR.
* THIS COBOL PROGRAM ISSUES THE IEBCOPY PROGRAM IN TSO/E AND
* THEN PRINTS OUT THE COMMAND BUFFER AND THE RETURN, REASON
* AND ABEND CODES RESULTING FROM THE EXECUTION OF THE TSO
* SERVICE FACILITY. TO USE THE EXAMPLE THE USER MUST ALLOCATE
* THE FOLLOWING FILES:
* ALLOC F(SYSPRT) DSN(*)
* ALLOC F(SYSIN) DSN(YOUR.SYSIN)
* ALLOC F(SYSPRINT) DSN(*)
* ALLOC F(INDD) DSN(YOUR.INPDS)
* ALLOC F(OUTDD) DSN(YOUR.OUTPDS)
* THE EXAMPLE REQUIRES THE FOLLOWING CARD IN YOUR.SYSIN FILE:
* EXAMPLE COPY OUTDD=OUTDD,INDD=INDD
*
* THIS PROGRAM WILL RUN ON THE OS/VS COBOL COMPILER RELEASE 3 OR
* HIGHER

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

* DEFINE OUTPUT DEVICE

SELECT TRMPRT ASSIGN TO UT-S-SYSPRT.
DATA DIVISION.
FILE SECTION.

DEFINE OUTPUT FILE

FD TRMPRT
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 133 CHARACTERS.

* DEFINE OUTPUT RECORD

01 OUTREC.
02 OUT-LINE PICTURE X(133).

WORKING-STORAGE SECTION.

* DEFINE OUTPUT RECORD FORM

01 OUT-RECORD.
02 CONTROL-CHAR PICTURE X VALUE SPACE.
02 COMMENT PICTURE X(25).
02 OUT-VALUE PICTURE +++++++++9.
02 FILLER PICTURE X(111) VALUE SPACES.

* DEFINE COMMENT VALUES FOR OUTPUT RECORD FORM

01 RETURN-COMMENT PICTURE X(25) VALUE ’FUNCTION RETURN CODE IS ’.
01 REASON-COMMENT PICTURE X(25) VALUE ’ TSF REASON CODE IS ’.
01 ABEND-COMMENT PICTURE X(25) VALUE ’FUNCTION ABEND CODE IS ’.

Figure 160. COBOL Program Demonstrating the Use of TSOLNK to Invoke a Program (Part
1 of 3)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 449

* DEFINE FLAGS TO BE FULL WORDS WITH APPROPRIATE BITS ON

01 FLAG1-ON PICTURE S9(9) VALUE +16777216 COMP.
01 FLAG2-ON PICTURE S9(9) VALUE +65536 COMP.
01 FLAG3-ON PICTURE S9(9) VALUE +256 COMP.
01 FLAG4-ON PICTURE S9(9) VALUE +2 COMP.
01 FLAG1-OFF PICTURE S9(9) VALUE +0 COMP.
01 FLAG2-OFF PICTURE S9(9) VALUE +0 COMP.
01 FLAG3-OFF PICTURE S9(9) VALUE +0 COMP.
01 FLAG4-OFF PICTURE S9(9) VALUE +1 COMP.

* DEFINE STORAGE FOR PARMS
* PARM1 IS DECIMAL VALUE OF FLAGS
* PARM2 IS FUNCTION TEXT
* PARM3 IS FUNCTION LENGTH (SET TO 80)
* PARM4 IS FUNCTION RETURN CODE VALUE FROM TSOLNK
* PARM5 IS TSF REASON CODE VALUE FROM TSOLNK
* PARM6 IS FUNCTION ABEND CODE VALUE FROM TSOLNK

01 PARM1 PICTURE S9(9) COMP.
01 PARM2 PICTURE X(80).
01 PARM3 PICTURE S9(9) VALUE +80 COMP.
01 PARM4 PICTURE S9(9) VALUE +0 COMP.
01 PARM5 PICTURE S9(9) VALUE +0 COMP.
01 PARM6 PICTURE S9(9) VALUE +0 COMP.

PROCEDURE DIVISION.

* MOVE DESIRED FUNCTION TO PARM2

READY-COMMAND.
MOVE SPACES TO PARM2.
MOVE ’IEBCOPY’ TO PARM2.

* SET FLAGS BY ADDING APPROPRIATELY VALUED FLAG VARIABLES

Figure 160. COBOL Program Demonstrating the Use of TSOLNK to Invoke a Program (Part
2 of 3)

Examples of Invoking the TSO/E Service Facility

450 z/OS V1R4.0 TSO/E Programming Services

READY-FLAGS.
MOVE 0 TO PARM1.

* RESERVED FLAG

ADD FLAG1-OFF TO PARM1.

* RESERVED FLAG

ADD FLAG2-OFF TO PARM1.

* FLAG3-ON TO REQUEST ABEND WITH DUMP

ADD FLAG3-ON TO PARM1.

* FLAG4-OFF TO REQUEST A TSO/E PROGRAM (NOT A COMMAND) BE INVOKED

ADD FLAG4-ON TO PARM1.

* CALL TSOLNK

CALL-TSOLNK.
CALL ’TSOLNK’ USING PARM1 PARM2 PARM3 PARM4 PARM5 PARM6.

* PRINT RESULTS

PRINT-COMMENTS.
OPEN OUTPUT TRMPRT.

* PRINT THE FUNCTION RETURN CODE

MOVE RETURN-COMMENT TO COMMENT.
MOVE PARM4 TO OUT-VALUE.
WRITE OUTREC FROM OUT-RECORD.

* PRINT THE TSF REASON CODE

MOVE REASON-COMMENT TO COMMENT.
MOVE PARM5 TO OUT-VALUE.
WRITE OUTREC FROM OUT-RECORD.

* PRINT THE FUNCTION ABEND CODE

MOVE ABEND-COMMENT TO COMMENT.
MOVE PARM6 TO OUT-VALUE.
WRITE OUTREC FROM OUT-RECORD.

CLOSE TRMPRT.
STOP RUN.

Figure 160. COBOL Program Demonstrating the Use of TSOLNK to Invoke a Program (Part
3 of 3)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 451

PL/I Program Using TSOLNK to Invoke a CLIST

/**/
/* THIS PL/I PROGRAM INTERFACES WITH THE TSO SERVICE FACILITY. */
/* THE PROGRAM WILL EXECUTE MYCLIST AND THEN PRINT OUT THE */
/* RETURN, REASON AND ABEND CODES AS A RESULT OF USING THE */
/* SERVICE. SINCE THIS PROGRAM DOES ITS OWN I/O AFTER CALLING THE */
/* TSO SERVICE FACILITY, THE USER MUST ALLOCATE THE FILE NAME */
/* FILEOUT, PREFERABLY TO THE TERMINAL WITH THE TSO/E COMMAND: */
/* ALLOC F(FILEOUT) DSN(*) */
/* */
/* THIS PROGRAM WILL RUN ON THE OS/VS PL/I COMPILER RELEASE 2 OR */
/* HIGHER. */
/**/
TSOCALL:

PROCEDURE OPTIONS(MAIN);
/**/
/* DECLARE PARAMETERS */
/**/
DECLARE 1 PARM1,

2 PARM11 FIXED BINARY (15,0), /* RESERVED */
2 PARM13 BIT(8), /* ABEND FLAG */

/* 0 -ABEND WITHOUT DUMP */
/* 1 -ABEND WITH DUMP */

2 PARM14 BIT(8); /* FUNCTION CODE */
DECLARE PARM2 CHARACTER(8); /* NAME OF FUNCTION */
DECLARE PARM3 FIXED BINARY(31,0); /* LENGTH OF CMD OR PROG */
DECLARE PARM4 FIXED BINARY(31,0); /* FUNCTION RETURN CODE */
DECLARE PARM5 FIXED BINARY(31,0); /* TSF REASON CODE */
DECLARE PARM6 FIXED BINARY(31,0); /* FUNCTION ABEND CODE */
/**/
/* DECLARE OUTPUT FILE */
/**/
DECLARE (FILEOUT) FILE;
/**/
/* DECLARE TSOLNK ROUTINE PARAMETER LIST */
/**/
DECLARE TSOLNK ENTRY(/* */

1, /* STRUCTURE OF 4 BYTES */
2 FIXED BINARY(15,0), /* BYTE 1 RESERVED */
2 BIT(8), /* BYTE 3 ABEND FLAG */
2 BIT(8), /* BYTE 4 FUNCTION FLAG */

CHARACTER (*), /* NAME OF PROGRAM OR CMD */
FIXED BINARY(31,0), /* LENGTH OF CMD OR PROG */
FIXED BINARY(31,0), /* FUNCTION RETURN CODE */
FIXED BINARY(31,0), /* REASON CODE */
FIXED BINARY(31,0) /* FUNCTION ABEND CODE */
)

EXTERNAL OPTIONS(ASSEMBLER RETCODE INTER);
DECLARE PLIRETV BUILTIN;

Figure 161. PL/I Program Demonstrating the Use of TSOLNK to Invoke a CLIST (Part 1 of 2)

Examples of Invoking the TSO/E Service Facility

452 z/OS V1R4.0 TSO/E Programming Services

/**/
/* START OF EXECUTABLE CODE */
/**/
PARM13=’00000001’B; /* DUMP YES OR NO, SET TO NO */
PARM14=’00000101’B; /* INDICATE FUNCTION IS A CLIST */
PARM2 =’MYCLIST’; /* FUNCTION NAME */
PARM3 = 7; /* COMMAND LENGTH */
/**/
/* CALL TSO SERVICE FACILITY */
/**/
CALL TSOLNK(PARM1,PARM2,PARM3,PARM4,PARM5,PARM6);
/**/

/* PRINT RESULTS OF CALL */
/* PRINT OUT RETURN CODE OF TSO SERVICE FACILITY */
/**/
PUT FILE (FILEOUT) EDIT (’ THE TSOLNK RETURN CODE IS ’,PLIRETV)

(A,F(3));
/**/
/* PRINT OUT RETURN CODE OF MYCLIST */
/**/
PUT FILE (FILEOUT) EDIT (’ THE FUNCTION RETURN CODE IS ’,PARM4)

(SKIP, A, F(3));
/**/
/* PRINT OUT REASON CODE OF MYCLIST */
/**/
PUT FILE (FILEOUT) EDIT (’ THE TSF REASON CODE IS ’,PARM5)

(SKIP, A, F(3));
/**/
/* PRINT OUT ABEND CODE OF MYCLIST */
/**/
PUT FILE (FILEOUT) EDIT (’ THE FUNCTION ABEND CODE IS ’,PARM6)

(SKIP, A, F(3));
END TSOCALL;

Figure 161. PL/I Program Demonstrating the Use of TSOLNK to Invoke a CLIST (Part 2 of 2)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 453

PL/I Program Calling a CLIST

PASCAL Program Using TSOLNK to Invoke a CLIST

/***/
/* THIS CLIST IS CALLED BY PL/I PROGRAM, TSOCALL. AFTER IT IS CALLED, */
/* IT ALLOCATES THE NECESSARY DATA SETS FOR FORTRAN PROGRAM, MYPGM, */
/* CALLS MYPGM, AND TRANSMITS THE RESULTS OF MYPGM TO ANOTHER USER, */
/* HISID AT HISNODE. NOTE: THE DATA SETS FOR FORTRAN PROGRAM, MYPGM, */
/* MUST ALREADY EXIST AND BE CATALOGED. */
/***/
PROC 0

ALLOC F(FT06FT01) DSN(*) REUSE
ALLOC F(SYSIN) DSN(YOUR.SYSIN) REUSE
ALLOC F(SYSPRINT) DSN(*) REUSE
ALLOC F(INDD) DSN(YOUR.INPDS) REUSE
ALLOC F(OUTDD) DSN(YOUR.OUTPDS) REUSE

CALL LOAD(MYPGM)

TRANSMIT HISNODE.HISID DA(YOUR.OUTPDS) /* SEND RESULTS */

EXIT CODE(0)

Figure 162. MYCLIST called by PL/I program, TSOCALL

(***)
(* *)
(* THIS PASCAL PROGRAM WILL INTERFACE WITH THE TSO SERVICE *)
(* FACILITY. THIS PROGRAM WILL EXECUTE A CLIST WITH MEMBER NAME, *)
(* MYCLIST. THE CLIST LIBRARY CONTAINING MYCLIST HAS ALREADY *)
(* BEEN ALLOCATED TO FILE SYSPROC. THIS PROGRAM DOES ITS *)
(* OWN I/O AFTER THE TSO/E COMMAND IS EXECUTED TO DISPLAY *)
(* RETURN CODES, THE USER SHOULD ALLOCATE FILE "FILEOUT" *)
(* TO THE TERMINAL. *)
(* *)
(* *)
(***)
PROGRAM TSOINTER;
TYPE

PA4=PACKED ARRAY (.1..4.) OF CHAR;
PA80=PACKED ARRAY (.1..80.) OF CHAR;

Figure 163. PASCAL Program Demonstrating the Use of TSOLNK to Invoke a CLIST (Part 1
of 2)

Examples of Invoking the TSO/E Service Facility

454 z/OS V1R4.0 TSO/E Programming Services

(***)
(* *)
(* SET UP CALL TO TSOLNK - THE TSO SERVICE FACILITY. *)
(* WITH PARAMETER LIST. *)
(* *)
(***)
PROCEDURE TSOLNK(VAR PARM1:PA4;

VAR PARM2:PA80;
VAR PARM3:INTEGER;
VAR PARM4:INTEGER;
VAR PARM5:INTEGER;
VAR PARM6:INTEGER);

FORTRAN; (* THIS KEYWORD IS REQUIRED TO ESTABLISH LINKAGE TO TSF *)

VAR
PARM1:PA4; (* WORD OF CONTROL BITS *)
PARM2:PA80; (* COMMAND BUFFER *)
PARM3:INTEGER; (* LENGTH OF COMMAND *)
PARM4:INTEGER; (* FUNCTION RETURN CODE *)
PARM5:INTEGER; (* TSO SERVICE FACILITY REASON CODE *)
PARM6:INTEGER; (* FUNCTION ABEND CODE *)
FILEOUT:TEXT; (* DECLARE OUTPUT FILE NAME *)

BEGIN
PARM1(.1.):=CHR(0); (* ZERO OUT *)
PARM1(.2.):=CHR(0); (* ZERO OUT BYTE *)
PARM1(.3.):=CHR(1); (* SPECIFY DUMP *)
PARM1(.4.):=CHR(5); (* SPECIFY CLIST TO BE EXECUTED *)
PARM2:=’MYCLIST’; (* FILL IN COMMAND BUFFER *)
PARM3:=7; (* SPECIFY COMMAND LENGTH *)
PARM4:=0; (* ZERO TSO/E FUNCTION RETURN CODE *)
PARM5:=0; (* ZERO TSO SERVICE FACILITY REASON CODE *)
PARM6:=0; (* ZERO TSO/E FUNCTION ABEND CODE *)
TSOLNK(PARM1,

PARM2,
PARM3,
PARM4,
PARM5,
PARM6); (* INTERFACE WITH TSO SERVICE FACILITY *)

WRITELN(FILEOUT, ’THE FUNCTION RETURN CODE IS ’,PARM4);
(* PRINT OUT FUNCTION RETURN CODE *)

WRITELN(FILEOUT, ’ THE TSR REASON CODE IS ’,PARM5);
(* PRINT OUT TSR REASON CODE *)

WRITELN(FILEOUT, ’THE FUNCTION ABEND CODE IS ’,PARM6);
(* PRINT OUT FUNCTION ABEND CODE *)

END.

Figure 163. PASCAL Program Demonstrating the Use of TSOLNK to Invoke a CLIST (Part 2
of 2)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 455

Assembler Program Using IKJEFTSR to Invoke a REXX Exec

**
* *
* THIS ASSEMBLER PROGRAM INVOKES THE TSO SERVICE FACILITY TO PASS *
* CONTROL TO A REXX EXEC CALLED MYEXEC. IN THIS EXAMPLE, MYEXEC *
* IS A FULLSCREEN APPLICATION THAT ISSUES ISPF COMMANDS. THIS *
* SAMPLE PROGRAM THEREFORE REQUESTS THAT THE TSO SERVICE FACILITY *
* INVOKE THE EXEC FROM AN UNAUTHORIZED ENVIRONMENT. *
* *
**
TSF CSECT

STM R14,R12,12(R13)
BALR R12,0
USING *,R12
ST R13,SAVEAREA+4
LA R11,SAVEAREA
ST R11,8(,R13)
LA R13,SAVEAREA

*

*
MAIN DS 0H
* .
* .
* .

L R15,CVTPTR ESTABLISH
L R15,CVTTVT(,R15) ADDRESSABILITY TO THE
L R15,TSVTASF-TSVT(,R15) TSO SERVICE FACILITY

*
* INVOKE THE TSO SERVICE FACILITY -- EXECUTE "MYEXEC" EXEC
*

CALL (15),(FLAGS,CMDBUF,BUFLEN,RETCODE,RSNCODE,ABNDCODE),VL
LTR R15,R15 CHECK TSR RETURN CODE
BNZ ERRORRTN BAD RETURN CODE FROM TSR
CLC RETCODE,ZERO CHECK FOR EXEC ERROR
BH ERRORCMD BAD RETURN CODE FROM EXEC
B ENDUP NO ERROR --- EXIT

ERRORRTN DS 0H

**
* ANALYZE TSO SERVICE FACILITY ERROR *
* . *
* . *
* . *
* *
**

B ENDUP
ERRORCMD DS 0H

**
* ANALYZE EXEC ERROR *
* . *
* . *
* . *
**

Figure 164. Assembler Language Program Demonstrating the Use of IKJEFTSR to Invoke a
REXX Exec (Part 1 of 2)

Examples of Invoking the TSO/E Service Facility

456 z/OS V1R4.0 TSO/E Programming Services

ENDUP DS 0H
L R13,4(,R13)
LM R14,R12,12(R13)
SLR R15,R15
BR R14

**
* *
* DATA AREAS *
* *
**
ZERO DC F’0’ ZERO CONSTANT
FLAGS DS 0F MAPS FIRST PARM TO IKJEFTSR
RESFLAGS DC X’00’ FIRST BYTE IS RESERVED
OPTFLAGS DC X’01’ TELL TSR TO ESTABLISH AN UNAUTHORIZED
* ENVIRONMENT
ABFLAGS DC X’01’ DUMP IF ABEND OCCURS
FNCFLAGS DC X’01’ TELL TSR TO EXECUTE THE EXEC

*
CMDBUF DC C’MYEXEC’ NAME OF EXEC TO BE EXECUTED

*
BUFLEN DC F’6’ LENGTH OF COMMAND BUFFER
RETCODE DS F RETURN CODE FROM EXEC
RSNCODE DS F REASON CODE
ABNDCODE DS F ABEND CODE
SAVEAREA DS 18F SAVE AREA

.

.

.

CVTPTR EQU 16
CVTTVT EQU X’9C’
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
R11 EQU 11
R9 EQU 9
R8 EQU 8

IKJTSVT
END

Figure 164. Assembler Language Program Demonstrating the Use of IKJEFTSR to Invoke a
REXX Exec (Part 2 of 2)

Examples of Invoking the TSO/E Service Facility

Chapter 23. Using the TSO/E Service Facility IKJEFTSR 457

Examples of Invoking the TSO/E Service Facility

458 z/OS V1R4.0 TSO/E Programming Services

Chapter 24. Using the Variable Access Routine IKJCT441

Functions Provided by IKJCT441. 459
Considerations for Accessing REXX Variables 460

Passing Control to IKJCT441 461
The IKJCT441 Parameter List 461

Updating or Creating a Variable Value (TSVEUPDT). 464
Output from IKJCT441 on Entry Code TSVEUPDT 464

Returning the Value of a Variable (TSVERETR) - Create 465
Output from IKJCT441 on Entry Code TSVERETR 466

Returning the Value of a Variable (TSVNOIMP) - No Create 467
Output from IKJCT441 on Entry Code TSVNOIMP 467

Returning all Active Variables and their Values (TSVELOC) 468
Output from IKJCT441 on Entry Code TSVELOC 469

Examples Using IKJCT441 . 470
Example 1: Update or Create a Variable Value. 470
Example 2: Return a Variable Value - Create If Required 471
Example 3: Return Variable Value - Do Not Create 473
Example 4: Return All Active Variables and Their Values 476
Example 5: Update or Create a List of Variables 478

This chapter describes how to use the variable access routine (IKJCT441) in an
application program to examine and manipulate CLIST and REXX variables.

Functions Provided by IKJCT441
This service allows any application program to examine and manipulate CLIST and
REXX variables. IKJCT441 provides the following functions:

v It updates or creates a variable value (entry code TSVEUPDT). If the variable
does not exist, IKJCT441 creates it.

v It returns a variable value (entry code TSVERETR). If the variable does not exist,
IKJCT441 creates it (implicit creation).

v It returns a variable value (entry code TSVNOIMP). If the variable does not exist,
IKJCT441 does not create it (no implicit creation), but indicates this by a return
code.

v It returns all active variables and their values. (Entry code TSVELOC).

Note: REXX execs and CLISTs cannot access each others variables.

IKJCT441 allows an application program to request, in one invocation, a
combination of the functions described above. To perform multiple functions in one
invocation, specify a list of individual requests. IKJCT441 performs each function in
the order you specify and continues processing each request regardless of the
return codes from previous requests.

Some variables are called control variables. Control variables are variables that
have a special meaning in a CLIST or REXX exec. Generally, they provide
information about the environment during execution. You can change or assign
values to only some of these control variables. For CLISTs, see z/OS TSO/E
CLISTs for lists of the control variables that you can and cannot modify. For REXX
execs, see z/OS TSO/E REXX Reference.

© Copyright IBM Corp. 1988, 2002 459

Note: &SYSOUTLINE is a CLIST control variable that saves TSO/E command
output and allows a CLIST or application program to display the output.
When a CLIST executes a TSO/E command, it resets the &SYSOUTLINE
control variable to zero. However, if a CLIST invokes a program containing
TSO/E commands, the program does not reset &SYSOUTLINE to zero for
each TSO/E command. To save command output lines in a non-CLIST
program, use IKJCT441 to reset &SYSOUTLINE to zero for each TSO/E
command. See z/OS TSO/E CLISTs for more information about
&SYSOUTLINE.

Some CLIST control variables, and CLIST built-in functions, require evaluation
before their values can be obtained. Their values cannot be retrieved by IKJCT441.
For a list of control variables whose values cannot be retrieved by IKJCT441, see
z/OS TSO/E CLISTs.

Considerations for Accessing REXX Variables
All commands and programs that invoke IKJCT441 to access REXX variables must
be in 31-bit addressing mode.

Programs or commands that are directly invoked from a REXX exec can access
only those variables that have valid REXX names. These programs or commands
can use IKJCT441 to set and retrieve symbols. IKJCT441 uses the REXX direct
interface (rather than the symbolic interface). No substitution or case translation
takes place. For more information about the direct interface, see z/OS TSO/E REXX
Reference.

Authorized programs or commands that are directly invoked from a REXX exec can
access variables created by the REXX exec only if the variable names begin with
‘SYSAUTH’. However, an authorized program or command can access all variables
created by the program or command. Furthermore, the authorized command or
program can set a variable, even one whose name does not begin with ‘SYSAUTH’,
for use by the exec.

Authorized programs or commands invoked from a REXX exec cannot set stems.
(A REXX stem is a variable name which contains a single period, which is the last
character of the name.) However, these programs or commands can use IKJCT441
to set a compound variable which represents a particular instance of the stem. Also,
these programs or commands can use IKJCT441 to retrieve stem variables by
specifying the entry code TSVNOIMP in the IKJCT441 parameter list.

For example, an authorized program or command cannot use IKJCT441 to set a
value for a stem like ‘A.’. However, it can use IKJCT441 to set values for the
compound variables ‘A.1’, ‘A.2’, or ‘A.THIRD’ (that is, particular instances of the
stem ‘A.’).

Authorized programs or commands can access variables containing output from the
OUTTRAP statement if the variables are created by the exec that invoked the
program or command.

Notes:

1. If IKJCT441 is used to fetch an uninitialized REXX variable, the value returned
is a null value, rather than the name of the variable itself.

2. IKJCT441 can be used to access variables with DBCS names when the
underlying REXX exec has enabled the use of DBCS variable names by coding
the OPTIONS ETMODE instruction.

Functions Provided by IKJCT441

460 z/OS V1R4.0 TSO/E Programming Services

Unauthorized programs and commands can use either IKJCT441 or another TSO/E
service, IRXEXCOM, to access REXX variables. For information about using
IRXEXCOM, see z/OS TSO/E REXX Reference.

Passing Control to IKJCT441
Your program can access CLIST or REXX variables by using either the CALL or
LINK macro instructions, specifying IKJCT441 as the entry point name. You must
also create a parameter list to send input and receive output from IKJCT441.

Callers executing in 31-bit addressing mode can pass data residing above 16 MB in
virtual storage as input to IKJCT441. The caller’s parameters must be in the primary
address space.

Your program can obtain the address of IKJCT441 from the TSVTVACC field in the
TSO/E vector table (TSVT). Figure 165 shows how to obtain this address.

The IKJCT441 Parameter List
Figure 166 on page 462 describes the format of the caller’s parameter list for
accessing variables.

CVT

CVTTVT

TSVT

TSVTVACC

IKJCT441

Figure 165. Obtaining the Address of IKJCT441

Functions Provided by IKJCT441

Chapter 24. Using the Variable Access Routine IKJCT441 461

The parameter list consists of a list of fullword pointers to the actual parameters.
The parameter list can be of variable length; therefore, the caller must turn on the
high-order bit of the last address in a parameter list to indicate that it is the last
address in a list.

A parameter list represents a single request to IKJCT441. You can chain multiple
requests to IKJCT441 by chaining multiple parameter lists (see Figure 167 on
page 464 for an example). Note that each parameter list must be terminated with
the high-order bit turned on.

Parameter List

Entry code

Address of
variable name

Length of
variable name

Address of
variable value

Length of
variable value

Token

ECT
(optional)

IKJCT441
Return code
(optional)

Address of next
parameter list
(optional)

Register 1

ECODE

NAMEPTR Variable name

NAMELEN

VALUEPTR Variable value

VALUELEN

TOKEN

ECTPARM
(optional)

RETCODE
(optional)

NEXTLIST
(optional)

Entry code

Next Parameter List

: :
: :

Figure 166. Parameter List Structure for IKJCT441

Passing Control to IKJCT441

462 z/OS V1R4.0 TSO/E Programming Services

Table 124 shows the symbolic names and descriptions of the caller’s parameters.
Note that the table describes the parameters pointed to by the parameter list
entries, not the parameter list entries itself. Some of the parameters are by
themselves pointers to the actual data (NAMEPTR, VALUEPTR, NEXTLIST).

Table 124. The Parameters for IKJCT441

Parameter Function

ECODE Entry code. The entry code is a number that indicates to IKJCT441 the
function being requested. The entry codes are defined by the mapping
macro IKJTSVT. TSO/E supports the following entry codes only:

Entry Code Meaning

TSVEUPDT Update or create a variable. If the variable does not
exist, IKJCT441 should create it.

TSVERETR Return a variable value. If the variable does not exist,
IKJCT441 should create it.

TSVNOIMP Return a variable. If the variable does not exist,
IKJCT441 should not create it.

TSVELOC Return all active variables and their values.

NAMEPTR Address of the variable name.
NAMELEN Length of the variable name.
VALUEPTR Address of the variable value.
VALUELEN Length of the variable value.
TOKEN IKJCT441 uses this value only when finding all active CLIST variables.
ECTPARM Optional parameter. Contains the environment control table (ECT) to be

used.

If it is not specified, IKJCT441 uses the system ECT, that is, the
LWAPECT.

If one of the following parameters are used, and you do not want to
specify an ECT (that is, you want IKJCT441 to use the system ECT), the
value of ECTPARM must be a fullword containing X'FFFFFFFF'.

RETCODE Optional parameter. IKJCT441 places the return code from the function
that was requested in this parameter.

If the NEXTLIST parameter is to be used to chain a list of requests, you
must supply the pointer to the RETCODE parameter.

This parameter is useful when you use IKJCT441 to perform a
combination of functions, that is, when you specify a list of individual
requests. It allows you to keep the return codes from the individual
requests.

IKJCT441 always places a return code in register 15. If the caller
requests that a list of functions be performed, register 15 holds the first
non-zero return code issued by IKJCT441 when processing the individual
requests. Further return codes from individual requests do not change
the content of register 15. If all individual request are performed
successfully, register 15 contains a return code of 0.

If the calling program specifies the RETCODE parameter, IKJCT441 also
places the return code in the RETCODE parameter. This allows the
calling program to take the appropriate actions on return codes from
individual requests.

Passing Control to IKJCT441

Chapter 24. Using the Variable Access Routine IKJCT441 463

Table 124. The Parameters for IKJCT441 (continued)

Parameter Function

NEXTLIST Optional parameter. Used if IKJCT441 is to perform multiple requests in
one invocation. NEXTLIST contains the address of the next parameter
list.

If no next parameter list is to be used, terminate the parameter list at the
previous entry. If you code, for whatever reason, the last parameter list
entry (pointer to NEXTLIST), ensure that NEXTLIST is a fullword
containing X'00000000'.

Updating or Creating a Variable Value (TSVEUPDT)
Before invoking IKJCT441 to update or create a variable, the caller must:

v Specify at least the first six parameters in the parameter list.

v Specify entry code TSVEUPDT.

v Specify, for the variable to be updated or created:

– The address of the variable name (NAMEPTR)

– The length of the variable name (NAMELEN)

– The address of the variable value (VALUEPTR)

– The length of the variable value (VALUEPTR)

– The variable value (labeled VALUE in “Examples Using IKJCT441” on
page 470)

v Set the value of TOKEN to zero.

v Turn on the high-order bit of the last word of the parameter list.

Output from IKJCT441 on Entry Code TSVEUPDT
If the caller has specified the RETCODE parameter, RETCODE contains the return
code for the request.

Register 1

Address of
Entry Code

Address of
Entry Code

Address of
next Para-
meter List

Parameter
List
Address

Address of
next Para-
meter List

X'00000000'

Parameter
List 1

Parameter
List 2

: :

: :

: :

: :

: :

: :

: :

: :

Figure 167. Example – Chain of Two Elements to IKJCT441. For a full description of the
IKJCT441 parameters, see Figure 166 on page 462.

Passing Control to IKJCT441

464 z/OS V1R4.0 TSO/E Programming Services

Return Codes from IKJCT441 on Entry Code TSVEUPDT
IKJCT441 always places a return code in register 15. If the caller requests that a
list of functions be performed, register 15 holds the first non-zero return code issued
by IKJCT441 when processing the individual requests. Further return codes from
individual requests do not change the content of register 15. If all individual request
are performed successfully, register 15 contains a return code of 0.

If the calling program specifies the RETCODE parameter, IKJCT441 also places the
return code in the RETCODE parameter. This allows the calling program to take the
appropriate actions on return codes from individual requests.

Table 125. Return Codes from IKJCT441 (Entry Code TSVEUPDT)

Return Code
Dec(Hex)

Meaning

0(0) IKJCT441 updated or created the variable.

12(C) The variable is a label, and IKJCT441 did not update it.

16(10) The variable is a CLIST built-in function or a control variable that the
user cannot modify, such as &SYSDATE, and IKJCT441 did not update
it.

24(18) The variable is a procedure name, and IKJCT441 did not update it.

32(20) A storage management (GETMAIN/FREEMAIN) failure occurred.

36(24) For CLIST variables:

v The length of the variable name is less than 1 or greater than 252.

v The length of the variable value is less than zero or greater than
32,767.

For REXX variables:

v See return code 80(50) below.

v The length of the variable value is less than zero or greater than
32,767.

40(28) One of the following situations occurred:

v The caller’s parameter list contains an error.

v The caller of IKJCT441 is not activated via a CLIST or REXX exec.

v The caller attempted to access a REXX variable pool while another
program or REXX exec was accessing the same variable pool.

44(2C) The entry code is not valid.

80(50) The variable name is not valid for REXX, or the length of the REXX
variable name is less than 1 or greater than 250.

81(51) A TSO/E REXX routine issued a failing return code.

Returning the Value of a Variable (TSVERETR) - Create

IKJCT441 creates the variable if it does not exist.

Before invoking IKJCT441 to return the value of a variable, the caller must:

v Specify at least the first six parameters in the parameter list.

v Specify entry code TSVERETR.

Updating or Creating a Variable Value (TSVEUPDT)

Chapter 24. Using the Variable Access Routine IKJCT441 465

v Specify, for the variable value to be returned:

– Address of the variable name (NAMEPTR)

– Length of the variable name (NAMELEN).

– The address of the variable value (VALUEPTR)

v Specify, in case the variable is to be created:

– The length of the variable value (VALUELEN)

– The variable value (labeled VALUE in “Examples Using IKJCT441” on
page 470)

v Set the value of TOKEN to zero.

v Turn on the high-order bit of the last word of the parameter list.

Output from IKJCT441 on Entry Code TSVERETR
IKJCT441 returns values for the following parameters unless specified otherwise by
the return code:

v VALUEPTR contains the address of the value of the variable.

v VALUELEN contains the length of the variable value.

v If the caller has specified the RETCODE parameter, RETCODE contains the
return code for the request.

Return Codes from IKJCT441 on Entry Code TSVERETR
IKJCT441 always places a return code in register 15. If the caller requests that a
list of functions be performed, register 15 holds the first non-zero return code issued
by IKJCT441 when processing the individual requests. Further return codes from
individual requests do not change the content of register 15. If all individual request
are performed successfully, register 15 contains a return code of 0.

If the calling program specifies the RETCODE parameter, IKJCT441 also places the
return code in the RETCODE parameter. This allows the calling program to take the
appropriate actions on return codes from individual requests.

Table 126. Return Codes from IKJCT441 (Entry Code TSVERETR)

Return Code
Dec(Hex)

Meaning

0(0) IKJCT441 successfully returned the variable.

4(4) The caller should not rescan the variable. It is an I/O variable containing
an & and is not a variable name.

8(8) The variable is a control variable or a CLIST built-in function, such as
&STR, that requires evaluation. IKJCT441 cannot evaluate the variable.
IKJCT441 will not update VALUEPTR and VALUELEN.

12(C) The variable is a label. IKJCT441 updated VALUEPTR and VALUELEN,
but the value of the variable is meaningless.

24(18) The variable is a procedure name. IKJCT441 updated VALUEPTR and
VALUELEN, but the value of the variable is meaningless.

36(24) The length of the variable is less than 1 or greater than 252.

40(28) One of the following situations occurred:

v The caller’s parameter list contains an error.

v The caller of IKJCT441 is not activated via a CLIST or REXX exec.

v The caller attempted to access a REXX variable pool while another
program or REXX exec was accessing the same variable pool.

IKJCT441 did not update VALUEPTR and VALUELEN.

Returning the Value of a Variable (TSVERETR) - Create

466 z/OS V1R4.0 TSO/E Programming Services

Table 126. Return Codes from IKJCT441 (Entry Code TSVERETR) (continued)

Return Code
Dec(Hex)

Meaning

44(2C) The entry code is not valid. IKJCT441 did not update VALUEPTR and
VALUELEN.

76(4C) The variable was not found. Because it has the prefix SYSX, it is
assumed that this variable is an installation written built-in function. It
has not been added to the variable pool.

80(50) The variable name is not valid for REXX, or the length of the REXX
variable name is less than 1 or greater than 250.

81(51) A TSO/E REXX routine issued a failing return code.

Returning the Value of a Variable (TSVNOIMP) - No Create

IKJCT441 does not create the variable if it does not exist.

Before invoking IKJCT441 to return the value of a variable, the caller must:

v Specify at least the first six parameters in the parameter list.

v Specify entry code TSVNOIMP.

v Specify, for the variable value to be returned:

– Address of the variable name (NAMEPTR)

– Length of the variable name (NAMELEN).

– The address of the variable value (VALUEPTR)

v Set the value of TOKEN to zero.

v Turn on the high-order bit of the last word of the parameter list.

Output from IKJCT441 on Entry Code TSVNOIMP
IKJCT441 returns values for the following parameters unless specified otherwise by
the return code:

v VALUEPTR contains the address of the value of the variable.

v VALUELEN contains the length of the variable value.

v If the caller has specified the RETCODE parameter, RETCODE contains the
return code for the request.

Return Codes from IKJCT441 on Entry Code TSVNOIMP
IKJCT441 always places a return code in register 15. If the caller requests that a
list of functions be performed, register 15 holds the first non-zero return code issued
by IKJCT441 when processing the individual requests. Further return codes from
individual requests do not change the content of register 15. If all individual request
are performed successfully, register 15 contains a return code of 0.

If the calling program specifies the RETCODE parameter, IKJCT441 also places the
return code in the RETCODE parameter. This allows the calling program to take the
appropriate actions on return codes from individual requests.

Table 127. Return Codes from IKJCT441 (Entry Code TSVNOIMP)

Return Code
Dec(Hex)

Meaning

0(0) IKJCT441 successfully returned the variable.

Returning the Value of a Variable (TSVERETR) - Create

Chapter 24. Using the Variable Access Routine IKJCT441 467

Table 127. Return Codes from IKJCT441 (Entry Code TSVNOIMP) (continued)

Return Code
Dec(Hex)

Meaning

4(4) The caller should not rescan the variable. It is an I/O variable containing
an & and is not a variable name.

8(8) The variable is a control variable or a CLIST built-in function, such as
&STR, that requires evaluation. IKJCT441 cannot evaluate the variable.
IKJCT441 did not update VALUEPTR and VALUELEN.

12(C) The variable is a label. IKJCT441 updated VALUEPTR and VALUELEN,
but the value of the variable is meaningless.

24(18) The variable is a procedure name. IKJCT441 updated VALUEPTR and
VALUELEN, but the value of the variable is meaningless.

36(24) The length of the variable is less than 1 or greater than 252.

40(28) One of the following situations occurred:

v The caller’s parameter list contains an error.

v The caller of IKJCT441 is not activated via a CLIST or REXX exec.

v The caller attempted to access a REXX variable pool while another
program or REXX exec was accessing the same variable pool.

IKJCT441 did not update VALUEPTR and VALUELEN.

44(2C) The entry code is not valid. IKJCT441 did not update VALUEPTR and
VALUELEN.

52(34) The variable does not exist, and IKJCT441 did not create it.

80(50) The variable name is not valid for REXX, or the length of the REXX
variable name is less than 1 or greater than 250.

81(51) A TSO/E REXX routine issued a failing return code.

Returning all Active Variables and their Values (TSVELOC)
To list all the CLIST or REXX variables and their values, the caller can either invoke
IKJCT441 once for each existing variable, or invoke IKJCT441 once with a chain of
requests.

If IKJCT441 is invoked multiple times, the caller must set TOKEN to zero before
invoking IKJCT441 for the first time. Similarly, if IKJCT441 is invoked with a chain of
requests, the caller must initialize TOKEN to zero for the first element in the chain.
IKJCT441 places a value in TOKEN and uses this value on subsequent invocations
to find the next variable. The caller must not change the value that IKJCT441
places in TOKEN. When there are no more variables, IKJCT441 places a zero in
TOKEN and sets the appropriate return code.

If IKJCT441 is invoked to perform a chain of requests, the caller must pass, for
each element of the chain, the same address for TOKEN (parameter 6).

Before invoking IKJCT441 to find all the CLIST or REXX variables, the caller must:

v Specify the entry code TSVELOC.

v Set TOKEN to zero on the first entry, or in the first element for a chain of
requests.

v Turn on the high-order bit of the last word of the parameter list.

Returning the Value of a Variable (TSVNOIMP) - No Create

468 z/OS V1R4.0 TSO/E Programming Services

Output from IKJCT441 on Entry Code TSVELOC
IKJCT441 returns values for the following parameters unless specified otherwise by
the return code:

v NAMEPTR contains the address of the variable name.

v NAMELEN contains the variable name length.

v VALUEPTR contains the address of the value of the variable.

v VALUELEN contains the variable value length.

v TOKEN contains zero, or if CLIST variables are to be returned, TOKEN contains
an internal value that identifies the next variable.

v If the caller has specified the RETCODE parameter, RETCODE contains the
return code for the request.

Return Codes From IKJCT441 on Entry Code TSVELOC
IKJCT441 always places a return code in register 15. If the caller requests that a
list of functions be performed, register 15 holds the first non-zero return code issued
by IKJCT441 when processing the individual requests. Further return codes from
individual requests do not change the content of register 15. If all individual request
are performed successfully, register 15 contains a return code of 0.

If the calling program specifies the RETCODE parameter, IKJCT441 also places the
return code in the RETCODE parameter. This allows the calling program to take the
appropriate actions on return codes from individual requests.

Table 128. Return Codes from IKJCT441 (Entry Code TSVELOC)

Return Code
Dec(Hex)

Meaning

0(0) IKJCT441 successfully updated the parameters for this variable.

4(4) The caller should not rescan the variable. It is an I/O variable containing
an & and is not a variable name.

8(8) The variable requires evaluation. IKJCT441 did not update VALUEPTR
and VALUELEN. The value of the variable is not relevant.

12(C) The variable is a label. The value of the variable is meaningless.

20(14) There are no more variables.

24(18) The variable is a procedure name. IKJCT441 updated VALUEPTR and
VALUELEN, but the value of the variable is meaningless.

40(28) One of the following situations occurred:

v The caller’s parameter list contains an error.

v The caller of IKJCT441 is not activated via a CLIST or REXX exec.

v The caller attempted to access a REXX variable pool while another
program or REXX exec was accessing the same variable pool.

IKJCT441 did not return values for any of the parameters.

44(2C) The entry code is not valid. IKJCT441 did not return values for any of
the parameters.

72(48) The variable returned is a reference variable. IKJCT441 updated
VALUEPTR and VALUELEN. VALUEPTR points to the name of the
corresponding variable in the calling procedure whose value is referred
to by this variable.

Returning all Active Variables and their Values (TSVELOC)

Chapter 24. Using the Variable Access Routine IKJCT441 469

Examples Using IKJCT441
The following examples show sample applications for variable access routines.

Example 1: Update or Create a Variable Value
Figure 168 shows an example of how to invoke IKJCT441 to update a variable
value or create that variable if it does not exist.

SETS CSECT
CVTPTR EQU 16
CVTTVT EQU X’9C’
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
R11 EQU 11
R00 EQU 0

IKJTSVT

SETS CSECT
STM R14,R12,12(R13) SAVE CALLER’S REGISTERS
BALR R12,0 ESTABLISH ADDRESSABILITY
USING *,R12 BASE REGISTER OF EXECUTING PROGRAM
ST R13,SAVEAREA+4 CALLER’S SAVEAREA ADDRESS
LA R15,SAVEAREA EXECUTING PROGRAM’S SAVEAREA ADDRESS
ST R15,8(,R13) EXECUTING PROGRAM’S SAVEAREA ADDRESS
LA R13,SAVEAREA EXECUTING PROGRAM’S SAVEAREA ADDRESS

*

*
L R15,CVTPTR ACCESS THE CVT
L R15,CVTTVT(,R15) ACCESS THE TSVT
L R15,TSVTVACC-TSVT(,R15) ACCESS THE VARIABLE ACCESS RTN

*

* INVOKE THE VARIABLE ACCESS SERVICE
*

LTR R15,R15 VERIFY TSVT ADDRESS PRESENT
BNZ CALL441 IF PRESENT, CALL IKJCT441

Figure 168. Example 1: Update or Create a Variable Value (Part 1 of 2)

Examples Using IKJCT441

470 z/OS V1R4.0 TSO/E Programming Services

Example 2: Return a Variable Value - Create If Required
Figure 169 on page 472 shows an example of how to invoke IKJCT441 to return the
value of a variable. If the variable does not exist, IKJCT441 will create it.

LINK441 LINK EP=IKJCT441, *
PARAM=(ECODE, ENTRY CODE *
NAMEPTR, POINTER TO VARIABLE NAME *
NAMELEN, LENGTH OF VARIABLE NAME *
VALUEPTR, POINTER TO VARIABLE VALUE *
VALUELEN, LENGTH OF VARIABLE VALUE *
TOKEN), TOKEN TO VARIABLE ACCESS SERVICE *
VL=1 CAUSES HI BIT ON IN THE PARM LIST

B RET441

CALL441 CALL (15), *
(ECODE, ENTRY CODE *
NAMEPTR, POINTER TO VARIABLE NAME *
NAMELEN, LENGTH OF VARIABLE NAME *
VALUEPTR, POINTER TO VARIABLE VALUE *
VALUELEN, LENGTH OF VARIABLE VALUE *
TOKEN), TOKEN TO VARIABLE ACCESS SERVICE *
VL CAUSES HI BIT ON IN THE PARM LIST

*
RET441 LTR R15,R15 CHECK RETURN CODE

BNZ ERRORRTN
*

*
ERRORRTN DS 0H

L R13,4(,R13) CALLER’S SAVEAREA
L R14,12(,R13) RESTORE REGISTER 14
LM R00,R12,20(R13) RESTORE REMAINING REGISTERS
BR R14 RETURN TO CALLER, REGISTER 15 CONTAINS

* THE RETURN CODE FROM IKJCT441
*

*
NAME DC CL12’VARIABLENAME’ NAME OF THE VARIABLE
NAMELEN DC F’12’ LENGTH OF THE VARIABLE NAME
VALUE DC CL3’YES’ VARIABLE VALUE
VALUELEN DC F’3’ LENGTH OF THE VARIABLE VALUE
NAMEPTR DC A(NAME) POINTER TO THE VARIABLE NAME
VALUEPTR DC A(VALUE) POINTER TO THE VARIABLE VALUE
TOKEN DC F’0’ TOKEN (UNUSED HERE)
ECODE DC A(TSVEUPDT) ENTRY CODE FOR SETTING VALUES
SAVEAREA DS 18F

END

Figure 168. Example 1: Update or Create a Variable Value (Part 2 of 2)

Examples Using IKJCT441

Chapter 24. Using the Variable Access Routine IKJCT441 471

LOOK CSECT
CVTPTR EQU 16
CVTTVT EQU X’9C’
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
R11 EQU 11
R9 EQU 9
R8 EQU 8
R7 EQU 7
R0 EQU 0

IKJTSVT

LOOK CSECT
STM R14,R12,12(R13) SAVE CALLER’S REGISTERS
BALR R12,0 ESTABLISH ADDRESSABILITY
USING *,R12 BASE REGISTER OF EXECUTING PROGRAM
ST R13,SAVEAREA+4 CALLER’S SAVEAREA ADDRESS
LA R15,SAVEAREA EXECUTING PROGRAM’S SAVEAREA ADDRESS
ST R15,8(,R13) EXECUTING PROGRAM’S SAVEAREA ADDRESS
LA R13,SAVEAREA EXECUTING PROGRAM’S SAVEAREA ADDRESS

*

*
L R15,CVTPTR ESTABLISH
L R15,CVTTVT(,R15) ADDRESSABILITY TO THE
L R15,TSVTVACC-TSVT(,R15) VARIABLE ACCESS ROUTINE

*
* INVOKE THE VARIABLE ACCESS SERVICE
*

LTR R15,R15 VERIFY TSVT ADDRESS PRESENT
BNZ CALL441 IF PRESENT, CALL IKJCT441

LINK441 LINK EP=IKJCT441, *
PARAM=(ECODE, ENTRY CODE *
NAMEPTR, POINTER TO VARIABLE NAME *
NAMELEN, LENGTH OF VARIABLE NAME *
VALUEPTR, POINTER TO VARIABLE VALUE *
VALUELEN, LENGTH OF VARIABLE VALUE *
TOKEN), TOKEN TO VARIABLE ACCESS SERVICE *
VL=1 CAUSES HI BIT ON IN THE PARM LIST

B RET441

Figure 169. Example 2: Return a Variable Value (Part 1 of 2)

Examples Using IKJCT441

472 z/OS V1R4.0 TSO/E Programming Services

Example 3: Return Variable Value - Do Not Create
Figure 170 on page 474 shows an example of how to invoke IKJCT441 to return a
variable value. If the variable does not exist, IKJCT441 does not create it, but
returns to the caller with a return code of X'52'.

CALL441 CALL (15), *
(ECODE, ENTRY CODE *
NAMEPTR, POINTER TO VARIABLE NAME *
NAMELEN, LENGTH OF VARIABLE NAME *
VALUEPTR, POINTER TO VARIABLE VALUE *
VALUELEN, LENGTH OF VARIABLE VALUE *
TOKEN), TOKEN TO VARIABLE ACCESS SERVICE *
VL CAUSES HI BIT ON IN THE PARM LIST

*

RET441 LTR R15,R15
BNZ ERRORRTN
L R7,VALUELEN
L R8,VALUEPTR
LA R9,L’VALUE
CR R7,R9
BNE BAD
CLC 0(L’VALUE,R8),VALUE
BNE BAD

*

*
BAD DS 0H
ERRORRTN DS 0H

L R13,4(,R13)
L R14,12(,R13) RESTORE REGISTER 14
LM R0,R12,20(R13) RESTORE REMAINING REGISTERS
BR R14 RETURN TO CALLER, REGISTER 15 CONTAINS

* THE RETURN CODE FROM IKJCT441
*

*
NAME DC CL12’VARIABLENAME’ NAME OF THE VARIABLE
NAMELEN DC F’12’ LENGTH OF THE VARIABLE NAME
VALUELEN DS F LENGTH OF VARIABLE VALUE
NAMEPTR DC A(NAME) POINTER TO THE VARIABLE NAME
VALUEPTR DS A POINTER TO THE VARIABLE VALUE
VALUE DC CL3’YES’ VARIABLE VALUE
TOKEN DC F’0’ TOKEN (UNUSED HERE)
ECODE DC A(TSVERETR) ENTRY CODE FOR RETRIEVE
SAVEAREA DS 18F

END

Figure 169. Example 2: Return a Variable Value (Part 2 of 2)

Examples Using IKJCT441

Chapter 24. Using the Variable Access Routine IKJCT441 473

NOIMPM CSECT
CVTPTR EQU 16
CVTTVT EQU X’9C’
R00 EQU 0
R07 EQU 7
R08 EQU 8
R09 EQU 9
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

IKJTSVT

NOIMP CSECT
STM R14,R12,12(R13) SAVE CALLER’S REGISTERS
BALR R12,0 ESTABLISH ADDRESSABILITY
USING *,R12 BASE REGISTER OF EXECUTING PROGRAM
ST R13,SAVEAREA+4 CALLER’S SAVEAREA ADDRESS
LA R15,SAVEAREA EXECUTING PROGRAM’S SAVEAREA ADDRESS
ST R15,8(,R13) EXECUTING PROGRAM’S SAVEAREA ADDRESS
LA R13,SAVEAREA EXECUTING PROGRAM’S SAVEAREA ADDRESS

*

L R15,CVTPTR ACCESS THE CVT
L R15,CVTTVT(,R15) ACCESS THE TSVT
L R15,TSVTVACC-TSVT(,R15) ACCESS THE VARIABLE ACCESS RTN

*
* INVOKE THE VARIABLE ACCESS SERVICE
*

LTR R15,R15 VERIFY TSVT ADDRESS PRESENT
BNZ CALL441 IF PRESENT, CALL IKJCT441

LINK441 LINK EP=IKJCT441, *
PARAM=(ECODE, ENTRY CODE *
NAMEPTR, POINTER TO VARIABLE NAME *
NAMELEN, LENGTH OF VARIABLE NAME *
VALUEPTR, POINTER TO VARIABLE VALUE *
VALUELEN, LENGTH OF VARIABLE VALUE *
TOKEN), TOKEN TO VARIABLE ACCESS SERVICE *
VL=1 CAUSES HI BIT ON IN THE PARM LIST

B RET441

Figure 170. Example 3: Return Variable Value Only (Part 1 of 2)

Examples Using IKJCT441

474 z/OS V1R4.0 TSO/E Programming Services

CALL441 CALL (15), *
(ECODE, ENTRY CODE *
NAMEPTR, POINTER TO VARIABLE NAME *
NAMELEN, LENGTH OF VARIABLE NAME *
VALUEPTR, POINTER TO VARIABLE VALUE *
VALUELEN, LENGTH OF VARIABLE VALUE *
TOKEN), TOKEN TO VARIABLE ACCESS SERVICE *
VL CAUSES HI BIT ON IN THE PARM LIST

*

RET441 LTR R15,R15 CHECK RETURN CODE
BNZ ERRORRTN
L R7,VALUELEN
L R8,VALUEPTR
LA R9,L’VALUE
CR R7,R9
BNE BAD
CLC 0(L’VALUE,R8),VALUE
BNE BAD

*

*
BAD DS 0H
ERRORRTN DS 0H

LA R08,TSVRUNDF OBTAIN NO IMPLICIT RETURN CODE
CLR R15,R08 DETERMINE IF UNDEFINED VARIABLE
BNZ EXITCODE IF NOT, THEN EXIT

*
* ISSUE ERROR MESSAGES OR TAKE ANY APPROPRIATE ACTION
*

*
EXITCODE L R13,4(,R13) CALLER’S SAVEAREA

L R14,12(,R13) RESTORE REGISTER 14
LM R00,R12,20(R13) RESTORE REMAINING REGISTERS
BR R14 RETURN TO CALLER, REGISTER 15 CONTAINS

* THE RETURN CODE FROM IKJCT441
*

*
NAME DC CL12’VARIABLENAME’ NAME OF THE VARIABLE
NAMELEN DC F’12’ LENGTH OF THE VARIABLE NAME
VALUE DS CL3 VARIABLE VALUE WILL BE RETURNED HERE
VALUELEN DS F LENGTH OF THE VARIABLE VALUE WILL BE

RETURNED HERE

NAMEPTR DC A(NAME) POINTER TO THE VARIABLE NAME
VALUEPTR DC A(VALUE) POINTER TO THE VARIABLE VALUE
TOKEN DC F’0’ TOKEN (UNUSED HERE)
ECODE DC A(TSVNOIMP) ENTRY CODE FOR NO IMPLICIT SETTING
* OF VALUES. IF THE SYMBOLIC VARIABLE
* NAME HAD NOT BEEN PREVIOUSLY DEFINED
* IKJCT441 WILL ISSUE THE RETURN CODE
* of 52 (TSVRUNDF).
SAVEAREA DS 18F

END

Figure 170. Example 3: Return Variable Value Only (Part 2 of 2)

Examples Using IKJCT441

Chapter 24. Using the Variable Access Routine IKJCT441 475

Example 4: Return All Active Variables and Their Values
Figure 171 shows an example of how to invoke IKJCT441 to find all variables and
their values.

LOCATE CSECT
CVTPTR EQU 16
CVTTVT EQU X’9C’
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
R11 EQU 11
R9 EQU 9
R8 EQU 8
R0 EQU 0

IKJTSVT

LOCATE CSECT
STM R14,R12,12(R13) SAVE CALLER’S REGISTERS
BALR R12,0 ESTABLISH ADDRESSABILITY
USING *,R12 BASE REGISTER OF EXECUTING PROGRAM
ST R13,SAVEAREA+4 CALLER’S SAVEAREA ADDRESS
LA R15,SAVEAREA EXECUTING PROGRAM’S SAVEAREA ADDRESS
ST R15,8(,R13) EXECUTING PROGRAM’S SAVEAREA ADDRESS
LA R13,SAVEAREA EXECUTING PROGRAM’S SAVEAREA ADDRESS

*

*
LOOP DS 0H

L R15,CVTPTR ESTABLISH
L R15,CVTTVT(,R15) ADDRESSABILITY TO THE
L R15,TSVTVACC-TSVT(,R15) VARIABLE ACCESS SERVICE

*

* INVOKE THE VARIABLE ACCESS SERVICE
*

LTR R15,R15 VERIFY TSVT ADDRESS PRESENT
BNZ CALL441 IF PRESENT, CALL IKJCT441

LINK441 LINK EP=IKJCT441, *
PARAM=(ECODE, ENTRY CODE *
NAMEPTR, POINTER TO VARIABLE NAME *
NAMELEN, LENGTH OF VARIABLE NAME *
VALUEPTR, POINTER TO VARIABLE VALUE *
VALUELEN, LENGTH OF VARIABLE VALUE *
TOKEN), TOKEN TO VARIABLE ACCESS SERVICE *
VL=1 CAUSES HI BIT ON IN THE PARM LIST

B RET441

CALL441 CALL (15), *
(ECODE, ENTRY CODE *
NAMEPTR, POINTER TO VARIABLE NAME *
NAMELEN, LENGTH OF VARIABLE NAME *
VALUEPTR, POINTER TO VARIABLE VALUE *
VALUELEN, LENGTH OF VARIABLE VALUE *
TOKEN), TOKEN TO VARIABLE ACCESS SERVICE *
VL CAUSES HI BIT ON IN THE PARM LIST

*

Figure 171. Example 4: Return all Active Variables and their Values (Part 1 of 2)

Examples Using IKJCT441

476 z/OS V1R4.0 TSO/E Programming Services

RET441 C R15,NOMORE
BE ENDUP
LTR R15,R15
BNZ ERRORRTN

*
MAINLINE DS 0H

L R8,NAMEPTR
L R9,VALUEPTR

*

*
* ISSUE ’PUTLINE’ TO WRITE VARIABLE NAME AND VALUE
* - OR -
* SAVE THE NAME AND VALUE IN A TABLE
*
*

B LOOP
*
*
ERRORRTN DS 0H
*

* ANALYZE RETURN CODE
*

B MAINLINE
*
ENDUP DS 0H

L R13,4(,R13)
L R14,12(,R13) RESTORE REGISTER 14
LM R0,R12,20(R13) RESTORE REMAINING REGISTERS
BR R14 RETURN TO CALLER, REGISTER 15 CONTAINS

* THE RETURN CODE FROM IKJCT441
*

*
NAMELEN DS F LENGTH OF NAME WILL BE RETURNED HERE
VALUELEN DS F LENGTH OF VALUE WILL BE RETURNED HERE
NAMEPTR DS A ADDRESS OF NAME WILL BE RETURNED HERE
VALUEPTR DS A ADDRESS OF VALUE WILL BE RETURNED HERE
TOKEN DC F’0’ TOKEN MUST BE ZERO ON THE FIRST CALL
* AND NEVER CHANGED BY THE CALLER
ECODE DC A(TSVELOC) ENTRY CODE FOR THE ’LOCATE’ SERVICE
NOMORE DC A(TSVRNOM) RETURN CODE FOR NO MORE NAMES
SAVEAREA DS 18F

END

Figure 171. Example 4: Return all Active Variables and their Values (Part 2 of 2)

Examples Using IKJCT441

Chapter 24. Using the Variable Access Routine IKJCT441 477

Example 5: Update or Create a List of Variables
Figure 172 shows an example of a program that invokes IKJCT441 to update the
value of three variables or create the variables if they do not exist. The program
exits with the return code from IKJCT441 in register 15.

SETLIST CSECT
CVTPTR EQU 16
CVTTVT EQU X’9C’
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
R11 EQU 11
R00 EQU 0

IKJTSVT

SETLIST CSECT
STM R14,R12,12(R13) Save caller’s registers
BALR R12,0 Establish addressability
USING *,R12 Base register of executing program
ST R13,SAVEAREA+4 Caller’s savearea address
LA R15,SAVEAREA Executing program’s savearea address
ST R15,8(,R13) Executing program’s savearea address
LA R13,SAVEAREA Executing program’s savearea address

*

OI NXTLIS2@,B’10000000’ Turn on the hi bit to show
* the end of the 2nd element

OI NXTLIS3@,B’10000000’ Turn on the hi bit to show
* the end of the 3rd element

*
L R15,CVTPTR Access the CVT
L R15,CVTTVT(,R15) Access the TSVT
L R15,TSVTVACC-TSVT(,R15) Access the Variable Access Rtn

*

Figure 172. Example 5: Update or Create a List of Variables (Part 1 of 4)

Examples Using IKJCT441

478 z/OS V1R4.0 TSO/E Programming Services

* Invoke the variable access service
*

LTR R15,R15 Verify TSVT address present
BNZ CALL441 If present, call IKJCT441

LINK441 LINK EP=IKJCT441,
PARAM=(ECODE, Entry code
NAMEPTR, Pointer to variable name
NAMELEN, Length of variable name
VALUEPTR, Pointer to variable value
VALUELEN, Length of variable value
TOKEN, Token to variable access service
ECTPARM, Let variable access get the ECT
RETCODE, Function return code
NEXTLIST), Next element address
VL=1 Causes hi bit on in the parm list

B RET441

CALL441 CALL (15),
(ECODE, Entry code
NAMEPTR, Pointer to variable name
NAMELEN, Length of variable name
VALUEPTR, Pointer to variable value
VALUELEN, Length of variable value
TOKEN, Token to variable access service
ECTPARM, Let variable access get the ECT
RETCODE, Function return code
NEXTLIST), Next element address
VL Causes hi bit on in the parm list

*

RET441 DS 0H
L R13,4(,R13) Caller’s savearea
L R14,12(,R13) Restore register 14
LM R00,R12,20(R13) Restore remaining registers
BR R14 Return to caller, register 15 contains

the return code from IKJCT441
*

Figure 172. Example 5: Update or Create a List of Variables (Part 2 of 4)

Examples Using IKJCT441

Chapter 24. Using the Variable Access Routine IKJCT441 479

*
****** First request ******
*
PARM1 DS 0F First request follows:
ECODE DC A(TSVEUPDT) 1st request type
NAMEPTR DC A(NAME) Pointer to 1st variable name
NAME DC CL4’VAR1’ 1st variable name
NAMELEN DC F’4’ 1st variable length
VALUEPTR DC A(VALUE) Pointer to 1st variable value
VALUE DC CL3’ONE’ 1st variable value
VALUELEN DC F’3’ 1st variable value length
TOKEN DC F’0’ Token (unused here)
ECTPARM DC X’FFFFFFFF’ Let variable access get the ECT
RETCODE DC F’0’ Function return code
NEXTLIST DC A(PARMS2) Next element address
*

****** Second request ******
*
PARMS2 DS 0F Second request follows:
* Second request address list:

DC A(ECODE2) Address of parm 1
DC A(NAMEPTR2) Address of parm 2
DC A(NAMELEN2) Address of parm 3
DC A(VALPTR2) Address of parm 4
DC A(VALLEN2) Address of parm 5
DC A(TOKEN2) Address of parm 6
DC A(ECTPRM2) Address of parm 7
DC A(RETCDE2) Address of parm 8

NXTLIS2@ DC A(NEXTLIS2) Address of parm 9

* Second request data:
ECODE2 DC A(TSVEUPDT) 2nd request type
NAMEPTR2 DC A(NAME2) Pointer to 2nd variable name
NAME2 DC CL4’VAR2’ 2nd variable name
NAMELEN2 DC F’4’ 2nd variable length
VALPTR2 DC A(VALUE2) Pointer to 2nd variable value
VALUE2 DC CL3’TWO’ 2nd variable value
VALLEN2 DC F’3’ 2nd variable value length
TOKEN2 DC F’0’ Token (unused here)
ECTPRM2 DC X’FFFFFFFF’ Let variable access get the ECT
RETCDE2 DC F’0’ Function return code
NEXTLIS2 DC A(PARMS3) Next element address
*

Figure 172. Example 5: Update or Create a List of Variables (Part 3 of 4)

Examples Using IKJCT441

480 z/OS V1R4.0 TSO/E Programming Services

****** Third request ******
*
PARMS3 DS 0F Third request follows:
* Third request address list:

DC A(ECODE3) Address of parm 1
DC A(NAMEPTR3) Address of parm 2
DC A(NAMELEN3) Address of parm 3
DC A(VALPTR3) Address of parm 4
DC A(VALLEN3) Address of parm 5
DC A(TOKEN3) Address of parm 6
DC A(ECTPRM3) Address of parm 7
DC A(RETCDE3) Address of parm 8

NXTLS3@ DC A(NEXTLIS3) Address of parm 9

* Third request data:
ECODE3 DC A(TSVEUPDT) 3rd request type
NAMEPTR3 DC A(NAME3) Pointer to 3rd variable name
NAME3 DC CL4’VAR3’ 3rd variable name
NAMELEN3 DC F’4’ 3rd variable length
VALPTR3 DC A(VALUE3) Pointer to 3rd variable value
VALUE3 DC CL5’THREE’ 3rd variable value
VALLEN3 DC F’3’ 3rd variable value length
TOKEN3 DC F’0’ Token (unused here)
ECTPRM3 DC X’FFFFFFFF’ Let variable access get the ECT
RETCDE3 DC F’0’ Function return code
NEXTLIS3 DC F’0’ Next element address

Figure 172. Example 5: Update or Create a List of Variables (Part 4 of 4)

Examples Using IKJCT441

Chapter 24. Using the Variable Access Routine IKJCT441 481

Examples Using IKJCT441

482 z/OS V1R4.0 TSO/E Programming Services

Chapter 25. Accessing the Information Center Facility Names
Directory

Operation of ICQCAL00 . 483
Search Input . 483
Search Output . 484

Applications . 485
Invoking ICQCAL00. 485
Input Table Variables . 486
Return Codes from ICQCAL00 489
Example Using ICQCAL00 . 491

This chapter describes how to use ICQCAL00 in an application program to access
the Information Center Facility names directory.

A valid ISPF environment must exist for an application to be able to invoke
ICQCAL00.

TSO/E program ICQCAL00 lets application users search the Information Center
Facility’s names directory and retrieve information such as phone numbers, user
IDs, and addresses for specified names. For information about the names directory
itself, see z/OS TSO/E Administration.

Operation of ICQCAL00

Search Input
An application that uses ICQCAL00 passes names directory search requests to
ICQCAL00 through an ISPF table. Applications must define the table in advance
and identify it when invoking ICQCAL00. The application can prompt users for
search requests and can create the table from the users’ responses.

1. The user requests information.

2. The application program, if necessary, prompts the user for more information.

3. The application program places the request into the ISPF table and then
invokes ICQCAL00.

4. ICQCAL00 gets the requested information from the names directory and returns
it to the application program. The application program then returns the
information to the user.

Each row of the table provides the input for one search of the names directory,
using the following types of variables:

v Variables in the names directory to be searched for and returned

Figure 173. Using ICQCAL00 to Access the Names Directory

© Copyright IBM Corp. 1988, 2002 483

v Variables that control the scope of the search and the results and messages
displayed to the user.

Any variable or combination of variables in the names directory can be searched
for, such as last name, first name, department, or user ID. For example, one row of
the input table can specify a search for all directory entries with the name John
Smith, or for all directory entries in a certain department. The variable QCANVARS,
set by the non-display panel ICQSIECA, contains all the variables used in the
names directory.

The controlling variables limit the search. For example, they can specify the names
directories to be searched (master, private or both), the types of directory entries to
be searched for (names, groups, or both) and the maximum number of selections
allowed.

Other variables specify panels on which to display the search results to users, and
messages to appear on the panels to guide the user in selecting the displayed
names.

Search Output
When a single name matches a search request, the row of the input table that
contained the request is updated with the requested data from the matching names
entry. The application can then use the data as needed, such as displaying it to a
user.

If more than one names entry matches the request, ICQCAL00 displays them on a
list panel for the user to view or select. If the user selects an entry, ICQCAL00
places it in the table.

ICQCAL00 uses the panel in Figure 174 as the default panel for listing matching
entries.

If the search locates the entry for a group of names, ICQCAL00 can return or
display either the name of the group, or each of the names in the group. One of the
controlling variables in the input row lets you specify that any groups found be
expanded into their individual names.

ICQCAE40 NAMES - LIST OF ENTRIES
COMMAND ===> SCROLL ===> PAGE

To view, V, or select, S, an entry, type the letter to the left of the
selected entry.
To save selections, press END; to cancel, type CANCEL on the COMMAND line.

TYPE LAST/GROUP FIRST/NICKNAME USER ID DEPT./DESCRIPTION
_ NAME Hollerith Herman CARDS Census
_ NAME Einstein Albert EMC2 Physics Lab
_ GROUP Security D333
************************ BOTTOM OF LIST ****************************

Figure 174. Default Panel for Listing Names - Panel ICQCAE40

Operation of ICQCAL00

484 z/OS V1R4.0 TSO/E Programming Services

Applications
Using ICQCAL00, application programs can search the Information Center Facility
names directories for specific fields and retrieve those entries that match the search
requests. The retrieved entries can then be displayed to users, who can view them
or select them for further processing.

Applications can use the retrieved entries for mailing lists, phone directories, and
memo addressing programs. In addition, when an application accesses the names
directory in WRITE mode (using variable QAAMODE), it can scan the names
directory and make changes to entries. This capability allows applications to change
individual entries or make global changes to the names directory, such as changing
department names or addresses.

Invoking ICQCAL00
Applications invoke ICQCAL00 with the following syntax. The parameter INTABLE is
required; the others are optional keyword parameters.
ICQCAL00 +

REMDUPS(Y|N) +
TBDISP(OPEN|CLOSE) +
INTABLE(table name) +
ERRSTOP(Y|N)

REMDUPS(Y | N)
specifies whether ICQCAL00 should remove duplicate names found in the
search before returning control to the calling application. Duplicates occur when
ICQCAL00 finds the same directory ID in both the private and master
directories. The default is Y, to remove duplicate names.

ICQCAL00 removes duplicates based on the values of the directory ID (QAAID)
and the directory indicator (QAAIND). For duplicates to be removed, the
application must enter both of these variables into the input table.

TBDISP(OPEN | CLOSE)
specifies whether to keep the names directory open when control is returned to
the calling application. If the application searches the directory successively,
leaving the directory open improves performance. The application is responsible
for closing the directories when they receive them open. The default is CLOSE.

INTABLE(table name)
specifies the name of the input table that contains the search variables. The
application is responsible for creating and maintaining this table. The following
section describes the possible variables for the table.

ERRSTOP(Y | N)
specifies whether ICQCAL00 should stop processing requests or continue until
all requests have been processed. The default, Y, returns control to the calling
application under the following conditions:

v An error occurs, such as a table open error.

v An invocation parameter value is incorrect.

v No match is found for a search request.

v The user types CANCEL on a list of matching entries or presses END
without selecting an entry.

Specify N to return control after all the requests have been processed.

Applications

Chapter 25. Accessing the Information Center Facility Names Directory 485

Input Table Variables
Each row in the input table may contain any or all of the following QAA variables
mentioned. The application must specify the search variables first under the
parameter QAAVARS, then list them separately with their contents, as in the
following example:
QAAVARS(QAALAST,QAAFRST)
QAALAST(Smith)
QAAFRST(John)

QAAVARS
specifies the names variables to be searched for. The possible search variables
and their contents are the following, as contained in the variable QCANVARS.

Table 129. Search Variables and Their Contents

Variable Contents

QAALAST The last name.
QAAFRST The first name
QAADISP The display form of the name, which is in the form: last name, first name,

middle initial.
QAAMIDLE The middle name.
QAANICK The nickname.
QAASUFIX The name suffix, for example Jr., Sr., or III
QAANTITL The name title, for example, Mr., Mrs., or Ms.
QAANODE The system node.
QAAUSER The system user ID.
QAANODE2 The second system node.
QAAUSER2 The second system user ID.
QAADNUM The department number.
QAADNAME The department name.
QAAUTYPE The user type.
QAATITLE The job title or position.
QAAPHONE The phone number.
QAAADDR The first line of the internal address.
QAAADDR2 The second line of the internal address.
QAAXADR1 The first line of the external address.
QAAXADR2 The second line of the external address.
QAAXADR3 The third line of the external address.
QAAXADR4 The fourth line of the external address.
QAAID The directory ID. This string identifies an entry, and must be unique in

the directory containing the entry.
QAAIND The directory indicator. This variable contains:

v “#” if the entry is either a master directory entry or a private directory
entry that is a modified version of a master directory entry.

v “@” if the entry is a private directory entry that is not a modified
version of a master directory entry.

QAAPRIV Private directory. This variable contains:
v “>” if the entry is for a private directory.
v A blank if the entry is for the master directory.

QAATYPE The type of entry (“NAME” or “GROUP”).

Note: For the variables QAAADDR through QAAXADR4, you must specify
values in the same case as they exist in the directory. For example, if
you search for NEW YORK, you will not match entries of New York or
new york in the directory.

Input Table Variables

486 z/OS V1R4.0 TSO/E Programming Services

QAAUSE
specifies whether the row should be used for searching. Set this variable to Y if
the row is to be searched. When ICQCAL00 processes a row and finds a
matching entry in the names directory, it stores the requested data in the row
and sets QAAUSE to N, so the row is not searched again. When ICQCAL00
processes a row but finds no matching entry, or when a variable in the row is
incorrect, it sets this variable to X. The calling application can then scan for the
first row with a QAAUSE value of X before displaying an error message.

QAAGNRIC
specifies that if ICQCAL00 finds no match for the values, it should scan the
directory a second time using generic search values. In that case, any names
directory entries beginning with the passed values are displayed on a list for
selection or returned as matches. The default is Y, to allow a generic search.

QAALIST
specifies whether ICQCAL00 should display a single match for the user to view
and select. Y specifies that a single match be displayed on the list panel. The
default, N, lets ICQCAL00 return a single match to the table row without
displaying it on a list.

QAARTYPE
specifies that the search be limited to NAMES or GROUPS, or should include
both. The default is BOTH.

QAADIR
specifies that ICQCAL00 should search the master directory (MASTER), the
user’s private names directory (PRIVATE), or both. The default is BOTH.

If TBDISP is OPEN, ICQCAL00 sets the names of the directories in use in the
shared pool variables QAATAB1 (private directory) and QAATAB2 (master
directory). The application is responsible for closing these tables later.

QAAMODE
specifies the mode in which the names directory is to be opened. WRITE allows
the application to update a matching entry. For WRITE, the value of QAADIR
cannot be BOTH. The default is READ, to access the directory in read mode
only.

QAAMXSEL
specifies the maximum number of entries to be selected or returned. The
number can have up to eight digits. If the user attempts to select more than nn
entries from a list, ICQCAL00 displays an error message. An error message is
also displayed if a selected group is to be expanded into its individual names
(variable QAAEXPGP is set to Y), and the expansion would result in more than
nn entries. If this variable is unspecified, or set to null or zero, there is no limit
on the number of entries that can be selected or returned. The default is null.

QAAMXMSG
specifies the ID of a message to display when expansion of a group or
selection from the list would cause more than QAAMXSEL entries to be
returned to the caller. If this variable is unspecified or set to null, ICQCAL00 will
display an Information Center Facility message (ICQCA701).

QAAEXPGP
specifies whether a matching group should be expanded. The default, Y, causes
ICQCAL00 to return all the names within the group or within included groups to
the input table.

QAAFMSG
specifies the ID of a message to display on the list panel the first time it

Input Table Variables

Chapter 25. Accessing the Information Center Facility Names Directory 487

appears. If two or more list requests have been made, this variable allows the
application to send a specific message to help the user select the names in
each list. For example, in an installation’s memo facility, the first list request
might be for the names in the TO: section, the next might be for those who
receive carbon copies, and the next for the distribution list. ICQCAL00 could
display each list with a prompting message to guide the user in selecting the
correct names.

QAAPANEL
specifies the name of the panel to be used for displaying the list of names
matching the search variables. The default panel, ICQCAE40, is shown in
Figure 174 on page 484.

QAAPANGP
specifies the name of the panel to be used for viewing the members in a group
that matches the search variables. This panel is used when a user chooses to
view a group entry. The default panel, ICQCAE41, is shown as follows.

Note: A panel used instead of the default panel must have similar INIT and
PROC sections.

QAADUPSR
specifies whether to delete duplicates resulting from expansion of a group or
selection from the list, before processing the next search request. Deletion
ensures that duplicate results are not returned for the name in the current row.
The default is Y, to delete duplicates.

ICQCAL00 removes duplicates based on the values of the directory ID (QAAID)
and the directory indicator (QAAIND). For duplicates to be removed, the
application must enter both of these variables into the input table.

QAASCNIK
specifies that ICQCAL00 search for the value of QAAFIRST among the
nicknames in the directory if it is not found among the first names. If you want
this nickname search, then do not specify QAANICK in QAAVARS. The default
is Y, for searching the nicknames.

QAAMSGID
contains the ID of a message that ICQCAL00 returns if it sets a non-zero return
code after processing the row.

ICQCAE41 NAMES - VIEW A GROUP
COMMAND ===> SCROLL ===> PAGE

To view, V, or select, S, an entry, type the letter to the left of the
selected entry.
To save selections, press END; to cancel, type CANCEL on the COMMAND line.

GROUP NAME.............Security
DESCRIPTION............
TYPE LAST/GROUP NAME FIRST/NICKNAME USER ID DEPARTMENT/DESC
NAME Goergen Pavel GNP D333
NAME Pawlin Karen KP D333
GROUP Fire D333a
GROUP Rescue D333b

************************ BOTTOM OF LIST ********************************

Figure 175. Default Panel for Viewing Groups - Panel ICQCAE41

Input Table Variables

488 z/OS V1R4.0 TSO/E Programming Services

QAARETCD
contains the return code that ICQCAL00 sets after processing the row. (Each
request row has its own return code in a QAARETCD variable.) The possible
return codes are listed in “Return Codes from ICQCAL00”.

Return Codes from ICQCAL00
ICQCAL00 sets one of the following return codes in the variable &QAARETCD.
There is one return code per request from the table.

Table 130. ICQCAL00 Return Codes

Return Code Meaning Message ID

0 ICQCAL00 completed successfully. N/A

4 No names were selected from list. ICQCA710

8 CANCEL was typed on the list. ICQCA711

12 The name was not found. ICQCA712

16 Master/Private directory conflict. The private directory
has precedence yet the master directory was
selected.

ICQCA720

20 The private group selected consists of all master
directory entries. Only private directory entries are
available.

ICQCA721

24 Some entries in the group are from the master
directory and are not available.

ICQCA722

30 The master directory library was not allocated. ICQCA713

32 The master directory does not exist. ICQCA714

34 The master directory is busy. ICQCA715

36 There was a severe error opening the master
directory.

ICQCA716

40 The private directory library was not allocated. ICQCA717

44 The private directory is busy. ICQCA718

46 There was a severe error opening the private
directory.

ICQCA719

100 INTABLE was not predefined. N/A

101 REMDUPS is not valid. N/A

102 TBDISP is not valid. N/A

103 ERRSTOP is not valid. N/A

110 No search variables were specified. N/A

111 There are no rows to be searched. N/A

112 QAAGNRIC is not valid. N/A

113 QAALIST is not valid. N/A

114 QAARTYPE is not valid. N/A

115 QAADIR is not valid. N/A

116 QAAEXPGP is not valid. N/A

117 QAADUPSR is not valid. N/A

118 QAASCNIK is not valid. N/A

119 QAAMODE is not valid. N/A

Input Table Variables

Chapter 25. Accessing the Information Center Facility Names Directory 489

Table 130. ICQCAL00 Return Codes (continued)

Return Code Meaning Message ID

120 QAAMODE/QAADIR combination is not valid. N/A

121 QAAMXSEL is not valid. N/A

130 ISPLINK was not found. N/A

131 Insufficient storage. N/A

132 Internal error. N/A

133 Internal error. N/A

134 QAAVARS contains an incorrect (non-names
directory) variable.

N/A

140 A severe error was encountered. N/A

Return Codes from ICQCAL00

490 z/OS V1R4.0 TSO/E Programming Services

Example Using ICQCAL00
The PHONE CLIST in Figure 176 is a sample application that invokes ISPF dialog
management services to display input and output panels. The PHONE CLIST
searches the names directory and returns the phone number for a name that the
user provides on the input panel. The input panel is shown in Figure 177 on
page 493.

The PHONE CLIST creates an input table and loads each phone number request in
a row. It then invokes ICQCAL00 to search the names directory and displays the
results on an output panel (Figure 178 on page 494). If more than one directory
entry matches a request, they are displayed on the list panel shown in Figure 179
on page 495.

/**/
/* THIS PROGRAM SEARCHES THE NAMES DIRECTORY FOR PHONE NUMBERS OF */
/* PERSONS SPECIFIED BY THE USER ON AN INPUT PANEL. DUPLICATE */
/* RESULTS ARE RETURNED ON A SELECTION PANEL FOR THE USER TO CHOOSE */
/* FROM, AND FINAL RESULTS ARE DISPLAYED ON AN OUTPUT PANEL. */
/**/
PROC 0 TRACE(N)

CONTROL END(ENDO)
CONTROL NOPROMPT NOFLUSH NOMSG
IF &NRSTR(&TRACE) = Y THEN +

CONTROL LIST CONLIST SYMLIST MSG ASIS
ELSE +

CONTROL ASIS NOLIST NOCONLIST NOSYMLIST
ISPEXEC CONTROL NONDISPL ENTER
ISPEXEC DISPLAY PANEL(ICQSIECA) /* DISPLAY DEFAULT NAME VARIABLES
ISPEXEC CONTROL ERRORS RETURN
ISPEXEC TBEND INTABLE /* END TABLE, IN CASE IT EXISTS
ISPEXEC CONTROL ERRORS CANCEL

/**/
/* CREATE INPUT TABLE OF SEARCH REQUESTS */
/**/
ISPEXEC TBCREATE INTABLE NAMES (QAAVARS QAAUSE QAAGNRIC +

QAALIST QAARTYPE QAADIR QAAMODE QAAMXSEL +
QAAMXMSG QAAEXPGP QAAFMSG QAAPANEL QAAPANGP QAADUPSR +
QAASCNIK QAAMSGID QAARETCD &QCANVARS) NOWRITE REPLACE

SET ISPCODE = &LASTCC
IF &ISPCODE > 4 THEN +

DO
WRITE ERROR IN TBCREATE: RETURN CODE OF &ISPCODE
GOTO EXIT

ENDO
SET NAMES_ENTERED = Y

Figure 176. A Sample Application Using ICQCAL00 — the PHONE CLIST (Part 1 of 3)

Example Using ICQCAL00

Chapter 25. Accessing the Information Center Facility Names Directory 491

DO WHILE &NAMES;_ENTERED = Y
ISPEXEC TBVCLEAR INTABLE
ISPEXEC DISPLAY PANEL(JRT1) /* GET DESIRED INFORMATION
SET ISPCODE = &LASTCC /* SAVE RETURN CODE
IF &ISPCODE ¬= 0 THEN +

SET NAMES_ENTERED = N
SET QAAUSE = Y /* SET UP USE FLAG
SET QAASCNIK = Y /* REPEAT WITH FIRST NAME AS NICKNAME
SET QAAPANEL = &STR(JRT3) /* WANT LIST TO USE THIS PANEL
/***/
/* USE ALL OTHER DEFAULT VALUES */
/***/
IF &NRSTR(&QAALAST) ¬= THEN +

SET QAAVARS = &QAAVARS QAALAST /* USE LAST NAME IN SEARCH
IF &NRSTR(&QAAFRST) ¬= THEN +

SET QAAVARS = &QAAVARS QAAFRST /* USE FIRST NAME IN SEARCH
IF &NRSTR(&QAAMIDLE) ¬= THEN +

SET QAAVARS = &QAAVARS QAAMIDLE /* USE MIDDLE NAME IN SEARCH
IF &NRSTR(&QAAUSER) ¬= THEN +

SET QAAVARS = &QAAVARS QAAUSER /* USE USER ID IN SEARCH
ISPEXEC TBADD INTABLE /* ADD ROW TO TABLE
IF &NAMES;_ENTERED = Y THEN +

DO
/**/
/* CALL NAMES DIRECTORY PROGRAM ICQCAL00 */
/* OPTIONS: REMOVE DUPLICATE ENTRIES */
/* LEAVE DIRECTORY TABLES OPEN */
/**/
ICQCAL00 REMDUPS(Y) TBDISP(OPEN) INTABLE(INTABLE)
ISPEXEC TBTOP INTABLE /* GO TO TOP OF TABLE
ISPEXEC TBVCLEAR INTABLE
SET QAAUSE = X /* SET FOR ERROR FLAG
ISPEXEC TBSARG INTABLE
ISPEXEC TBSCAN INTABLE
IF &LASTCC = 0 THEN +

DO /* NAME FOUND
IF &QAAMSGID ¬= THEN +

ISPEXEC SETMSG MSG(&QAAMSGID) /* ID NOT BLANK, USE IT
ISPEXEC TBDISPL INTABLE PANEL(JRT2) /* DISPLAY RESULTS

ENDO
ELSE +

DO
ISPEXEC TBVCLEAR INTABLE
SET QAAUSE = N
ISPEXEC TBSARG INTABLE
ISPEXEC TBDISPL INTABLE PANEL(JRT2)

ENDO
ENDO

Figure 176. A Sample Application Using ICQCAL00 — the PHONE CLIST (Part 2 of 3)

Example Using ICQCAL00

492 z/OS V1R4.0 TSO/E Programming Services

ISPEXEC CONTROL ERRORS RETURN
ISPEXEC TBEND INTABLE /* END TABLE, IN CASE IT EXISTS
ISPEXEC CONTROL ERRORS CANCEL
ISPEXEC TBCREATE INTABLE NAMES (QAAVARS QAAUSE QAAGNRIC +

QAALIST QAARTYPE QAADIR QAAMODE QAAMXSEL +
QAAMXMSG QAAEXPGP QAAFMSG QAAPANEL QAAPANGP QAADUPSR +
QAASCNIK &QCANVARS) NOWRITE REPLACE

SET ISPCODE = &LASTCC
IF &ISPCODE > 4 THEN +

DO
WRITE ERROR IN TBCREATE: RETURN CODE OF &ISPCODE
GOTO EXIT
ENDO

ENDO
EXIT: +

ISPEXEC VGET (QAATAB1 QAATAB2) SHARED /* GET NAMES OF OPEN DIRECTORIES */
ISPEXEC CONTROL ERRORS RETURN/* DON’T USE RETURN CODE PANELS */
ISPEXEC TBEND &QAATAB1 /* CLOSE PRIVATE DIRECTORY */
ISPEXEC TBEND &QAATAB2 /* CLOSE MASTER DIRECTORY */
ISPEXEC CONTROL ERRORS CANCEL/* ALLOW RETURN CODE PANELS */
EXIT CODE(0) /* EXIT WITH RETURN CODE */

Figure 176. A Sample Application Using ICQCAL00 — the PHONE CLIST (Part 3 of 3)

)ATTR DEFAULT(%+_)
/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

@ TYPE(INPUT) INTENS(HIGH) PAD(’ ’) CAPS(OFF) JUST(LEFT)
! TYPE(OUTPUT) INTENS(LOW) PAD(’ ’) CAPS(OFF) JUST(LEFT)

)BODY
+ PHONE DIRECTORY SEARCH
%COMMAND ===>_ZCMD +
%
+Fill in the name of the person you want information about.
+To continue, press ENTER; to end, press END.
+
+ Last Name ===>@Z +
+ First Name ===>@Z +
+ Middle Name ===>@Z +
+ User Id ===>@Z +
)INIT

.ZVARS = ’(QAALAST QAAFRST QAAMIDLE QAAUSER)’ /* create input variables */

.CURSOR = QAALAST
)PROC
)END

Figure 177. PHONE CLIST Input Panel Definition (JRT1)

Example Using ICQCAL00

Chapter 25. Accessing the Information Center Facility Names Directory 493

)ATTR
% TYPE(TEXT) INTENS(HIGH) CAPS(OFF)
+ TYPE(TEXT) INTENS(LOW) CAPS(OFF)
_ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT)
$ TYPE(INPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT) PAD(_)
TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) PAD(_)
! TYPE(OUTPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT)
@ TYPE(OUTPUT) INTENS(LOW) CAPS(OFF) JUST(LEFT) PAD(’ ’)

)BODY
+ PHONE DIRECTORY LIST OF RESULTS
%COMMAND ===>_ZCMD %SCROLL ===>_Z +
%
+The information you requested is shown below.
+Press ENTER or END to continue.
+
% TYPE LAST/GROUP NAME FIRST NAME USER ID PHONE NUMBER
)MODEL ROWS(SCAN)

@Z@Z @Z @Z @Z @Z
)INIT
.ZVARS = ’(ZSCML,QAAPRIV,QAATYPE,QAALAST,+

QAAFRST,QAAUSER,QAAPHONE)’ /*display variables */
IF (&ZSCML = ’ ’)

&ZSCML = ’PAGE’
)PROC
)END

Figure 178. PHONE CLIST Output Panel Definition (JRT2)

Example Using ICQCAL00

494 z/OS V1R4.0 TSO/E Programming Services

)ATTR
% TYPE(TEXT) INTENS(HIGH) CAPS(OFF)
+ TYPE(TEXT) INTENS(LOW) CAPS(OFF)
_ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT)
$ TYPE(INPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT) PAD(_)
TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) PAD(_)
! TYPE(OUTPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT)
@ TYPE(OUTPUT) INTENS(LOW) CAPS(OFF) JUST(LEFT) PAD(’ ’)

)BODY
+ PHONE DIRECTORY LIST OF ENTRIES
%COMMAND ===>_ZCMD %SCROLL ===>_Z +
%
+More than one match was found, to view an entry type V next to it.
+To select one, type S.
+To save selections, press END; to cancel, type CANCEL on the COMMAND line.
+
% TYPE LAST/GROUP NAME FIRST NAME USER ID PHONE NUMBER
)MODEL ROWS(SCAN)
#Z@Z@Z @Z @Z @Z @Z
)INIT
.ZVARS = ’(ZSCML,QAANSEL,QAAPRIV,QAATYPE,QAALAST,+

QAAFRST,QAAUSER,QAAPHONE)’
IF (&ZSCML = ’ ’)

&ZSCML = ’PAGE’
)PROC
&ICQCMD = &ZCMD /* save command for display in msg ICQGC036 */
&QAANTSEL = &QAANSEL /* save selection character for msg ICQCA700 */
&QAAVCHAR = ’V’
&QAASCHAR = ’S’
&ZCMD = TRANS(&ZCMD

’ ’,’ ’
CANCEL,CANCEL

MSG = ICQGC036) /* validate command, blank, or CANCEL only */
&QAANSEL = TRANS(&QAANSEL

&QAAVCHAR;,’V’
&QAASCHAR;,’S’

’ ’,’ ’
MSG = ICQCA700) /* validate selection char: S, V, or blank */

IF (&ZCMD = ’CANCEL’)/* if CANCEL is typed */
&QACAN = ’Y’
VPUT (QACAN) SHARED /* set CANCEL flag and save it*/

)END

Figure 179. PHONE CLIST List Panel Definition (JRT3)

Example Using ICQCAL00

Chapter 25. Accessing the Information Center Facility Names Directory 495

Example Using ICQCAL00

496 z/OS V1R4.0 TSO/E Programming Services

Chapter 26. Using the Printer Support CLISTs

Overview of Using the Printer Support CLISTs 497
Printer Selection CLIST, ICQCPC00. 499

Syntax and Parameters . 501
Return Codes from ICQCPC00 503
Variables. 504

Print CLIST, ICQCPC10 . 517
Functions . 517
Applications . 518
Considerations . 518
Syntax and Parameters . 518
Return Codes from ICQCPC10 520

Print CLIST, ICQCPC15 . 521
Functions . 521
Applications . 521
Considerations . 522
Syntax and Parameters . 522
Return Codes from ICQCPC15 525

Examples Using Printer CLISTs 526
Example 1: The Printer List CLIST 526
Example 2: The Print Function CLIST 528

This chapter describes how to use the printer support CLISTs, ICQCPC00,
ICQCPC10 and ICQCPC15, in application programs.

A valid ISPF environment must exist for an application to be able to invoke the
printer support CLISTs.

Overview of Using the Printer Support CLISTs
The TSO/E printer support service provides a standard interface between
application programs and printers. With printer support, your interactive print
applications do not have to be programmed to access specific printers. Instead,
applications can invoke printer selection CLIST ICQCPC00 to display lists of
printers for users to select. ICQCPC00 can display printers for selection based on
their location, print format, and printer type.

Printer support also lets print applications be independent of the print routines that
actually print the output. The application or ICQCPC00 can invoke print functions
such as CLISTs ICQCPC10 and ICQCPC15 to print a data set on a selected printer.

Figure 180 on page 498 shows the interaction between an application program and
the printer support service.

© Copyright IBM Corp. 1988, 2002 497

The following are some examples of the processing that applications can perform
using CLISTs ICQCPC00, ICQCPC10 and ICQCPC15. Each example includes an
outline of the tasks involved. For more details on how to perform the tasks, read the
sections immediately following this overview.

Using the printer support CLISTs, an application can:

1. Prompt the user for a printer location; display a list of printers at that location;
when the user selects a printer, display a list of fonts available for the printer;
when the user selects fonts, perform printing immediately.

Tasks involved:

v Define printers and their characteristics using the print definition dialog of the
Information Center Facility. (See z/OS TSO/E Administration.)

v From the application (a text processing program, for example) call CLIST
ICQCPC00 with the following:

– The subset of printers to be displayed (by printer location, format, and/or
type). Your application can prompt the user for a location, then invoke
ICQCPC00 to display printer types and formats available at that location.

Administrator

Print Definition

Dialog

Font

Tables

Printer

Support Table

CLIST ICQCPC00

Printer Selection Dialog

Panel

CLIST ICQCPC10 or

CLIST ICQCPC15 (or

any other print function)

User

PrintoutApplication Program

Figure 180. Overview of Printer Support Processing

Overview of Using the Printer Support CLISTs

498 z/OS V1R4.0 TSO/E Programming Services

– The font selection panel to be displayed. (The administrators who define
the printers can provide a choice of fonts for each print definition.)

– The PRINT option. Data will be printed immediately using the print
function (CLIST, command, or program) that the administrator may have
specified when defining the selected printer. This print function could be
ICQCPC10 or ICQCPC15.

2. Allow a user to select a printer and fonts from the displayed list; perform some
kind of processing, such as formatting; verify the formatting with the user; then
print the data if the user approves it.

Tasks involved:

v Define printers as described in z/OS TSO/E Administration.

v Call ICQCPC00 as described in example 1 on page 498 above, leaving out
the PRINT option.

v When the user selects the printer and fonts, the application can do other
processing, such as text formatting with the selected fonts, and present the
formatting to the user for verification.

v After the user verifies the formatting, your application can call the print
function explicitly. To send the data to the printer selected by the user, invoke
ICQCPC10 or ICQCPC15 with the name of the data set to be printed. To
override the selected printer:

– You can send the data to another defined printer by invoking ICQCPC10
or ICQCPC15 with the parameters PLOC and PFORM, which identify the
print definition. You can override the printer’s defined print characteristics
by specifying them on the call to ICQCPC10 or ICQCPC15.

– You can send data to an undefined printer by invoking ICQCPC10 or
ICQCPC15 with the NOTABLE parameter and supplying print
characteristics on the CLIST invocation.

3. Save the selected printer so it becomes a default printer; thereafter, instead of
displaying a list of printers, direct the data to the default printer.

Tasks involved:

v Perform processing as in example 2 above. When the user selects a printer,
your application can save the information in shared variables in the user
profile.

v Later, when your application is used again, it can call ICQCPC10 or
ICQCPC15 to print the data to the default location.

– To verify that the default print definition still exists, invoke ICQCPC00,
specifying the parameters PLOC, PFORM, VERIFY, and PRINT. If the
printer or character set is unavailable (has been deleted) your application
will receive a return code to that effect.

– To print without verifying the definition, invoke ICQCPC10 or ICQCPC15
with the parameters PLOC and PFORM only.

Printer Selection CLIST, ICQCPC00
Your print applications can invoke CLIST ICQCPC00 to access printers that are
defined in the TSO/E printer support table, ICQAPT10. The print definitions in the
table contain variables that associate the printers with optional characteristics, such
as print parameters, fonts, and print routines. Information Center Facility
administrators create and maintain the definitions using a print definition dialog. See
z/OS TSO/E Administration for information on creating and maintaining the print
definitions.

Overview of Using the Printer Support CLISTs

Chapter 26. Using the Printer Support CLISTs 499

Applications can invoke ICQCPC00 to display all or a subset of the print definitions
to application users. The users can then select a printer from the list. Applications
can also specify a single print definition when invoking ICQCPC00, in which case
ICQCPC00 can verify the printer’s existence and print to it without displaying a
selection list.

When ICQCPC00 is used to access a printer, the defined print parameters, fonts,
and print function become available for the application to use in printing the output
on the printer.

To display a subset of the print definitions for selection, applications can specify
certain print definition variables in the call to ICQCPC00. These indexing variables
contain the desired printer location, print format, and printer type. For example, a
print application could invoke ICQCPC00 to display all the printers that
administrators had defined with the locations “Building 1-1” or “Building 1-2”, the
print format “memo”, and the printer type “3800”. The user would then be able to
choose a printer from a list of those that met these criteria.

The print definition dialog requires that administrators define each printer with a
unique combination of location and print format. Thus you can specify a single
printer in the call to ICQCPC00 by specifying that printer’s location and print format
(PLOC and PFORM).

When one or more print definitions meet the search criteria, CLIST ICQCPC00
displays them on a list panel for an application user to select. Figure 181 shows a
sample of the printer list panel.

When the user selects a printer, ICQCPC00 can display a font list panel, if the
printer has fonts defined for it and the definition allows font selection. Figure 182
shows a sample of the font list panel.

ICQCPE00 INFORMATION CENTER FACILITY - LIST OF PRINTERS
COMMAND ===> SCROLL ===> PAGE

To select a printer, type S to the left of the selected printer.

LOCATION FORMAT DESCRIPTION
_ Building 1-1 MEMO 3800, hand-delivered output
_ Building 1-2 MEMO 3800
**************************** END OF LIST *********************

Figure 181. Printer List Panel

Printer Selection CLIST, ICQCPC00

500 z/OS V1R4.0 TSO/E Programming Services

When the application accesses a single printer by uniquely specifying the printer
format and location, ICQCPC00 may not display the printer or font list panels.
Instead, ICQCPC00 can verify the print definition and any fonts specified.

Whether you specify a single printer in the call to ICQCPC00 or allow user
selection, ICQCPC00 lets you:

v Invoke a print function, if the selected printer has a print function defined for it.

v Specify a data set to be printed on the printer, and the number of copies to be
printed.

In summary, applications can use ICQCPC00 to:

v Access a printer, either directly or by user selection from a displayed list.

v Let the user select fonts for the printer, from among those named in the print
definition.

v Invoke the print function associated with the printer (if a print function is defined).

v Specify fonts to be used in printing.

v Specify the name of a data set to be printed.

v Specify the number of copies to be printed. This overrides any default number of
copies that may have been specified in the print definition itself.

Syntax and Parameters
Applications can invoke ICQCPC00 with the following syntax. All the parameters are
optional keyword parameters.
%ICQCPC00 +

VERIFY +
PLOC(’loc1 loc2 ... locn’) +
PFORM(’frm1 frm2 ... frmn’) +
PTYPE(’typ1 typ2 ... typn’) +
OFFLINE +
CHARS(’set1 set2 ... setn’) +
CHARSEL +
CHARSPNL(panelid) +

ICQCPE10 PRINTER - LIST OF FONTS
COMMAND ===> SCROLL ===> PAGE

To select the order of font(s), type the desired number to the left of
the selected font(s). To restore the pre-defined font order, type R on
the COMMAND line. When finished, press END; to cancel, type CANCEL on
the COMMAND line.

LOCATION........... Building 1-1
FORMAT............. MEMO
DESCRIPTION........ 3800, hand-delivered output
SELECTABLE FONTS... 2

NAME FONT DESCRIPTION
1_ GOTHIC Gothic, 12 characters per inch
2_ ITALIC Italic, 10 characters per inch
__ GOTHIC Gothic, 10 characters per inch
********************************* END OF LIST **************************

Figure 182. Font List Panel

Printer Selection CLIST, ICQCPC00

Chapter 26. Using the Printer Support CLISTs 501

PRINT +
DSNAME(dsname(member)) +
DDNAME(ddname) +
COPIES(n) +

VERIFY
verifies the existence of a print definition and (optionally) specified fonts. To
specify a single printer, use VERIFY with unique values in PLOC and PFORM.
To verify that certain fonts are defined for the printer, specify the fonts in the
CHARS parameter. With VERIFY, ICQCPC00 does not display the printer for
user selection.

PLOC(‘loc1 loc2 ... locn’) | PLOC(loc) | PLOC((lo c))
specifies printer location(s) desired. Use double parentheses around values that
contain embedded blanks. Values should match the locations that the
administrator defined for the printers. The default value (*) specifies all defined
locations. Characters followed by an asterisk specify all locations beginning with
those characters. To specify a single print definition, give the printer’s location in
this parameter and its print format in the PFORM parameter.

PFORM(‘frm1 frm2 ... frmn’) | PFORM(frm)
specifies print format(s) desired. Values should match the print formats that the
administrator defined for the printers. The default value (*) specifies all defined
print formats. Characters followed by an asterisk specify all print formats
beginning with those characters. To specify a single print definition, give the
printer’s print format in this parameter and its location in the PLOC parameter.

PTYPE(‘typ1 typ2 ... typn’) | PTYPE(typ)
specifies the printer type(s) desired. Values should match the printer types that
the administrator defined for the printers. The default value (*) specifies all
defined printer types. Characters followed by an asterisk specify all printer types
beginning with those characters.

Note: PLOC, PFORM, and PTYPE values are combined to determine which
print definitions are displayed. Thus, if you specify:
%ICQCPC00 PLOC(’93* 94*’) PFORM(’MEMO FOIL’) PTYPE(3800)

ICQCPC00 displays all print definitions that have the following: locations
beginning with 93 or 94, and print formats of MEMO or FOIL, and a
printer type of 3800.

OFFLINE
specifies that printers listed as offline by the administrator be included for
display to the user. The administrator sets the printer to offline by typing N in
the ONLINE field on panel ICQAPE30 of the print definition dialog.

CHARS(‘set1 set2 ... setn’) | CHARS(set)
specifies character sets (fonts) to be used with the print function. Use this
parameter only when PLOC and PFORM specify a unique printer. Values
should match the displayed names or device names of fonts that the
administrator defined for the printer. With VERIFY, ICQCPC00 checks that the
fonts are defined for the printer. With VERIFY and PRINT, ICQCPC00 invokes
the printer with the fonts if they are defined. If PRINT is requested without
VERIFY, the CHARS parameter is ignored.

CHARSEL
displays the default font selection panel (ICQCPE10), if the selected print
definition includes fonts and allows users to select them. Font selection is
allowed when the administrator types Y in the ALLOW FONT SELECTION field
of the print definition.

Printer Selection CLIST, ICQCPC00

502 z/OS V1R4.0 TSO/E Programming Services

CHARSPNL(panel ID)
specifies an alternate font selection panel to display. If CHARSPNL is specified,
CHARSEL is assumed and need not be specified.

PRINT
specifies that if the selected print definition includes a print function, the print
function be invoked immediately. The administrator can specify a print function
on the PRINT FUNCTION panel of the print definition.

DSNAME(dsname(member))
specifies the data set or member to be printed. This operand is passed to the
calling application or to the print function that is invoked when PRINT is
specified.

To specify a fully-qualified data set name, enclose it in three sets of single
quotes. For example, to print ‘userid.CLIST’, specify:
DSNAME(’userid.CLIST’’)

DDNAME(ddname)
specifies the ddname associated with the data set to be printed.

COPIES(n) | COPIES(‘,(n,n,n,n)’)
specifies the number of printed copies or copy groups (for the 3800). This
overrides any number of copies specified in the print definition.

Return Codes from ICQCPC00
For all return codes other than 0, a message ID is stored in the shared pool
variable QCPMSGID. The calling application may issue the stored message.

Table 131 lists the return codes set by ICQCPC00.

Table 131. Return Codes from ICQCPC00

Return Code Meaning

0 Printer and character sets (if specified) were verified and/or selected. If
PRINT was requested, printing was successful.

4 A printer was selected, but PRINT was requested and no print function
was defined for the printer.

8 A list of printers was displayed to the user, but none was selected.

12 The data set was unavailable (name not valid or access not allowed).

16 No print definitions match the search criteria. The name of the first
parameter (PLOC, PFORM, or PTYPE, in that order) not found is in the
shared pool variable QCPFARG1. Variable QCPFARG2 contains the
value of the parameter that was not found. If a print definition matched
the criteria but was inaccessible because OFFLINE was not specified in
the call to ICQCPC00, QCPFARG1 and QCPFARG2 are null.

20 A VERIFY request found that a character set specified in the CHARS
parameter was not defined to the specified printer. The undefined
character set(s) are identified in the shared pool variable QCPBCHAR.

24 The print function set a non-zero return code. The name of the print
function is in shared pool variable QCPPRF and the return code is in
variable QCPPRC.

28 The printer selection panel ICQCPE00 could not be displayed.

32 The fonts selection panel ICQCPE10 could not be displayed.

Printer Selection CLIST, ICQCPC00

Chapter 26. Using the Printer Support CLISTs 503

Table 131. Return Codes from ICQCPC00 (continued)

Return Code Meaning

36 There was a parameter syntax error. The call to ICQCPC00 contained
incorrect or conflicting parameters, such as VERIFY with CHARSEL or
VERIFY without unique values in PLOC and PFORM.

Variables
When a user selects a print definition, ICQCPC00 makes the data in the definition
available to the calling application or print function to use in printing the output. This
print definition data is stored in variables prefixed with QAP. These variables are
available in the ISPF shared pool and in a temporary table in virtual storage, which
ICQCPC00 creates when a printer is selected. The name of the temporary table is
in the shared pool variable QCPPRINT. If the print definition has a font table
associated with it, ICQCPC00 copies the data in the font table to another temporary
table, whose name is in variable QCPFONT.

If ICQCPC00 sets a return code greater than 4, it sets the print definition variables
to nulls in the shared pool, and the temporary printer and font tables do not exist in
the address space.

Retrieving the Variable Data
There are several ways to retrieve the print definition data from the table variables
and make it available for the print function or calling application to use.

v If you use ICQCPC10 or ICQCPC15 as the print function, it retrieves variables
directly from the print definition and uses them in printing the output. The
variables that ICQCPC10 uses are those that contain parameters of the TSO/E
ALLOCATE command; the variables that ICQCPC15 uses are those that contain
parameters of the TSO/E PRINTDS command.

v If the print function is not ICQCPC10 or ICQCPC15, your application program
must specify any variables that the print function is to retrieve from the definition.
The administrator can specify the variables as parameters of the function in the
print definition. Figure 183 shows where the administrator can specify variables.
The variables shown, &QAPTSYSO and &QAPDFCB, contain the parameters
created from the SYSOUT CLASS and FCB fields of the print definition.

Printer Selection CLIST, ICQCPC00

504 z/OS V1R4.0 TSO/E Programming Services

v When an application specifies the parameters for a print function to use, it can
also use variables from a print definition. Applications can obtain the variables
from the ISPF shared pool by using the ISPF VGET service or can automatically
set these variables in their ISPF function pool by using the ISPF TBGET service
as in the following CLIST statement:
ISPEXEC TBGET &QCPPRINT /* retrieve printer variables

For a list of the print definition variables and the corresponding print definition fields
from which they are formed, see Table 132 on page 506 and Table 133 on
page 516.

Print Definition Variables
Table 132 on page 506 lists the print definition variables that the printer selection
CLIST sets in the ISPF shared pool and in the temporary printer table,
&QCPPRINT, when a printer is selected. The table lists the variables in the order of
their corresponding print definition fields.

Naming Convention for Printer Support Variables
All printer variables begin with the standard prefix, QAP. Variables that contain print
parameters for keywords for JCL statements and the TSO/E ALLOCATE and
PRINTDS commands are further identified as follows. In those variables, the fourth
letter indicates the command or statement to which the parameter belongs.

Fourth letter Command or statement

T TSO/E ALLOCATE command
P TSO/E PRINTDS command
O OUTPUT JCL statement
D JCL DD statement.

ICQAPE80 Print Function
COMMAND ===> SCROLL ===> PAGE

Printer LocationNJ/324
Print FormatREPORT
Printer Type6670
DescriptionCentral Computer site

Indicate whether the Print Function uses the PRINTDS command.
To continue press ENTER. To exit without saving, press END.

PRINTDS used ===> _ If Y, ICQCPC15 can be entered as CLIST Name.
If N, ICQCPC10 can be entered as CLIST Name.

Enter or change CLIST, Command or Program name.
CLIST Name ===> ________ If invoked by a CLIST
Command Name ===> ________ If invoked by a command
Program Name ===> ________ If invoked by a program name

Parameters ===> &QAPTSYSO &QAPDFCB;______________________

Test ===> _ (Y/N) Y to test the function

Figure 183. Entering Variables as Parameters on the Print Function Panel

Printer Selection CLIST, ICQCPC00

Chapter 26. Using the Printer Support CLISTs 505

The remaining letters are the first letters of the parameter itself. For example, in
QAPTSYSO, QAP is the standard prefix, T indicates the TSO/E ALLOCATE
command, and SYSO indicates the SYSOUT parameter.

Table 132. Printer Definition Variables - Table

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

QAPTSO Derived from all the variables
in this table that contain
TSO/E ALLOCATE values.

Can be used in the invocation of a print command or program
on panel ICQAPE80 to reference all the TSO/E ALLOCATE
parameters that are stored in this table.

Do not use QAPTSO when calling a CLIST; parsing errors can
result if any of the table variables contain TSO/E ALLOCATE
parameters with multiple values, such as QAPTCOPI with the
syntax COPIES(b1(g1,g2,...)), or QAPTCHAR with the syntax
CHARS(f1 f2 ...).

QAPDSN Obtained from the application
that invoked the printer
selection CLIST, ICQCPC00.

Contains the fully-qualified name of the data set to be printed.

QAPDDN Obtained from the application
that invoked the printer
selection CLIST, ICQCPC00.

Contains the name of the file to be printed.

QAPLOC ICQAPE30 - LOCATION field Required.

Can contain any characters, including embedded blanks,
except for an asterisk, single quote, or parenthesis.

Displayed to the user on the printer selection panel,
ICQCPE00.

Can be used as a subsetting display argument in invocation of
ICQCPC00.

Must form unique combination with QAPFORM.

QAPFORM ICQAPE30 - PRINT FORMAT
field

Required.

Can contain A-Z, 0-9, @, #, and $, with the first character not
numeric.

Displayed to the user on the printer selection panel
ICQCPE00.

Can be used as a subsetting display argument in invocation of
ICQCPC00.

Must form unique combination with QAPLOC.

QAPTYPE ICQAPE30 - PRINTER TYPE
field

Can contain A-Z, 0-9, and a dash (-).

Embedded blanks are valid.

Can be used as a subsetting display argument in invocation of
ICQCPC00.

QAPDESC ICQAPE30 - DESCRIPTION
field

Can contain any combination of characters, including
embedded blanks.

Displayed to the user on the printer selection panel
ICQCPE00.

Printer Selection CLIST, ICQCPC00

506 z/OS V1R4.0 TSO/E Programming Services

Table 132. Printer Definition Variables - Table (continued)

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

QAPONLIN ICQAPE30 - ONLINE field Required.

Can contain Y or N.

Used as a display criteria by printer selection CLIST. Printers
that contain an N in this field are not displayed to users
unless the CLIST was called with OFFLINE specified.

QAPDSTND ICQAPE30 - SYSTEM NAME
field

Can contain A-Z, 0-9, @, #, and $.

If QAPDSTID (PRINTER NAME) is specified, this value
becomes c1 in the variables QAPDDEST, QAPODEST, and
QAPTDEST. Without QAPDSTID, this value cannot be
assigned.

QAPDSTID ICQAPE30 - PRINTER NAME
field

Required if SYSTEM NAME specified.

If SYSTEM NAME is specified, this variable can contain A-Z,
0-9.

If SYSTEM NAME is null, this variable can contain A-Z, 0-9,
@, #, and $.

This value always becomes c1 in the variable QAPTDEST.

If there is no value in QAPDSTND, this value becomes c1 in
the variables QAPDDEST, QAPODEST, and QAPTDEST.

If there is a value in QAPDSTND, this value becomes c2 in
the variables QAPDDEST, QAPODEST, and QAPTDEST.

QAPTDEST Derived from QAPDSTID DEST parameter on TSO/E ALLOCATE command.
Format: DEST(c2)

QAPDDEST Derived from QAPDSTND and
QAPDSTID

DEST parameter on JCL DD statement.
Format: DEST=(c1,c2)

QAPODEST Derived from QAPDSTND and
QAPDSTID

DEST parameter on JCL OUTPUT command.
Format: DEST=(c1.c2)

QAPOUTDE ICQAPE50 and ICQAPE53 -
OUTPUT DESCRIPTOR field

Can contain A-Z, 0-9, @, #, or $, with the first character
non-numeric.

Becomes c1 in the variable QAPTOUTD.

QAPTOUTD Derived from QAPOUTDE OUTDES parameter on TSO/E ALLOCATE command.
Format: OUTDES (c1)

QAPOUTC ICQAPE50 and ICQAPE54 -
SYSOUT CLASS field

Can contain A-Z, 0-9, or *.

Becomes c1 in the variables QAPTSYSO, QAPDSYSO, and
QAPOCLAS.

Printer Selection CLIST, ICQCPC00

Chapter 26. Using the Printer Support CLISTs 507

Table 132. Printer Definition Variables - Table (continued)

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

QAPOUTP ICQAPE50 - SYSOUT
PROGRAM field

Can contain A-Z, 0-9, @, #, and $, with the first character not
numeric.

Becomes c2 in the variables QAPDSYSO, QAPOWRIT, and
QAPTWRIT.

QAPOUTF ICQAPE50 and ICQAPE53 -
SYSOUT FORM field

Can contain A-Z, 0-9, @, #, and $.

Becomes c3 in the variable QAPDSYSO. Becomes c1 in the
variable QAPTFORM.

QAPTSYSO Derived from QAPOUTC SYSOUT parameter on TSO/E ALLOCATE command.
Format: SYSOUT(c1)

QAPDSYSO Derived from QAPOUTC,
QAPOUTP, and QAPOUTF

SYSOUT parameter on the JCL DD statement.
Format: SYSOUT(c1,c2,c3)

QAPTOUTF Derived from QAPOUTF FORMS parameter on TSO/E ALLOCATE command.
Format: FORMS(c1)

QAPOCLAS Derived from QAPOUTC CLASS parameter on JCL OUTPUT command.
Format: CLASS=c1

QAPOWRIT Derived from QAPOUTP WRITER parameter on JCL OUTPUT command.
Format: WRITER=c2

QAPTWRIT Derived from QAPOUTP WRITER parameter on TSO/E ALLOCATE command.
Format: WRITERc2

QAPFORMS ICQAPE50 - OUTPUT FORMS
field

Can contain A-Z, 0-9.

Becomes c1 in the variables QAPOFRMS and QAPTFORM.

QAPOFRMS Derived from QAPFORMS FORMS parameter on JCL OUTPUT command.
Format: FORMS=c1

QAPCTRL ICQAPE50 - DATA CONTROL
field

Can contain A or M for ANSI or Machine.

Indicates to the print function whether the data contains
carriage control characters.

QAPUCS ICQAPE50 - UCS NAME field Can contain A-Z, 0-9.

Becomes c1 in the variables QAPDUCS and QAPOUCS.

QAPDUCS Derived from QAPUCS UCS parameter on JCL DD statement.
Format: UCS=c1

Printer Selection CLIST, ICQCPC00

508 z/OS V1R4.0 TSO/E Programming Services

Table 132. Printer Definition Variables - Table (continued)

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

QAPOUCS Derived from QAPUCS UCS parameter on JCL OUTPUT command.
Format: UCS=c1

QAPTUCS Derived from QAPUCS UCS parameter on TSO/E ALLOCATE command.
Format: UCS(c1)

QAPFCB ICQAPE50 - FCB NAME field Can contain A-Z, 0-9, @, #, and $.

Becomes c1 in the variables QAPDFCB and QAPOFCB.

QAPDFCB Derived from QAPFCB FCB parameter on JCL DD statement.
Format: FCB=c1

QAPOFCB Derived from QAPFCB FCB parameter on JCL OUTPUT command.
Format: FCB=c1

QAPHOLD ICQAPE50 and ICQAPE53 -
HOLD field

Can contain Y or N.

Used to generate the variables QAPTHOLD and QAPDHOLD.

QAPTHOLD Derived from QAPHOLD HOLD or NOHOLD parameter on TSO/E ALLOCATE
command.
Format: HOLD (QAPHOLD = Y) or

NOHOLD (QAPHOLD = N)

QAPDHOLD Derived from QAPHOLD HOLD parameter on JCL DD statement.
Format: HOLD=Y (QAPHOLD = Y) or

HOLD=N (QAPHOLD = N)

QAPLINEC ICQAPE50 - LINE COUNT
field

Can contain 0 to 255.

Becomes n1 in the variable QAPOLINE.

QAPOLINE Derived from QAPLINEC LINECT parameter on JCL OUTPUT command.

Format: LINECT=nt

QAPMODN ICQAPE51 - MODULE NAME
field

Required if TRANSLATE CODE is specified in print definition.

May contain A-Z, 0-9, @, #, and $.

Becomes c1 in the variables QAPTMODI, QAPDMODI, and
QAPOMODI.

QAPMODX ICQAPE51 - TRANSLATE
CODE field

Can contain 0, 1, 2, or 3.

Becomes n1 in the variables QAPTMODI, QAPDMODI, and
QAPOMODI.

Printer Selection CLIST, ICQCPC00

Chapter 26. Using the Printer Support CLISTs 509

Table 132. Printer Definition Variables - Table (continued)

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

QAPTMODI Derived from QAPTMODN and
QAPTMODX.

MODIFY parameter on TSO/E ALLOCATE command.

Format: MODIFY(c1,n1)

QAPDMODI Derived from QAPTMODN and
QAPTMODX.

MODIFY parameter on JCL DD statement.

Format: MODIFY=(c1,n1)

QAPOMODI Derived from QAPTMODN and
QAPTMODX.

MODIFY parameter on JCL OUTPUT command.

Format: MODIFY=(c1,n1)

QAPOPTCD ICQAPE51 - OPTCD J field Can contain Y or N.

Used to generate the variables QAPTOPTC, QAPDOPTC,
and QAPOTRC.

QAPTOPTC Derived from QAPOPTCD OPTCD parameter on TSO/E ALLOCATE command.

Format: OPTCD(J)

QAPDOPTC Derived from QAPOPTCD OPTCD parameter on JCL DD command.

Format: OPTCD=(J)

QAPOTRC Derived from QAPOPTCD TRC parameter on JCL OUTPUT command.

Format: TRC=Y

QAPFLN ICQAPE51 - FLASH NAME
field

Can contain A-Z, 0-9, @, #, and $.

Becomes c1 in the variables QAPTFLAS, QAPDFLAS, and
QAPOFLAS.

QAPFLC ICQAPE51 - FLASH COUNT
field

Can contain 1 to 255.

Becomes n1 in the variables QAPTFLAS, QAPDFLAS, and
QAPOFLAS.

QAPTFLAS Derived from QAPFLN and
QAPFLC

FLASH parameter on TSO/E ALLOCATE command.

Format: FLASH(c1,n1)

QAPDFLAS Derived from QAPFLN and
QAPFLC

FLASH parameter on JCL DD statement.

Format: FLASH=(c1,n1)

QAPOFLAS Derived from QAPFLN and
QAPFLC

FLASH parameter on JCL OUTPUT command.

Format: FLASH=(c1,n1)

Printer Selection CLIST, ICQCPC00

510 z/OS V1R4.0 TSO/E Programming Services

Table 132. Printer Definition Variables - Table (continued)

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

QAPBURST ICQAPE51 - BURST field Can contain Y or N.

Used to generate the entries: QAPTBURS, QAPDBURS, and
QAPOBURS.

QAPTBURS Derived from QAPBURST BURST or NOBURST parameter on TSO/E ALLOCATE
command.
Format: BURST (QAPBURST = Y) or

NOBURST (QAPBURST = N)

QAPDBURS Derived from QAPBURST BURST parameter on JCL DD statement.
Format: BURST=Y (QAPBURST = Y) or

BURST=N (QAPBURST = N)

QAPOBURS Derived from QAPBURST BURST parameter on JCL OUTPUT command.
Format: BURST=Y (QAPBURST = Y) or

BURST=N (QAPBURST = N)

QAPCPYB ICQAPE52 - TOTAL field
(Number of copies)

Required if PER GROUP field has an entry.

May contain 1 - 255.

Becomes b1 in the variables QAPTCOPI, QAPDCOPI, and
QAPOCOPI.

QAPCPYG1 through
QAPCPYG8

ICQAPE52 - PER GROUP
field (8 subfields)

Subfields must be filled in from left to right.

Each subfield can contain numbers 1-255.

Becomes g1-g8 in the variables QAPTCOPI, QAPDCOPI, and
QAPOCOPI.

QAPTCOPI Derived from QAPTCPYB and
QAPCPYG1 through
QAPCPYG8

COPIES parameter on TSO/E ALLOCATE command.

Format: COPIES (b1,(g1,g2,...,g8))

QAPDCOPI Derived from QAPTCPYB and
QAPCPYG1 through
QAPCPYG8

COPIES parameter on JCL DD statement.

Format: COPIES=(b1,(g1,g2,...,g8))

QAPOCOPI Derived from QAPTCPYB and
QAPCPYG1 through
QAPCPYG8

COPIES parameter on JCL OUTPUT command.

Format: COPIES=(b1,(g1,g2,...,g8))

QAPGROUP ICQAPE52 - GROUPID NAME
field

Can contain A-Z, 0-9.

Becomes c1 in the variable QAPOGROU.

QAPOGROU Derived from QAPGROUP GROUPID parameter on JCL OUTPUT command.

Format: GROUPID=c1

Printer Selection CLIST, ICQCPC00

Chapter 26. Using the Printer Support CLISTs 511

Table 132. Printer Definition Variables - Table (continued)

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

QAPFORMD ICQAPE52 - FORMDEF
NAME field

Can contain A-Z, 0-9, @, #, and $.

Becomes c1 in the variable QAPOFORM.

QAPOFORM Derived from QAPFORMD FORMDEF parameter on JCL OUTPUT command.

Format: FORMDEF=c1

QAPPAGED ICQAPE52 - PAGEDEF NAME
field

Can contain A-Z, 0-9, @, #, and $.

Becomes c1 in the variable QAPOPAGE.

QAPOPAGE Derived from QAPPAGED PAGEDEF parameter on JCL OUTPUT command.

Format: PAGEDEF=c1

QAPINDEX ICQAPE52 - INDEX field Can contain 1 - 31.

Becomes n1 in the variable QAPOINDE.

QAPOINDE Derived from QAPINDEX INDEX parameter on JCL OUTPUT command.

Format: INDEX=n1

QAPLINDE ICQAPE52 - LEFT INDEX field Can contain 1 - 31.

Becomes n1 in the variable QAPOLIND.

QAPOLIND Derived from QAPLINDE LINDEX parameter on JCL OUTPUT command.

Format: LINDEX=n1

QAPINDCF ICQAPE53 - DCF field Can contain Y or N.

Used to generate QAPPDCF.

QAPPDCF Derived from QAPINDCF DCF or NODCF parameter on TSO/E PRINTDS command.
Format: DCF (QAPINDCF = Y) or

NODCF (QAPINDCF = N)

QAPINMEM ICQAPE53 - MEMBERS field Can contain Y or N. Used to generate QAPPMEMB.

Used to generate QAPPMEMB.

QAPINDIR ICQAPE53 - DIRECTORY field Can contain Y or N.

Used to generate QAPPMEMB.

Printer Selection CLIST, ICQCPC00

512 z/OS V1R4.0 TSO/E Programming Services

Table 132. Printer Definition Variables - Table (continued)

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

QAPPMEMB Derived from QAPINMEM and
QAPINDIR

MEMBERS, DIRECTORY or ALL parameter on TSO/E
PRINTDS command.

Format: MEMBERS (QAPINMEM = Y, QAPINDIR =
N), or

DIRECTORY (QAPINMEM = N, QAPINDIR
= Y), or

ALL (QAPINMEM = Y, QAPINDIR = Y)

QAPINTOD ICQAPE53 - TO DATASET
field

Can contain a fully- or partially-qualified data set name.
Becomes t1 in the variable QAPPTODS.

QAPPTODS Derived from QAPINTOD TODATASET parameter on TSO/E PRINTDS command.
Format: TODATASET(t1)

QAPINPLN ICQAPE54 - PAGE LENGTH
field

Can contain 6 - 4095. Becomes n1 in the variable
QAPPPLEN.

QAPPPLEN Derived from QAPINPLN. PAGELEN parameter on TSO/E PRINTDS command.
Format: PAGELEN(n1)

QAPINTIT ICQAPE54 - TITLE field Can contain Y or N. Used to generate QAPPTITL.

Used to generate QAPPTITL.

QAPPTITL Derived from QAPINTIT TITLE or NOTITLE parameter on TSO/E PRINTDS command.
Format: TITLE (QAPINTIT =Y) or

NOTITLE (QAPINTIT = N)

QAPINTMR ICQAPE54 - TOP MARGIN
field

Can contain numbers 0 through 6 less than the value of
PAGELEN. Becomes n1 in the variable QAPPTMAR.

QAPPTMAR Derived from QAPINTMR TMARGIN parameter on TSO/E PRINTDS command.
Format: TMARGIN(N1)

QAPINBMR ICQAPE54 - BOTTOM
MARGIN field

Can contain numbers 0 through 6 less than the value of
PAGELEN. Becomes n1 in the variable QAPPBMAR.

QAPPBMAR Derived from QAPINBMR BMARGIM parameter on TSO/E PRINTDS command.
Format: BMARGIN(N1)

QAPINLMR ICQAPE54 - LEFT MARGIN
field

Can contain 0 - 255. Becomes n1 in the variable QAPPLMAR.

QAPPLMAR Derived from QAPINLMR LMARGIN parameter on TSO/E PRINTDS command.
Format: LMARGIN(N1)

QAPINMAX ICQAPE54 - MAXIMUM
LENGTH field

A number. Becomes n1 in the variable QAPPFOLD.

Printer Selection CLIST, ICQCPC00

Chapter 26. Using the Printer Support CLISTs 513

Table 132. Printer Definition Variables - Table (continued)

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

QAPINFOL ICQAPE54 - EXCESS
LENGTH field

Can contain FOLD or TRUN. Used to generate the variable
QAPPFOLD.

QAPPFOLD Derived from QAPINMAX and
QAPINFOL

FOLD or TRUNCATE parameter on TSO/E PRINTDS
command.
Format: FOLD (n1) (QAOUNFIK = FOLD)

TRUNCATE(n1) (QAPINFOL = TRUN)

QAPINSPA ICQAPE54 - LINE SPACING
field

Can contain 1, 2, 3 or C.

Used to generate QAPPSPAC.

QAPPSPAC Derived from QAPINSPA CCHAR, SINGLE, DOUBLE or TRIPLE parameter on TSO/E
PRINTDS command.
Format: CCHAR (QAPINSPA = C)

SINGLE (QAPINSPA = 1)
DOUBLE (QAPINSPA = 2)
TRIPLE (QAPINSPA = 3)

QAPINLFR ICQAPE55 - LINES - FROM
field (ignore embedded line
numbers)

A number. Becomes n1 in the variable QAPPLINE.

QAPINLTO ICQAPE55 - LINES - TO field
(ignore embedded line
numbers)

A number. Becomes n2 in the variable QAPPLINE.

QAPINEFR ICQAPE55 - LINES - FROM
field (use embedded line
numbers)

A number. Becomes n1 in the variable QAPPLINE.

QAPINETO ICQAPE55 - LINES - TO field
(use embedded line numbers)

A number. Becomes n2 in the variable QAPPLINE.

QAPPLINE Derived from QAPINLFR and
QAPINLTO, or from
QAPINEFR and QAPINETO.

LINES parameter on TSO/E PRINTDS command.
Format: LINES(n1:n2)

QAPINNUM ICQAPE55 - LOC field A number. Becomes n1 in the variable QAPPNUMS.

QAPINNLE ICQAPE55 - LENGTH field A number less than 8. Becomes n2 in the variable
QAPPNUMS.

QAPPNUMS Derived from
QAPINLFR/QAPINLTO or
QAPINEFR/QAPINETO,
QAPINNUM, and QAPINNLE

NUM, SNUM or NONUM parameter on TSO/E PRINTDS
command.
Format: NUM(n1,n2) (QAPINLFR/QAPINLTO set)

NONUM (QAPINEFR/QAPINETO set)

QAPINFC1 -
QAPINFCA

ICQAPE56 - FROM COLUMN
1 through FROM COLUMN 10
fields

A number. Becomes s1 through s10 in the variable
QAPPCOLS.

QAPINTC1 -
QAPINTCA

ICQAPE56 - TO COLUMN 1
through TO COLUMN 10 fields

A number. Becomes e1 through e10 in the variable
QAPPCOLS.

Printer Selection CLIST, ICQCPC00

514 z/OS V1R4.0 TSO/E Programming Services

Table 132. Printer Definition Variables - Table (continued)

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

QAPPCOLS Derived from QAPINFC1 -
QAPINFCA and QAPINTC1 -
QAPINTCA

COLUMNS parameter on TSO/E PRINTDS command.
Format: COLUMNS(s1:e1, s2:e2,... s10:e10)

QAPPTRC ICQAPE57 - TRC field Can contain Y or N. Y indicates OPTCD(J).

QAPATT1 -
QAPATT6

ICQAPE60 - ATTRIBUTE 1
through ATTRIBUTE 6 fields

Can contain any character combination including embedded
blanks.

Not used to generate any MVS system parameters. Can be
used to store information required for a local print function or
for locally supported system keywords.

QAPATT7 -
QAPATT20

Not displayed on any panel These variables are available but do not appear on any
TSO/E panel. A copy of panel ICQAPE60 may be used to
externalize more of these variables if your installation needs
them.

QAPNFONT ICQAPE70 - NUMBER OF
FONTS field

Can contain numbers 1 - 99.

Denotes the maximum number of fonts that the user can
select. A blank defaults to the maximum of 99.

QAPFONL ICQAPE70 - PERMIT
SELECTION field

Can contain Y or N.

Y indicates that the user should be presented with the font
selection panel, ICQCPE10, if CHARSEL was also specified
on the call to the printer selection CLIST, ICQCPC00.

QAPCHARD Derived from the QAPFDEV
field of the fonts that were
selected by the administrator
on panel ICQAPE70.

Contains the internal names of the fonts that were selected by
the administrator. It contains as many fonts as were selected.
Format: font1 font2 fontn

Four of these fonts become f1 - f4 in the variables
QAPTCHAR, QAPDCHAR, and QAPOCHAR.

QAPCHARS Derived from the QAPFSCR
field of the fonts that were
selected by the administrator
on panel ICQAPE70.

Contains the script names of the fonts selected by the
administrator. It contains as many fonts as were selected.
Format: font1 font2 fontn

QAPTCHAR Derived from QAPCHARD. A
maximum of 4 fonts are
extracted from QAPCHARD to
create the character string in
this variable.

CHARS parameter on TSO/E ALLOCATE command.
Format: CHARS(f1 f2 f3 f4)

QAPDCHAR Derived from QAPCHARD. A
maximum of 4 fonts are
extracted from QAPCHARD to
create the character string in
this variable.

CHARS keyword on JCL DD card.
Format: CHARS=(f1,f2,f3,f4)

QAPOCHAR Derived from QAPCHARD. A
maximum of 4 fonts will be
extracted from QAPCHARD to
create the character string in
this variable.

CHARS keyword on JCL DD statement.
Format: CHARS=(f1,f2,f3,f4)

QAPINFUN ICQAPE80 - PRINTDS USED
field

Can contain Y or N. Y indicates PRINTDS is used. N indicates
PRINTDS is not used.

Printer Selection CLIST, ICQCPC00

Chapter 26. Using the Printer Support CLISTs 515

Table 132. Printer Definition Variables - Table (continued)

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

function names ICQAPE80 - print function
names

Only one of the following three print function name fields can
be specified.

QAPCLIST ICQAPE80 - CLIST NAME
field

Can contain A-Z, 0-9, @, #, and $, with the first character
non-numeric.

Contains the name of the CLIST that you want to print the
data associated with this printer. If you specify PRINT on the
call to the printer selection CLIST, the named CLIST is
automatically invoked when the user selects the printer.

QAPCOMM ICQAPE80 - COMMAND
NAME field

May contain A-Z, 0-9, @, #, and $, with the first character
non-numeric.

Contains the name of the command that you want to print the
data associated with this printer. If you specify PRINT on the
call to the printer selection CLIST, the named command is
automatically invoked when the user selects the printer.

QAPPGM ICQAPE80 - PROGRAM
NAME field

May contain A-Z, 0-9, @, #, and $, with the first character
non-numeric.

Contains the name of the program that you want to print the
data associated with this printer. If you specify PRINT on the
call to the printer selection CLIST, the named program is
automatically invoked when the user selects the printer.

QAPPARM ICQAPE80 - PARAMETERS
field

May contain any combination of characters including
embedded blanks.

Contains the parameter string that you want passed to the
print function when a user selects this printer. The print
function scans this field once. You may want to pass variables
from this table, such as &QAPSYSO or, if the print function is
a program or command, &QAPTSO. (Do not use &QAPTSO
with a CLIST). The variables &QAPATT1 through &QAPATT20
can also be passed. The characters &,; /, *, -, or + in these
variables will be treated as data.

QAPFTABL Generated dynamically If a font table is associated with this printer, this variable
contains its name. The name syntax is ICQSPnnn, where nnn
is a number from 0 to 999.

QAPITEM Always contains “1” Used internally for table searching.

QAPID Unique identifier Used for control purposes. Assigned to the table row when it
is created and remains unchanged when other contents are
modified by the administrator.

Font Definition Variables
The following table describes the variables that are in the font table. The font table
is named in variable &QAPFONT from the shared pool.

Table 133. Font Definition Variables - Table

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

QAPFDISP ICQAPE70 - DISPLAYED
NAME field

Can contain A-Z, 0-9, @, #, and $. Displayed to the user on
panel ICQCPE10.

Printer Selection CLIST, ICQCPC00

516 z/OS V1R4.0 TSO/E Programming Services

Table 133. Font Definition Variables - Table (continued)

Variable Name Panel Name and Field Name
or derivation

Format/Description of variable contents

QAPFDEV ICQAPE70 - DEVICE NAME
field

Can contain A-Z, 0-9, @, #, and $. Contains the name of a
font as known by the device. For example, if the font table is
for a 3800 printer, the font “gothic bold 12 pitch” would be
GB12. The contents of this variable specify a font in the
variables QAPTCHAR, QAPDCHAR, and QAPOCHAR.

QAPFSCR ICQAPE70 - SCRIPT NAME
field

Can contain A-Z, 0-9, @, #, and $. Contains the font name to
be used in the CHARS parameter when the SCRIPT/VS
module is invoked.

QAPFOTHR ICQAPE70 - OTHER field Can contain any combination of characters. Used for local
installation requirements.

QAPFDESC ICQAPE70 - FONT
DESCRIPTION field

Can contain any combination of characters, including
imbedded blanks. Contains a description of the font’s
characteristics. Displayed to the user on font selection panel
ICQCPE10.

Additional Variables
In addition to the printer and font table variables, ICQCPC00 sets additional
variables for a selected printer in the ISPF shared pool. The additional variables are
prefixed with QCP. Some contain error information and are identified with the return
codes in Table 131 on page 503 and Table 134 on page 520.

Other QCP variables store the contents of a printer’s QAPLOC, QAPFORM, and
QAPTYPE variables when the printer is selected. The application can then use
these variables (QCPLOC, QCPFORM, QCPTYPE) to redisplay a former selection.
Another variable, QCPID, contains a unique identifier for the print definition’s row in
the printer table.

Print CLIST, ICQCPC10
IBM provides CLIST ICQCPC10 to serve as a print function for printer support.
CLIST ICQCPC00 can call ICQCPC10 to print a sequential data set or a member of
a partitioned data set on a selected printer. Your print applications can also call
ICQCPC10 directly to print data on a specified printer.

Functions
Print CLIST ICQCPC10 provides several options for printing data sets on defined
printers. The primary function of ICQCPC10 is to print a data set using the
ALLOCATE parameters already specified in a print definition. However, you may
pass alternative ALLOCATE parameters in the call to ICQCPC10. Any of these
ALLOCATE parameters in the call to ICQCPC10 overrides the same parameter
from the print definition.

You can specify the name of a data set to be printed. If you do not specify a data
set in the call to ICQCPC10, ICQCPC10 takes the data set name from ICQCPC00
or from the calling application. A data set name in ICQCPC10 overrides one
specified in ICQCPC00.

The ability to specify ALLOCATE parameters and a data set name for ICQCPC10
allows you to invoke ICQCPC10 in different ways. The different applications are
described below.

Printer Selection CLIST, ICQCPC00

Chapter 26. Using the Printer Support CLISTs 517

Applications
You can use ICQCPC10 in the following ways:

v As the print function of a print definition, ICQCPC10 can be automatically invoked
when the user selects the definition.

v As part of an application program, ICQCPC10 can:

– Specify a print definition and print with it when invoked by the application.

– Specify a SYSOUT CLASS to use a printer independent of any print definition.

ICQCPC10 as the Print Function of a Printer Definition
Using the Information Center Facility print definition dialog, an administrator can
define ICQCPC10 as the print function of a print definition. When a user selects a
printer with ICQCPC10 defined as its print function, there are two possible results:

v If the printer selection CLIST ICQCPC00 specified PRINT and a data set name,
ICQCPC10 automatically prints the data set at the defined printer. It prints using
TSO/E ALLOCATE parameters from the temporary table &QCPPRINT that
ICQCPC00 creates when the user selects the printer.

v If ICQCPC00 did not specify PRINT, then ICQCPC10 is available for the calling
application to invoke. ICQCPC10 can extract variables from the temporary table,
and the calling application can specify a data set and any TSO/E ALLOCATE
parameters to be used.

ICQCPC10 as Part of the Calling Application
If you do not want users to select a printer, you can have the calling application
invoke ICQCPC10 directly. Bypassing the printer selection CLIST, ICQCPC00, the
application can do one of the following:

v Invoke ICQCPC10 with the PLOC and PFORM parameters specifying a single
defined printer. In that case, ICQCPC10 can obtain ALLOCATE parameters from
the print definition.

v Invoke ICQCPC10 using the NOTABLE parameter, without PLOC and PFORM
but specifying a SYSOUT(class) that has a printer associated with it.

In either case, use the DSNAME option of ICQCPC10 to identify a data set to be
printed on the specified printer. Because the printer is not selected, there is no
temporary table of ALLOCATE values to retrieve. Instead, ICQCPC10 uses any
ALLOCATE parameters specified at invocation, or else retrieves ALLOCATE
parameters directly from the print definition.

Considerations
Print CLIST ICQCPC10 supports only parameters of the TSO/E ALLOCATE
command. ICQCPC10 ignores any other parameters that may be specified in a print
definition. ICQCPC10 uses the ALLOCATE parameters to create the print data set.

Syntax and Parameters
Applications can invoke ICQCPC10 with the following syntax. All the parameters are
optional keyword parameters. These invocation parameters override any conflicting
parameters in the print definition table.
%ICQCPC10 +

NOTABLE +
DSNAME(dsname(member)) +
PLOC(loc) +
PFORM(form) +
BURST/NOBURST +
CHARS(’set1 set2 ... setn’) +
COPIES(number) +

Print CLIST, ICQCPC10

518 z/OS V1R4.0 TSO/E Programming Services

DEST(’destination.userid’) +
FCB(’image-id[,ALIGN,VERIFY]’) +
FORMS(forms name) +
FLASH(’overlay-name[,count]’) +
HOLD/NOHOLD +
MODIFY(’module-name[,trc]’) +
OPTCD(’[J],[U]’) +
OUTDES(name) +
SYSOUT(class)
UCS(ucs name) +
WRITER(external writer name)

NOTABLE
specifies that ICQCPC10 will not retrieve ALLOCATE parameters from the
temporary table created by printer selection. NOTABLE is required if the calling
application invokes ICQCPC10 without printer selection and without PLOC and
PFORM coded to specify a print definition. In that case, (NOTABLE required), a
printer must be identified by an entry in the SYSOUT parameter.

DSNAME(dsname(member))
specifies a data set or member to be printed. This overrides any data set
named in the temporary table from the printer selection CLIST, ICQCPC00.

To specify a fully-qualified data set name, enclose it in three sets of single
quotes. For example, to print ‘userid.CLIST’, specify:
DSNAME(’userid.CLIST’’)

PLOC(loc) | PLOC((lo c))
specifies printer location. Use double parentheses if the location contains
embedded blanks. The location must match the LOCATION field of the desired
print definition. If you specify PLOC, you must also specify PFORM to identify a
unique print definition. NOTABLE is assumed.

PFORM(form)
specifies print format or style. Must match the PRINT FORMAT field of the
desired print definition. If you specify PFORM, you must also specify PLOC to
identify a unique print definition. NOTABLE is assumed.

BURST | NOBURST
specifies whether output from the 3800 printer is to be burst, trimmed, and
stacked. Specify BURST or NOBURST.

CHARS(‘set1 set2’) | CHARS(set)
specifies the character sets (fonts) to be used.

COPIES(n) | COPIES(‘,(n,n,n,n)’)
specifies the number of printed copies or copy groups (for the 3800).

DEST(destination) | DEST(‘destination.userid’)
specifies the destination to which the output is to be sent.

FCB(‘image-id[,ALIGN,VERIFY]’)
specifies a forms-control buffer. You can specify the ID of the forms control
image and, optionally, specify that the operator align the printer forms and verify
that the image displayed on the printer is the correct one.

FLASH(‘overlay-name[,count]’)
specifies a forms overlay for use on the 3800 printer and the number of copies
to be printed with the overlay.

FORMS(forms name)
specifies that the output data set should be printed on a special output form.

Print CLIST, ICQCPC10

Chapter 26. Using the Printer Support CLISTs 519

HOLD | NOHOLD
specifies whether the data set is to be placed on a HOLD queue before printing.

MODIFY(‘module-name[,trc]’)
specifies a copy modification module for the 3800 printer. The module contains
data, such as headings, and information specifying where and on which copies
to print them. The Table Reference Character (TRC) specifies character sets for
use with the module. TRC corresponds to fonts specified in CHARS, which is
required for use of TRC.

OPTCD(‘[J],[U]’)
specifies formatting and data checking options. ‘J’ applies to the 3800 printer,
and specifies that each line of output data begins with a print control character
followed by a table reference character for the font required. ‘U’ applies to the
1403 or 3211 printers with the UCS feature, and the 3800 printer. It permits
data checks and allows analysis by an error analysis routine.

OUTDES(name) | OUTDES(‘name,name,...’)
specifies that the output be printed using an output statement or statements
named in the user’s logon procedure.

SYSOUT(class)
specifies the system output data set and class. Required if you specify
NOTABLE without PLOC and PFORM.

UCS(name)
specifies a universal character set to be used in printing the output.

WRITER(name)
specifies a name for use in processing or selecting a SYSOUT data set. The
writer name can contain 1 to 8 alphanumeric or special characters #, $, or @.

Return Codes from ICQCPC10
For all return codes other than 0, ICQCPC10 stores a message ID in the shared
pool variable QCPMSGID. The calling application may issue the stored message.
ICQCPC10 stores error messages from TSO/E ALLOCATE in shared pool variables
QCPERR1 through QCPERR8.

Table 134 lists the return codes set by ICQCPC10.

Table 134. Return Codes from ICQCPC10

Return Code Meaning

0 Printing completed successfully with no error return codes from TSO/E
ALLOCATE or IEBGENER.

8 The print definition indicated by PLOC and PFORM does not exist.

12 The data set or member specified in the DSNAME parameter does not
exist or could not be allocated to SYSUT1 of IEBGENER. Variables
QCPERR1-QCPERR8 contain the output from IEBGENER.

16 The TSO/E ALLOCATE command set a non-zero return code. Check
the TSO/E ALLOCATE parameters for correct syntax.

24 Printing using IEBGENER was unsuccessful. The print function return
code is in the shared pool variable QCPPRC. See OS2/VS2 MVS
Utilities for information about IEBGENER.

28 The printer support table could not be opened.

32 NOTABLE was not specified. ICQCPC10 tried to access the temporary
table, &QCPPRINT, but did not find it.

Print CLIST, ICQCPC10

520 z/OS V1R4.0 TSO/E Programming Services

Table 134. Return Codes from ICQCPC10 (continued)

Return Code Meaning

36 There was a parameter syntax error. Conflicting parameters were
specified, such as BURST and NOBURST, HOLD and NOHOLD, or
PLOC without PFORM.

Print CLIST, ICQCPC15
IBM provides CLIST ICQCPC15 to serve as a print function for printer support.
CLIST ICQCPC00 can call ICQCPC15 to print one or more sequential or partitioned
data sets or members of a partitioned data set on a selected printer. Your print
applications can also call ICQCPC15 directly to print data on a specified printer.

Functions
Print CLIST ICQCPC15 provides several options for printing data sets on defined
printers. The primary function of ICQCPC15 is to print a data set using the
PRINTDS parameters already specified in a print definition. However, you may pass
alternative PRINTDS parameters in the call to ICQCPC15. Any of these PRINTDS
parameters in the call to ICQCPC15 overrides the same parameter from the print
definition.

You can specify a list of the names of data sets to be printed. If you do not specify
a data set in the call to ICQCPC15, ICQCPC15 takes the data set name from
ICQCPC00 or from the calling application. A data set name in ICQCPC15 overrides
one specified in ICQCPC00.

The ability to specify PRINTDS parameters and a list of data set names for
ICQCPC15 allows you to invoke ICQCPC15 in different ways. The different
applications are described below.

Applications
You can use ICQCPC15 in the following ways:

v As the print function of a print definition, ICQCPC15 can be automatically invoked
when the user selects the definition.

v As part of an application program, ICQCPC15 can:

– Specify a print definition and print with it when invoked by the application.

– Specify a SYSOUT CLASS to use a printer independent of any print definition.

ICQCPC15 as the Print Function of a Printer Definition
Using the Information Center Facility print definition dialog, an administrator can
define ICQCPC15 as the print function of a print definition. When a user selects a
printer with ICQCPC15 defined as its print function, there are two possible results:

v If the printer selection CLIST ICQCPC00 specified PRINT and a data set name,
ICQCPC15 automatically prints the data set at the defined printer. ICQCPC15
prints using TSO/E PRINTDS parameters from the temporary table &QCPPRINT
that ICQCPC00 creates when the user selects the printer.

v If ICQCPC00 did not specify PRINT, then ICQCPC15 is available for the calling
application to invoke. ICQCPC15 can extract variables from the temporary table,
and the calling application can specify data sets and any TSO/E PRINTDS
parameters to be used.

Print CLIST, ICQCPC10

Chapter 26. Using the Printer Support CLISTs 521

ICQCPC15 as Part of the Calling Application
If you do not want users to select a printer, you can have the calling application
invoke ICQCPC15 directly. Bypassing the printer selection CLIST, ICQCPC00, the
application can do one of the following:

v Invoke ICQCPC15 with the PLOC and PFORM parameters specifying a single
defined printer. In that case, ICQCPC15 can obtain PRINTDS parameters from
the print definition.

v Invoke ICQCPC15 using the NOTABLE parameter, without PLOC and PFORM
but specifying a SYSOUT(class) that has a printer associated with it.

In either case, use the DSNAME option of ICQCPC15 to identify the data sets to be
printed on the specified printer. Because the printer is not selected, there is no
temporary table of PRINTDS values to retrieve. Instead, ICQCPC15 uses any
PRINTDS parameters specified at invocation, or else retrieves PRINTDS
parameters directly from the print definition.

Considerations
Print CLIST ICQCPC15 supports only parameters of the TSO/E PRINTDS
command. ICQCPC15 ignores any other parameters that may be specified in a print
definition. ICQCPC15 uses the PRINTDS parameters to invoke the TSO/E
PRINTDS command, which prints the output.

Syntax and Parameters
Applications can invoke ICQCPC15 with the following syntax. All the parameters are
optional keyword parameters. These invocation parameters override any conflicting
parameters in the print definition table.
%ICQCPC15 +

NOTABLE +
DSNAME(dsname(member),dsname(member),...)/

DDNAME(ddname) +
PLOC(loc) +
PFORM(form) +
BIND(columns)/LMARGIN(columns) +
BMARGIN(lines) +
BURST/NOBURST +
CCHAR/SINGLE/DOUBLE/TRIPLE +
CHARS(’set1 set2 ... setn’) +
COLUMNS(’start1:end1,start2:end2,...’) +
COPIES(number) +
DCF/NODCF +
DEST(’destination.userid’) +
FCB(’image-id[,ALIGN,VERIFY]’) +
FLASH(’overlay-name[,count]’) +
FOLD(width)/TRUNCATE(width) +
FORMS(forms name) +
HOLD/NOHOLD +
LINES(line-num1:line-num2) +
MEMBERS/DIRECTORY/ALL +
MODIFY(’module-name[,trc]’) +
NUM(’loc,len’)/SNUM(’loc,len’)/NONUM +
OUTDES(name) +
PAGELEN(lines) +
SYSOUT(class)/CLASS(class)
TITLE/NOTITLE +
TMARGIN(lines) +
TODATASET(dsname)/TODSNAME(dsname) +
TRC/NOTRC +
UCS(ucs name) +
WRITER(external writer name)

Print CLIST, ICQCPC15

522 z/OS V1R4.0 TSO/E Programming Services

NOTABLE
specifies that ICQCPC15 will not retrieve ALLOCATE parameters from the
temporary table created by printer selection. NOTABLE is required if the calling
application invokes ICQCPC15 without printer selection and without PLOC and
PFORM coded to specify a print definition. In that case, (NOTABLE required), a
printer must be identified by an entry in the SYSOUT parameter.

DSNAME(dsname(member), dsname(member),...)
specifies one or more data sets or members to be printed. DSNAME overrides
any data set named in the temporary table from the printer selection CLIST,
ICQCPC00. DATASET can be specified as an alias of DSNAME.

To specify a fully-qualified data set name, enclose it in three sets of single
quotes. For example, to print ‘userid.CLIST’, specify:
DSNAME(’userid.CLIST’’)

DDNAME(ddname)
specifies the file to be printed. Specifying DDNAME causes the data sets in the
file concatenation to be printed in the same way as specifying DSNAME
followed by a list of the data set names that make up the file. This overrides
any data set named in the temporary table from the printer selection CLIST,
ICQCPC00. FILE can be specified as an alias of DDNAME.

PLOC(loc) | PLOC((lo c))
specifies printer location. Use double parentheses if the location contains
embedded blanks. The location must match the LOCATION field of the desired
print definition. If you specify PLOC, you must also specify PFORM to identify a
unique print definition. NOTABLE is assumed.

PFORM(form)
specifies print format or style. Must match the PRINT FORMAT field of the
desired print definition. If you specify PFORM, you must also specify PLOC to
identify a unique print definition. NOTABLE is assumed.

BIND(columns) | LMARGIN(columns)
specifies the number of columns to the right that the output should be shifted on
the paper.

BMARGIN(lines)
specifies the number of blank lines to be left at the bottom of each printed
page.

BURST | NOBURST
specifies whether output from the 3800 printer is to be burst, trimmed, and
stacked. Specify BURST or NOBURST. NOBURST is the default.

CCHAR | SINGLE | DOUBLE | TRIPLE
CCHAR specifies that ANSI or machine code spacing control characters in the
data set should be used for inter-record spacing. SINGLE, DOUBLE and
TRIPLE specify that all non-blank lines in the data set should be printed with
single, double and triple spacing, respectively.

CHARS(‘set1 set2’) | CHARS(set)
specifies the character sets (fonts) to be used.

COLUMNS(‘start1:end1,start2:end2,...’)
specifies the columns of the data set to be printed. Specify the columns to be
printed as pairs of numbers in the format “start-column:end column”.

COPIES(n) | COPIES(‘,(n,n,n,n)’)
specifies the number of printed copies or copy groups (for the 3800).

Print CLIST, ICQCPC15

Chapter 26. Using the Printer Support CLISTs 523

DCF | NODCF
specifies that if the data set being printed has been formatted by DCF, the font
information in the first line of the data set should be extracted. This font
information is used when the data set is printed. NODCF specifies that font
information should not be extracted from the data set. DCF is the default.

DEST(destination) | DEST(‘destination.userid’)
specifies the destination to which the output is to be sent.

FCB(‘image-id[,ALIGN,VERIFY]’)
specifies a forms-control buffer. You can specify the ID of the forms control
image and, optionally, specify that the operator align the printer forms and verify
that the image displayed on the printer is the correct one.

FLASH(‘overlay-name[,count]’)
specifies a forms overlay for use on the 3800 printer and the number of copies
to be printed with the overlay.

FOLD(width) | TRUNCATE(width)
specifies the maximum length of the printed line. FOLD indicates that lines
longer than the maximum length should be wrapped onto the following line.
TRUNCATE indicates that lines longer than the maximum length should be
truncated to fit on the line.

FORMS(forms name)
specifies that the output data set should be printed on a special output form.

HOLD | NOHOLD
specifies whether the data set is to be placed on a HOLD queue before printing.
NOHOLD is the default.

LINES(line-num1:line-num2)
specifies the range of lines to be printed, either in terms of embedded
line-number fields (NUM and SNUM parameters) or relative records (NONUM
parameter).

MEMBERS | DIRECTORY | ALL
specifies what portion of a partitioned data set is to be printed. MEMBERS
indicates that only the data contained in the members of the partitioned data set
should be printed. DIRECTORY indicates that only a list of the members should
be printed. ALL indicates that the data contained in the members should be
printed, followed by a list of the members in the partitioned data set. ALL is the
default.

MODIFY(‘module-name[,trc]’)
specifies a copy modification module for the 3800 printer. The module contains
data, such as headings, and information specifying where and on which copies
to print them. The Table Reference Character (TRC) specifies character sets for
use with the module. TRC corresponds to fonts specified in CHARS, which is
required for use of TRC.

NUM(‘loc,len’) /SNUM(‘loc,len’)/NONUM
specifies whether line numbers should assumed to be embedded.

NUM
Indicates that the data set contains a line-number field that is to be printed.
The first value indicates the column location of the beginning of the
line-number field. The second value indicates the number of columns that
the line-number field occupies.

SNUM
Indicates that the data set contains a line-number field that is not to be

Print CLIST, ICQCPC15

524 z/OS V1R4.0 TSO/E Programming Services

printed. The first value indicates the column location of the beginning of the
line-number field. The second value indicates the number of columns that
the line-number field occupies.

NONUM
Indicates that the records should be treated as though there are no
embedded line-numbers.

OUTDES(name) | OUTDES(‘name,name,...’)
specifies that the output be printed using an output statement or statements
named in the users logon procedure.

PAGELEN(lines)
specifies the number of lines in a printed page.

SYSOUT(class)/CLASS(class)
specifies the system output data set class. Required if you specify NOTABLE
without PLOC and PFORM.

TITLE | NOTITLE
TITLE specifies that a title, including the name of the data set being printed and
the page number, should appear on every page of printed output. NOTITLE
specifies that the title should be suppressed.

TMARGIN(lines)
specifies the number of blank lines to be left at the top of every printed page.

TODATASET(dsname) | TODSNAME(dsname)
specifies the name of the data set into which the formatted data is to be copied.
If this operand is specified, a SYSOUT data set is not created. If the indicated
data set does not exist, the TSO/E PRINTDS command creates the data set.

To specify a fully-qualified data set name, enclose it in three sets of single
quotes. For example, to copy the formatted output into ‘userid.OUTPUT’,
specify:
TODSNAME(’userid.OUTPUT’’)

TRC | NOTRC
specifies whether the data records contain TRC codes that identify the font to
be used for printing each record.

UCS(name)
specifies a universal character set to be used in printing the output.

WRITER(name)
specifies a name for use in processing or selecting a SYSOUT data set. The
writer name can contain 1 to 8 alphanumeric or special characters #, $, or @.

Return Codes from ICQCPC15
For all return codes other than 0, ICQCPC15 stores a message ID in the shared
pool variable QCPMSGID. The calling application may issue the stored message.
ICQCPC15 stores error messages from TSO/E PRINTDS in shared pool variables
QCPERR1 through QCPERR8.

Table 135 lists the return codes set by ICQCPC15.

Table 135. Return Codes from ICQCPC15

Return Code Meaning

0 Printing completed successfully with no error return codes from TSO/E
PRINTDS.

Print CLIST, ICQCPC15

Chapter 26. Using the Printer Support CLISTs 525

Table 135. Return Codes from ICQCPC15 (continued)

Return Code Meaning

4 Printing completed with a warning message from TSO/E PRINTDS.
Variables QCPERR1-QCPERR8 contain the output from PRINTDS.

8 The print definition indicated by PLOC and PFORM does not exist.

12 The data set or member specified in the DSNAME parameter does not
exist.

16 The DSNAME/DDNAME parameter (or an alias) was specified more
than once.

24 Printing using PRINTDS was unsuccessful. The print function return
code is in the shared pool variable QCPPRC. Variables
QCPERR1-QCPERR8 contain the output from PRINTDS.

28 The printer support table could not be opened.

32 NOTABLE was not specified. ICQCPC15 tried to access the temporary
table, &QCPPRINT, but did not find it.

36 There was a parameter syntax error. Conflicting parameters were
specified, such as BURST and NOBURST, HOLD and NOHOLD, or
PLOC without PFORM

Examples Using Printer CLISTs
The following examples illustrate sample applications for using printer CLISTs.

Example 1: The Printer List CLIST
A user or an application program can invoke the application in Figure 184 on
page 527 to print a note or data set. The application invokes CLIST ICQCPC00
using input from a series of WRITE and READ statements; this input could also be
obtained from an input panel. If the input is a list request, ICQCPC00 displays a list
of printers. If the user requests a specific printer, ICQCPC00 verifies that the printer
is defined, then sends the data set to it. Printing would be done by the print function
defined for the selected printer. The application displays any messages set by
ICQCPC00.

Print CLIST, ICQCPC15

526 z/OS V1R4.0 TSO/E Programming Services

/**/
/* THIS CLIST PROMPTS THE USER TO NAME A DATA SET TO BE PRINTED */
/* AND A PRINTER LOCATION AND FORMAT. THE USER CAN SELECT THE LAST */
/* LOCATION USED OR SPECIFY ANOTHER. THE USER CAN SELECT FROM A */
/* LIST OF PRINTERS. THE PRINTER SELECTION CLIST SENDS THE DATA SET*/
/* TO THE PRINT FUNCTION DEFINED FOR THE SELECTED PRINTER. */
/**/
PROC 0
CONTROL NOPROMPT NOFLUSH NOMSG END(ENDO)
CONTROL CAPS
WRITENR DATA SET TO BE PRINTED ===>
READ
SET &PRINTDSN = &STR(&SYSDVAL) /* save data set name */
IF &SUBSTR(1:1,&NRSTR(&PRINTDSN)) = &STR(’) THEN +
SET PRINTDSN = &STR(’&PRINTDSN’’) /* insert 2 quotes for clist call */
ISPEXEC VGET (SELLOC SELFRM) PROFILE /* get previous location */
IF &NRSTR(&SELLOC) ¬= THEN +
DO
WRITE Previously used printer was &NRSTR(&SELLOC) &NRSTR(&SELFRM)
WRITE To reuse, press ENTER; to use another printer,
WRITENR enter another location or * for list ===>
READ &QMPRTLOC
IF &NRSTR(&QMPRTLOC) = THEN /* if old location requested */ +
DO
SET QMPRTLOC = &SELLOC /* set loc = old location */
SET QMPRTFRM = &SELFRM /* set frm = old format */
ENDO
ELSE +
DO /* request another format */
WRITENR enter another format or * for list ===>
READ &QMPRTFRM
ENDO /* request another format */

ENDO
ELSE +
DO
WRITENR PRINTER LOCATION OR * FOR LIST ===>
READ &QMPRTLOC
WRITENR PRINT FORMAT OR * FOR LIST ===>
READ &QMPRTFRM
ENDO
WRITENR NUMBER OF COPIES ===>
READ &QMPRTNO
IF &NRSTR(&QMPRTNO) = THEN +
SET &QMPRTNO = 1
CONTROL ASIS

Figure 184. Example 1: The Printer List CLIST (Part 1 of 2)

Examples Using Printer CLISTs

Chapter 26. Using the Printer Support CLISTs 527

Example 2: The Print Function CLIST
The application in Figure 185 on page 529 expands upon the example in Figure 184
on page 527. It performs the same printer selection function but also invokes either
ICQCPC10 or ICQCPC15 to give the data set a SYSOUT CLASS of A and send it
to the HOLD queue before printing it. The SYSOUT CLASS and HOLD keyword
override anything else specified in the print definition. The application displays any
messages set by the printer selection and print CLISTs.

/***/
/* If LOCATION and FORMAT have single values, not null or *, */
/* then verify that the printer is defined and use it. */
/* (Do not display a list of printers.) */
/***/

SET VERIFY = VERIFY /* assume a specific printer was selected
SET N = &LENGTH(&NRSTR(&QMPRTLOC)) /* check LOCATION value */
IF &NRSTR(&QMPRTLOC) = OR +

(&SUBSTR(&N:&N,&NRSTR(&QMPRTLOC)) = &STR(*) THEN +
SET VERIFY = /* VERIFY = null; display a list of printers */

SET N = &LENGTH(&NRSTR(&QMPRTFRM)) /* check FORMAT value */
IF &NRSTR(&QMPRTFRM) = OR +

(&SUBSTR(&N:&N,&NRSTR(&QMPRTFRM)) = &STR(*) THEN +
SET VERIFY = /* VERIFY = null; display a list of printers */

IF &NRSTR(&QMPRTLOC) = THEN +
SET QMPRTLOC = &STR(*)
IF &NRSTR(&QMPRTFRM) = THEN +
SET &QMPRTFRM = &STR(*)
%ICQCPC00 PLOC(’(&NRSTR(&QMPRTLOC))’) +

PFORM(’(&QMPRTFRM)’) +
PRINT +
DSNAME(&PRINTDSN) +
COPIES(&QMPRTNO) &VERIFY

SET RC = &LASTCC
WRITE RETURN CODE = &RC

IF &RC = 0 THEN /* if printing was successful */ +
DO
ISPEXEC VGET (QCPLOC QCPFORM) SHARED /* retrieve printer used */
SET SELLOC = &NRSTR(&QCPLOC) /* load variable next time */
SET SELFRM = &NRSTR(&QCPFORM) /* load variable next time */
ISPEXEC VPUT (SELLOC SELFRM) PROFILE
ENDO /* error printing data set */
ELSE +
DO /* error printing data set */
ISPEXEC VGET (QCPMSGID) SHARED /* get message identifier */
ISPEXEC GETMSG MSG(&QCPMSGID) LONGMSG(MESSAGE)
WRITE &MESSAGE
ENDO /* error printing data set */

EXIT CODE(&RC) /* return to calling program */

Figure 184. Example 1: The Printer List CLIST (Part 2 of 2)

Examples Using Printer CLISTs

528 z/OS V1R4.0 TSO/E Programming Services

/***/
/* THIS CLIST PROMPTS THE USER TO NAME A DATA SET TO BE PRINTED */
/* AND A PRINTER LOCATION AND FORMAT. THIS CLIST INVOKES ICQCPC00 */
/* TO ALLOW THE USER TO SELECT A PRINTER FROM A LIST OF PRINTERS. */
/* THIS CLIST THEN INVOKES EITHER PRINT CLIST ICQCPC10 or ICQCPC15 */
/* TO EFFECT PRINTING ON THE SELECTED PRINTER. */
/***/
PROC 0
/*
CONTROL NOPROMPT NOFLUSH NOMSG END(ENDO)
/*
CONTROL CAPS
WRITENR DATA SET TO BE PRINTED ===>
READ
SET &PRINTDSN = &SYSDVAL /* check if fully qualified; if

/* data set is not fully qualified,
IF &SUBSTR;(1:1,&PRINTDSN); ¬= &STR(’) THEN +
SET &PRINTDSN = &STR;(’&SYSPREF..&PRINTDSN’’) /* add prefix */
ELSE +
SET &PRINTDSN = &STR(’&PRINTDSN’’) /* add quotes */
WRITE PRINTER LOCATION OR * FOR LIST (IF LOCATION CONTAINS A BLANK
WRITENR SURROUND IT WITH PARENTHESES) ===>
READ &QMPRTLOC
WRITENR PRINT FORMAT OR * FOR LIST ===>
READ &QMPRTFRM
WRITENR NUMBER OF COPIES ===>
READ &QMPRTNO
/*
CONTROL ASIS
IF &NRSTR(&QMPRTLOC) = THEN +
SET QMPRTLOC = &STR(*) /* If location is null, set to *
IF &NRSTR(&QMPRTFRM) = THEN +
SET QMPRTFRM = &STR(*) /* If format is null, set to *
SET VERIFY = &STR(VERIFY) /* verify only if named printer
SET TEMP = &SYSINDEX(&STR(*),&QMPRTLOC,0)
IF &TEMP ¬= 0 THEN +
SET VERIFY = /* list (not verify) when unnamed printer
SET TEMP = &SYSINDEX(&STR(*),&QMPRTFRM,0) /* check for an asterisk
IF &TEMP ¬= 0 THEN +
SET VERIFY = /* list (not verify) when unnamed printer

Figure 185. The Print Function CLIST (Part 1 of 2)

Examples Using Printer CLISTs

Chapter 26. Using the Printer Support CLISTs 529

/**/
/* Display printer or list of printers */
/**/

%ICQCPC00 PLOC(’(&NRSTR(&QMPRTLOC))’) +
PFORM(’(&QMPRTFRM)’) &VERIFY

SET RC = &LASTCC
IF &RC ¬= 0 THEN +
DO /* error selecting a printer
ISPEXEC VGET (QCPMSGID) SHARED /* get message identifier
ISPEXEC SETMSG MSG(&QCPMSGID) /* display message on next screen
ENDO /* error selecting a printer
ELSE +
DO /* user has selected a printer

/***/
/* Using the printer data selected by the user, invoke either */
/* print routine ICQCPC10 or ICQCPC15. If the user requests that */
/* PRINTDS be used, ICQCPC15 is invoked. Otherwise, ICQCPC10 is */
/* invoked. In either case, specify SYSOUT CLASS A and HOLD. */
/***/

VGET (QAPINFUN) SHARED /* Obtain print function type
IF &QAPINFUN = Y THEN +

%ICQCPC15 DSNAME(&NRSTR(&PRINTDSN)) SYSOUT(A) HOLD /* PRINTDS
ELSE +

%ICQCPC10 DSNAME(&NRSTR(&PRINTDSN)) SYSOUT(A) HOLD /*Not PRINTDS
SET RC = &LASTCC
IF &RC ¬= 0 THEN +
DO /* error printing data set
ISPEXEC VGET (QCPMSGID) SHARED /* get message identifier
ISPEXEC SETMSG MSG(&QCPMSGID) /* display message
ENDO /* error printing data set

ENDO
EXIT CODE(&RC)

Figure 185. The Print Function CLIST (Part 2 of 2)

Examples Using Printer CLISTs

530 z/OS V1R4.0 TSO/E Programming Services

Chapter 27. Invoking an Information Center Facility
Application

Operation of ICQAMLI0 . 531
Invoking ICQAMLI0 . 531
Output Table Variables . 533
Return Codes from ICQAMLI0 533
Reason Codes from ICQAMLI0 533
Example Using ICQAMLI0 . 534

This chapter describes how to use the application invocation function, ICQAMLI0, in
a program to invoke an application that is defined to the Information Center Facility.

Operation of ICQAMLI0
ICQAMLI0 allows a program to invoke an application that has been defined with the
Application Manager dialog to the Information Center Facility. A program that uses
ICQAMLI0 specifies, as input operands, the name of the application to be invoked
and a list of parameters to be passed to the application. A program can also use
ICQAMLI0 to invoke a tutorial that is associated with an application, instead of the
application itself.

Output from ICQAMLI0 is the return code from ICQAMLI0 and an ISPF table that
contains the return code from the invoked application or tutorial.

Invoking ICQAMLI0
Invoke ICQAMLI0 from your application program using either ISPEXEC SELECT or
ISPSTART. To invoke ICQAMLI0 using ISPEXEC SELECT, a valid ISPF
environment must exist. Otherwise, you must use ISPSTART. For information on
ISPEXEC SELECT and ISPSTART, see z/OS ISPF Services Guide.

The syntax of ICQAMLI0 and a description of each operand follows:

APPLNAME
specifies the name of the application to be invoked. The maximum length of the

ISPEXEC SELECT
CMD(ICQAMLI0

[APPLNAME(application-name)]
[KEYWORD(keyword)]

[INIT(init-command)]

[NEXTOPT(option)]

[TUTORIAL]

[NOERRPAN]

[PARM(parameters)])

NEWAPPL(application-id)

PASSLIB

© Copyright IBM Corp. 1988, 2002 531

name is 12 characters. The first character must be alphabetic and the
remaining characters must be alphanumeric or the special characters $, #, @.

KEYWORD
specifies the keyword that identifies the application to be invoked. If more than
one application matches the specified keyword, ICQAMLI0 displays a selection
panel to the user, who can then choose the application to be invoked.

INIT
specifies a command string used to invoke an initialization routine. You can use
INIT instead of, or in addition to, defining a start-up routine. Use INIT for
initialization that is required only under special circumstances, such as the first
time an application is invoked. The routine specified by INIT is executed before
the start-up routine specified in the application definition.

The command string specified by INIT must be a quoted string with a maximum
length of 256 bytes. Its format must be suitable for use with an ISPEXEC
SELECT statement.

NEXTOPT
specifies the next option for fast path processing. The maximum length of the
string is 80 characters. This string is passed to the dynamic panel display or the
application function to support fast path processing. The default is blanks.

TUTORIAL
specifies that the tutorial (if one exists) for the application is to be invoked
instead of the application itself.

NOERRPAN
specifies that error messages and panels should not be displayed for error
conditions other than a severe error (return code 20). If ICQAMLI0 issues a
return code of 20, an error message and an error panel are displayed,
regardless of whether NOERRPAN is specified.

The default is to display an error message and panel whenever ICQAMLI0
encounters a error.

PARM
specifies a list of invocation parameters to be passed to the application. The
maximum length of this string is 256 bytes. The default is null.

Note: PARM must be the last operand specified.

NEWAPPL
specifies a 1- to 4-character code for the application being invoked. The
application ID can be one of the following:

v The ISPF application ID assigned by the Information Center Facility
administrator to the application being invoked.

v The application ID of the application that is currently in effect. It is
recommended that you use the same application ID as the current
application because the setting of PF keys and variables common to ISPF
and PDF are not copied from one profile pool to another. To retrieve the
current application ID, examine the ISPF shared pool variable ZAPPLID.

v ICQ, the application ID for the Information Center Facility.

For information on ISPF application IDs, see z/OS ISPF Services Guide.

PASSLIB
specifies that the current set of application-level ISPF libraries, if any exist, are

Invoking ICQAMLI0

532 z/OS V1R4.0 TSO/E Programming Services

to be used by the application being invoked. You should specify PASSLIB to
insure that any library allocated using the ISPF LIBDEF service is available to
the application being invoked.

Output Table Variables
ICQAMLI0 returns an ISPF table, ICQAMTRC, that has one row containing the
variable QAMRC. QAMRC is the return code from the invoked application or
tutorial.

Return Codes from ICQAMLI0
Table 136 lists the return codes that ICQAMLI0 passes to your program in register
15. If you invoke ICQAMLI0 from a CLIST, the variable &LASTCC contains the
return code from ICQAMLI0.

Table 136. ICQAMLI0 Return Codes

Return Code Meaning

0 ICQAMLI0 completed successfully.

2 ICQAMLI0 completed successfully. However, no application was invoked
because the user did not select an application from the keyword
selection panel.

4 Extended return from successful application.

6 The pre-application installation exit failed.

8 The startup/initialization routine failed.

10 The application or tutorial failed.

12 The application or tutorial was not available because it was locked.

14 The environment for the requested function was not available.

16 The application or tutorial is not defined, or the keyword specified to
identify the application is not defined.

20 A severe error occurred. Error panel ICQAME70 is displayed to the user
and the corresponding error message shows a reason code. The reason
codes are described in Table 137.

Reason Codes from ICQAMLI0
ICQAMLI0 sets one of the following reason codes when a return code of 20 is
issued. ICQAMLI0 does not return the reason code to its caller. Instead, this
information is provided to the user of your application program when the error panel
ICQAME70 is displayed.

Table 137. ICQAMLI0 Reason Codes

Reason Code Meaning

100 An error occurred in the parse service routine.

104 Both the APPLNAME and KEYWORD operands were specified. These
operands are mutually exclusive.

108 The string specified on the PARM operand is longer than 256 bytes.

110 PQUERY failed.

130 General information needed to invoke the application could not be
found. (A DATA row is missing from the table).

Invoking ICQAMLI0

Chapter 27. Invoking an Information Center Facility Application 533

Table 137. ICQAMLI0 Reason Codes (continued)

Reason Code Meaning

134 The application type is not valid. An application must be a panel or a
function.

138 The invocation command for this application is not defined.

140 Too many variables are defined to the function and environment, if one
exists.

142 The ISPF SELECT command failed.

144 The value of NEXTOPT will not fit in the invocation command.

146 The value of PARM will not fit in the invocation command.

148 Too many data sets are defined for a function library.

150 The LIBDEF service failed while allocating the libraries for the
application.

199 A severe error occurred in the KEYWORD search CLIST, ICQAMCL0.

Example Using ICQAMLI0
The CLIST in Figure 186 is a sample application that uses ICQAMLI0 to invoke
applications that are defined to the Information Center Facility. The CLIST prompts
the user to choose the application to be invoked and then uses ICQAMLI0 to invoke
the indicated application. This CLIST requires an ISPF environment.

PROC 0...
WRITE ***
WRITE
WRITE Calculations completed. Please select one of the
WRITE following:
WRITE
WRITE 1 - Data Base Data Entry
WRITE 2 - Data Base Reports
WRITE
WRITENR Enter your selection ===>
READ SELECT
ISPEXEC VGET (ZAPPLID) SHARED
IF &SELECT = 1 THEN +

ISPEXEC SELECT +
CMD(ICQAMLI0 APPLNAME(DBENTRY)) +
NEWAPPL(&ZAPPLID) PASSLIB /* invoke data base entry +

application
ELSE +

IF &SELECT = 2 THEN +
ISPEXEC SELECT +

CMD(ICQAMLI0 APPLNAME(DBREPRT) +
PARM(DA(DBREPRT.DAT))) +

NEWAPPL(&ZAPPLID) PASSLIB /* invoke data base reporting +
application. Pass data set name +
as parm.

Figure 186. A Sample Application Using ICQAMLI0

Reason Codes from ICQAMLI0

534 z/OS V1R4.0 TSO/E Programming Services

Chapter 28. Using the GETMSG Service

Functions of GETMSG . 535
Considerations for Using GETMSG 535

Multiple Applications . 536
Invoking GETMSG . 536
GETMSG Parameters . 537
Output from GETMSG. 538
Return Codes from GETMSG 539
Displaying the Retrieved Message 539
Example Using GETMSG . 539

Application programs can use the GETMSG service to retrieve system messages
issued during a console session. TSO/E provides the GETMSG service as both a
programming service and a REXX function. This chapter describes how to use the
GETMSG programming service. See z/OS TSO/E REXX Reference for information
about the TSO/E REXX GETMSG function.

You can invoke GETMSG from an assembler program or as an assembler service
from a program written in a high-level language. For more information about
invoking an assembler service from a high-level language, see your language
reference.

Functions of GETMSG
There are two types of system messages issued during a console session:

Solicited message Any message issued in response to an MVS
system or subsystem command

Unsolicited message Any message that is not a direct response to an
MVS system or subsystem command (for example,
a message sent from another user)

If the user of the CONSOLE command has specified that messages (solicited
and/or unsolicited) are not to be displayed, you can use GETMSG to retrieve
messages that have been routed to the user’s console. You can request to retrieve:
v A specific solicited message (response to a specific command)
v The oldest solicited message
v The oldest unsolicited message
v The oldest message (regardless of whether it is solicited or unsolicited)

There may be times when the message you request has not yet been routed to the
user’s console. To allow for these situations, you can request that GETMSG wait a
specified time for the message to arrive.

Considerations for Using GETMSG
A console session must be active before your program invokes GETMSG. The
settings in your console profile must indicate that system messages (solicited and/or
unsolicited) are not to be displayed at the terminal. You can use the CONSPROF
command to change the settings in the console profile.

To ensure that the proper message is delivered to your application program, use the
command and response token (CART), and its mask. The CART is a token that lets

© Copyright IBM Corp. 1988, 2002 535

you associate MVS system commands and subcommands with their responses.
The mask is a search argument that GETMSG uses with the CART parameter for
obtaining a message. The CART and mask parameters are valid only if you are
retrieving solicited messages.

You cannot selectively retrieve unsolicited messages. Unsolicited messages are not
associated with CARTs and are shared by applications.

Multiple Applications
If multiple applications are using GETMSG in a TSO/E user’s address space, the
following guidelines should be followed to ensure that your application retrieves only
the solicited messages destined for it:

v Solicited and unsolicited messages should be explicitly requested. If you request
only the oldest message, and the oldest message is solicited, it may not be
destined for your application.

v Solicited messages should be requested with a mask that contains X'FF' for at
least the first 4 bytes and a CART that begins with a 4-character application
identifier.

The user of the CONSOLE command must have also specified a CART that begins
with a 4-character application identifier. See z/OS TSO/E System Programming
Command Reference for specific guidelines about using the CART on the
CONSOLE command to associate commands with their responses.

Note: At least one application should allow receiving of unsolicited messages.

Invoking GETMSG
You can invoke GETMSG from an assembler program or as an assembler service
from a program written in a high-level language. The method you use to invoke
GETMSG depends on the language your program is written in. For more
information about invoking GETMSG as an assembler service from a high-level
language, see your language reference.

GETMSG must be invoked in the key and execution state of the calling program.
GETMSG must be invoked in 31-bit addressing mode. The caller’s parameters must
be in the primary address space. It can accept input above or below 16 MB in
virtual storage.

Figure 187 on page 537 shows the standard parameter list structure for GETMSG.

Considerations for Using GETMSG

536 z/OS V1R4.0 TSO/E Programming Services

When the GETMSG service is called, the MVS registers contain the following
values:
Register 0 Unpredictable
Register 1 The address of the parameter list
Registers 2–12 Unpredictable
Register 13 The problem program save area
Register 14 The return address
Register 15 The entry point address of the programming service

GETMSG Parameters
The GETMSG parameters are described in Table 138. The parameters must be
specified in the order shown in the figure; however, they do not have to be
contiguous in storage.

Table 138. Parameters for GETMSG

Parameter Description

Flags See Table 139 on page 538 for a description of the flags. This is a 4-byte
field.

CNMCB
Address

Specifies a field to contain the address of the control block containing the
message and associated information (CNMCB) returned to the user. This is
a 4-byte field. See Table 141 on page 539 for details.

CART Specifies a search argument that is compared with the CARTs propagated
with the messages routed to the user’s console. If this value is not
specified (CART flag is off), the oldest message is returned. This is an
8-byte field.

Mask Specifies a mask that will be ANDed with the CART specified in the CART
parameter and the CART propagated with the messages routed to the
user’s console. The two ANDed values are then compared, and if a match
occurs, the message is returned. If this value is not specified (mask flag is
off), the oldest solicited message with a matching CART is returned. This is
an 8-byte field.

Time Specifies a time (in seconds) that the service waits for the message if it
has not been routed to the user’s console. This is a 4-byte field.

The flags that are passed as input to GETMSG are described in Table 139 on
page 538.

Register 1 Flag Ptr Flags

MASK Ptr

TIME Ptr

CNMCB Ptr

8-byte CART

8-byte MASK

TIME

Msg Ptr Ptr

CART Ptr

Figure 187. Parameter List Structure for GETMSG Service Parameters

Invoking GETMSG

Chapter 28. Using the GETMSG Service 537

Table 139. Flags for GETMSG

Flag Meaning

X'80000000' A solicited message that has been routed to the user’s console is
requested. If this bit is on, the CART and mask flags may be used to
request specific messages.

X'40000000' The oldest unsolicited message routed to the user’s console is
requested.

X'20000000' A solicited or unsolicited message is requested. The oldest message
routed to the user’s console is returned.

X'10000000' Indicates that a CART is specified in the parameter at offset X'08'.
X'08000000' Indicates that a mask is specified in the parameter at offset X'10'.
X'04000000' Indicates that a time value is specified in the parameter at offset X'18'.
X'03FFFFFF' Reserved.

Output from GETMSG
GETMSG passes a return code to the calling program. See “Return Codes from
GETMSG” on page 539 for explanations of the return codes.

If processing was successful and a message was found, GETMSG also returns the
address of a chain of console message control blocks (CNMCBs) in the CNMCB
parameter. Each CNMCB built by GETMSG contains a pointer to the next CNMCB
(if one exists) and a message data block (MDB). There is one CNMCB for each
MDB. Each MDB contains one or more lines of message text and related message
information, such as the CART and message ID. If the retrieved message is a
multi-line message, each line of the message has information pertaining to that line
only.

If processing was not successful or a message was not found, GETMSG sets the
CNMCB parameter to zero.

Table 140 shows the format and contents of the CNMCB. Use the IKJCNMCB
macro, which is provided in SYS1.MACLIB, to map the fields of the CNMCB. Use
the IEAVM105 macro, which is provided in SYS1.MACLIB, to map the individual
fields of the MDB.

Table 140. The Console Message Control Block

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

0(0) 8 CNMCB_ID CNMCB identifier ’IKJCNMCB’
8(8) 2 CNMCB_VERS CNMCB version number

10(A) 2 CNMCB_LEN The length of the CNMCB
12(C) 4 CNMCB_NEXT_MCB The address of the next CNMCB, if one

exists. If this CNMCB is the last in the
chain, this field contains nulls.

16(10) variable CNMCB_MDB_AREA The message data block (MDB).

After using the retrieved message, your program must free the CNMCBs associated
with the message. The CNMCBs are in key 8 subpool 78 storage.

GETMSG Parameters

538 z/OS V1R4.0 TSO/E Programming Services

Return Codes from GETMSG
GETMSG returns one of the following return codes to the calling program. The
return code is passed in general register 15.

Table 141. Return Codes from GETMSG

Return Code
(Decimal)

Message Issued Description

0 None Processing successful; a message has been
returned.

4 None Processing successful; the message was not found.
If a time value was specified, the timer expired
before the message arrived.

8 None Processing successful; the user pressed the Attention
key to end GETMSG.

16 IKJ55324I Processing unsuccessful; recovery could not be
established.

20 IKJ55323I Processing unsuccessful; a console session is not
active.

24 IKJ55325I Processing unsuccessful; console deactivation is in
progress. GETMSG cannot process the request.

28 IKJ55327I Processing unsuccessful; the CONSOLE command
encountered an unrecoverable error (an abend
occurred).

32 IKJ55321I Processing unsuccessful; the input parameter list is
not valid.

36 IKJ55322I Processing unsuccessful; an error occurred while
attempting to obtain a message.

Displaying the Retrieved Message
After retrieving the message using GETMSG, your program can decide whether to
display the message to the user. Your program may want to display only certain
messages to the user, for example, those that require responses. If the message is
a WTOR message, the MDB in the CNMCB contains a reply ID.

If your program decides to display the retrieved message, the console command
control block (CNCCB) contains message format (MFORM) settings that indicate
how the message should be displayed. You can use the IKJCNCCB macro, which is
provided in SYS1.MACLIB, to map the fields in the CNCCB.

Example Using GETMSG
Figure 188 on page 540 is an example that shows how an assembler program
invokes GETMSG to retrieve the response to a specific system command
invocation. The program uses the CART and mask options to ensure that it
retrieves only a message destined for it. The CART begins with the identifier of the
program, ABCD. The program also specifies a timer value of 5 seconds. If the
message requested has not yet been routed to the user’s console, GETMSG will
wait 5 seconds for it to arrive before returning to the calling program.

Return Codes from GETMSG

Chapter 28. Using the GETMSG Service 539

GETAMSG CSECT
GETAMSG AMODE 31
GETAMSG RMODE ANY
*
* (NOTE: THIS MODULE IS NOT REENTRANT)
* ENTRY LINKAGE

STM 14,12,12(13)
LR 12,15
USING GETAMSG,12
LA 2,SAVEAREA
ST 2,8(13)
ST 13,SAVEAREA+4
LR 13,2

*
* SET THE PARAMETERS

SR 2,2
ST 2,GPL_MSG_PTR ZERO THE POINTER

*
* INVOKE GETMSG

LA 1,GPL POINT TO THE PARAMETER LIST
LINK EP=GETMSG LINK TO GETMSG

*
* PROCESS THE RESULT
* .
* .
* .
*
* EXIT LINKAGE

L 13,SAVEAREA+4
L 14,12(13)
LM 0,12,20(13)
BR 14

SAVEAREA DS 18F SAVEAREA
GPL_MSG_PTR DS A MESSAGE POINTER
GPL_FLAGS DC XL4’9C000000’ GETMSG SERVICE REQUEST FLAGS
* SOLICITED MESSAGE, CART, MASK, AND
* TIME SPECIFIED
GPL_CART DC CL8’ABCD ’ CART VALUE
GPL_MASK DC XL8’FFFFFFFF00000000’ MASK VALUE
GPL_TIME DC F’5’ TIME TO WAIT FOR THE MESSAGE
GPL EQU * STANDARD PARAMETER LIST

DC A(GPL_FLAGS)
DC A(GPL_MSG_PTR)
DC A(GPL_CART)
DC A(GPL_MASK)
DC A(GPL_TIME)
END

Figure 188. Invoking GETMSG from an Assembler Language Program

Example Using GETMSG

540 z/OS V1R4.0 TSO/E Programming Services

Chapter 29. Using the Unauthorized Resource Processor
Service IKJURPS

Overview of the TSO/E Unauthorized Resource Processor Service 541
Application Routine Versus the Unauthorized Resource Processor 543

Passing Control to IKJURPS 543
The IKJURPS Parameter List 543
Invoking the IKJURPS Service. 546
Understanding the Environment in which IKJURPS Operates 546
Interpreting the Return Information from the IKJURPS Service 547

Receiving Control in an Unauthorized Resource Processor 548
Process the Application’s Resources 548
Provide Return Information to the IKJEFT01 TMP Unauthorized Control

Layer . 548
The Unauthorized Resource Processor Parameter List 549

Installing Resource Processors 551
Environment . 552

Sample IKJURPS Invocation and Unauthorized Resource Processor 552

IKJURPS is a service that allows applications that execute in a TSO/E environment
to get control within the TSO/E terminal monitor program (TMP). When the
application gets control, it can share and manage its resources.

To share and manage resources, the application:

1. Invokes the IKJURPS service naming a module known as an unauthorized
resource processor.

2. Receives control from the TSO/E TMP in the unauthorized resource
processorwhere the application shares and manages its resources.

Using the IKJURPS service can be an attractive alternative to other
implementations such as:

v Creating a static environment for managing resources before further processing
in the application.

v Using authorized services to create an asynchronous exit routine to create and
execute an interrupt request block (IRB).

The IKJURPS service is designed for unauthorized callers. By invoking the
IKJURPS service and providing an unauthorized resource processor, an application
can dynamically create an environment to manage its resources. This is similar to
that created by an IRB, and the application remains entirely unauthorized.

Overview of the TSO/E Unauthorized Resource Processor Service
Your unauthorized resource processors, the IKJURPS service, and the IKJEFT01
TMP need to fit together to allow your applications to make use of these services.
The following provides an overview of this processing.

The IKJEFT01 TMP is capable of processing both authorized and unauthorized
commands and programs. It does this by creating separate control layers from
which it invokes authorized or unauthorized commands and subtasks. The following
descriptions and Figure 189 explain these terms.

© Copyright IBM Corp. 1988, 2002 541

The Authorized Control Layer invokes authorized commands and programs as
well as initiates the unauthorized control layer.

The authorized control layer invokes authorized commands in an authorized
environment. From this environment TSO/E commands and programs can use MVS
system services that are limited to authorized invokers. This environment is isolated
from the unauthorized control layer.

The Unauthorized Control Layer invokes unauthorized commands and programs
as well as unauthorized resource processors. Note that the life of the unauthorized
control layer is the same as the life of the unauthorized command that this layer
invokes. For example, the life of the unauthorized control layer is the same as the
life of the unauthorized command invoked from READY.

The unauthorized control layer gives control to the unauthorized resource
processors that you write. By receiving control in an unauthorized resource
processor, an unauthorized application can share and manage its resources within
the unauthorized control layer of the TSO/E TMP. This unauthorized resource
processor manages the initialization, resource maintenance, and cleanup for the
unauthorized resources within the TSO/E TMP.

In the following figure, AA and BB denote unauthorized commands and subtasks
initiated from those commands that execute within the TSO/E address space. These
applications can invoke the IKJURPS service that in turn give control to the
unauthorized resource processor that you name.

Note that the IKJURPS service is an implementation that is specific to the
IKJEFT01 TMP, that is, it is available in a foreground TSO/E environment (started

Authorized Control Layer

Unauthorized Control Layer

Unauthorized
Commands
& Subtasks

IKJURPS

Service

AA

BB

Unauthorized
Resource

Processors

Unauthorized
Commands &

Programs

builds invokes

Figure 189. How Unauthorized Resource Processing Fits Into a TSO/E Address Space

Overview of the TSO/E Unauthorized Resource Processor Service

542 z/OS V1R4.0 TSO/E Programming Services

though the TSO/E LOGON command) or in a background TSO/E environment
(started through EXEC PGM=IKJEFT01). IKJURPS is not available in a non-TSO/E
address space.

Application Routine Versus the Unauthorized Resource Processor
As noted above, access to the unauthorized resource processor is through the
TSO/E IKJURPS service and requires two main interfaces within this flow of control:
v The application interface to the IKJURPS service
v The unauthorized control layer interface to the unauthorized resource processor.

The following sections provide a detailed view of:

v The interface between the application program and the IKJURPS service

v The interface between the TSO/E TMP unauthorized control layer and the
unauthorized resource processors

v How to install unauthorized resource processors.

Passing Control to IKJURPS
Your application needs to pass control to the IKJURPS service. To do so, it:
v Sets up parameters for the IKJURPS service to use
v Invokes the IKJURPS service
v Interprets the return information.

The IKJURPS Parameter List
Use the IKJURPS parameter list to communicate with:

1. The unauthorized control layer; you tell the unauthorized control layer the name
of the unauthorized resource processor to invoke.

2. The unauthorized resource processor; you can give the unauthorized resource
processor installation-defined data so the unauthorized resource processor can
interrogate the data.

Figure 190 on page 544 describes the parameter list passed between the
application and the TSO/E IKJURPS service. You must first create the IKJURPS
parameter list and place its address into general register 1. Be certain:
1. To turn on the high-order bit in the address of the last parameter to indicate the

end of the parameter list
2. All other high-order bits for all other parameters are set off.

Overview of the TSO/E Unauthorized Resource Processor Service

Chapter 29. Using the Unauthorized Resource Processor Service IKJURPS 543

The application uses register 1 to point to a list of addresses, of which each of
these addresses points to a specific parameter. The parameters are:

Parameter 1 (input)
A fullword containing a pointer to an environment control table (ECT). The
IKJURPS service uses this ECT when it requires the use of the TSO/E I/O
service routines; for example, when IKJURPS issues a message.

Register 15

Register 1

Parameter List

Parm 1 ECT

Parm 2 Resource Processor Name

Parm 3 Token to URP

Parm 4 Return Code set by URP

Parm 5 Reason Code set by URP

Parm 6 IKJURPS Error Code

Parm 7* IKJURPS Return Code

Parm 8* Abend Code

Parm 9* Abend Reason Code

Parm 10*

* The high-order bit must be turned on in one of these addresses
to show the end of the list of addresses.

Message Indicator

Register 15

Parameters

Application
Program

IKJURPS

O

P

T

I

O

N

A

L

/ /

/ /

Figure 190. Parameter List for IKJURPS

Passing Control to IKJURPS

544 z/OS V1R4.0 TSO/E Programming Services

Note that this ECT might not be the same ECT that the unauthorized resource
processor receives in the command processor parameter list (CPPL) passed to
it. For more information, refer to the discussion of the CPPL on entry to the
resource processor and “Receiving Control in an Unauthorized Resource
Processor” on page 548.

Parameter 2 (input)
An 8-byte field containing the entry point name of the unauthorized resource
processor. The unauthorized control layer uses this as the name of the module
it is to invoke.

Parameter 3 (input)
A fullword containing a token passed to the unauthorized resource processor.
You can use the token to communicate with the resource processor.

Parameter 4 (output)
A fullword containing a return code from the unauthorized resource processor.
The invoker of the IKJURPS service can use this return code as a more
detailed diagnostic; for example, if the unauthorized resource processor does
not complete processing successfully.

Parameter 5 (output)
A fullword containing a reason code from the unauthorized resource processor.
The invoker of the IKJURPS service can use this reason code as a more
detailed diagnostic; for example, if the unauthorized resource processor does
not complete processing successfully.

Parameter 6 (output)
A fullword containing an error code. The IKJURPS service sets the error code
to indicate detailed diagnostics regarding completion of the IKJURPS service.

All subsequent parameters are optional. If you do not code any of the following
parameters, the high-order bit of the address of this parameter must be on to
indicate the end of the parameter list.

Parameter 7 (output) - optional
A fullword containing a return code. The IKJURPS service sets the return code
in this parameter and register 15 when IKJURPS completes. The IKJURPS
service sets this return code to indicate the type of error, if any. For example,
an error due to a parameter error or an environment error. All subsequent
parameters are optional. If you do not code any of the following parameters, the
high-order bit of the address of this parameter must be on to indicate the end of
the parameter list.

Parameter 8 (output) - optional
A fullword containing an abend code in the event of abnormal termination. The
IKJURPS service returns the abend code as defined by the SWAABCC field of
the SDWA. All subsequent parameters are optional. If you do not code any of
the following parameters, the high-order bit of the address of this parameter
must be on to indicate the end of the parameter list.

Parameter 9 (output) - optional
A fullword containing an abend reason code in the event of an abnormal
termination. The IKJURPS service returns the abend reason code as defined by
the SDWAHRC field of the SDWA. All subsequent parameters are optional. If
you do not code any of the following parameters, the high-order bit of the
address of this parameter must be on to indicate the end of the parameter list.

Parameter 10 (input) - optional
A fullword containing an indicator to the IKJURPS service that specifies whether
to issue error messages. Set this parameter as follows:

Passing Control to IKJURPS

Chapter 29. Using the Unauthorized Resource Processor Service IKJURPS 545

X'00000000' The IKJURPS service is not to issue error
messages. This is the default if the parameter
is not specified.

X'00000001' The IKJURPS service is to issue (if
appropriate).

If you code this parameter, the high-order bit of the address of this parameter
must be on to indicate the end of the parameter list.

Invoking the IKJURPS Service
You can invoke the TSO/E IKJURPS service with one of the following methods:
v The CALLTSSR macro instruction, specify IKJURPS as the entry point name
v The LINK macro instruction, specify IKJURPS as the entry point name
v The address of IKJURPS that is in the TSVTURPS field of the TSO/E vector

table (TSVT).

On entry to the IKJURPS service, it expects the following register linkage
conventions:

Register 0 n/a

Register 1 Address of the parameter list

Registers 2–12 n/a

Register 13 Key 8 save area

Register 14 Return address

Register 15 Entry point address.

IKJURPS must be invoked in:
v 31-bit addressing mode
v Primary address space mode.

Understanding the Environment in which IKJURPS Operates
The following considerations are useful when choosing whether to use the
IKJURPS service to share and manage application resources:

Applications must invoke the IKJURPS service from within an unauthorized TSO/E
environment. The IKJURPS service does not complete successfully in the following
environments:

v A non-TSO/E environment (that is, MVS batch)

v An authorized TSO/E environment (for example, an authorized TSO/E command
or program)

v A dynamic TSO/E environment (that is, an environment created by the
IKJTSOEV service)

v Any environment in which the TSO/E TMP is unable to process an IKJURPS
request (for example, during LOGON processing)

v When the TSO/E TEST command is active.

For more information about the environment in which the IKJURPS service cannot
successfully process the request, refer to the error codes described for the
IKJURPS service return code RC=20 in “Interpreting the Return Information from
the IKJURPS Service” on page 547.

Passing Control to IKJURPS

546 z/OS V1R4.0 TSO/E Programming Services

Interpreting the Return Information from the IKJURPS Service
Upon return from the IKJURPS service, your application receives the following
information to indicate successful or unsuccessful completion.

Table 142. Return Codes from IKJURPS

Return Code
(Decimal)

Error Code
(Decimal)

Description

0 0 The unauthorized resource processor was invoked
successfully. For more detailed diagnostics from the
unauthorized resource processor, refer to the unauthorized
resource processor return code and reason codes
parameters (parameters 4 and 5) in the IKJURPS
parameter list.

12 1 not set Processing unsuccessful. Either the high-order bit in the
address of one of the parameters other than the last was
set on or the high-order bit in the address of the last
parameter was not set on.

1 Processing unsuccessful. A non-valid ECT was passed.

16 2 16 Processing unsuccessful; unable to load the unauthorized
resource processor.

17 Processing unsuccessful; the unauthorized resource
processor abnormally ended. The abend and reason
parameters, if supplied, contain the abend and reason
codes.

20 3 20 Processing unsuccessful; the IKJURPS service was
invoked in a non-TSO/E environment.

21 Processing unsuccessful; the IKJURPS service was
invoked in an authorized TSO/E environment.

22 Processing unsuccessful; the IKJURPS service was
invoked in a dynamic TSO/E environment.

23 Processing unsuccessful; the IKJURPS service was
invoked in an environment in which the TSO/E TMP cannot
process an IKJURPS request. For example, during LOGON
processing.

24 Processing unsuccessful; the IKJURPS service was
invoked when TEST is active.

92 4 20 Processing unsuccessful; the IKJURPS service could not
establish a recovery environment.

21 Processing unsuccessful; the unauthorized control layer
could not establish a recovery environment for the
unauthorized resource processor.

96 not set Processing unsuccessful; a parameter is not accessible.
The abend and reason parameters (parameters 8 and 9), if
supplied, contain the abend and abend reason codes for
further diagnosis.

100 not set Processing unsuccessful; abnormal end. The abend and
reason parameters (parameters 8 and 9), if supplied,
contain the abend and abend reason codes for further
diagnosis.

1 RC=12 error codes can be grouped together to indicate unsuccessful
processing due to not valid parameters.

Passing Control to IKJURPS

Chapter 29. Using the Unauthorized Resource Processor Service IKJURPS 547

2 RC=16 error codes can be grouped together to indicate unsuccessful
processing due to not valid parameters.

3 RC=20 error codes can be grouped together to indicate unsuccessful
processing due to environmental errors.

4 RC=92 error codes can be grouped together to indicate unsuccessful
processing due to recovery processing.

Receiving Control in an Unauthorized Resource Processor
Your unauthorized resource processor receives control to perform
application-dependent resource processing. It needs to:

1. Save and restore register contents from the unauthorized control layer.

2. Determine the type of processing it is to provide:

a. Activate a resource. That is, to dynamically initialize resources.

b. Make subsequent calls to further process a resource (that is, either further
process that resource or terminate and cleanup that resource).

c. Handle a terminating invocation to clean up its resources

3. Process the application’s resources

4. Return information to the unauthorized control layer and the application that
invoked the IKJURPS service.

Process the Application’s Resources
In processing the application’s resources, it is important that you understand the
environment in which the unauthorized resource processor operates. Note the
following restrictions:

v Because the unauthorized resource processor receives control from within the
unauthorized control layer of the TSO/E TMP where ISPF is not active, ISPF
services are not available within the resource processor.

v Because the unauthorized control layer fetches the resource processor, task
libraries such as ISPLLIB are not available at that time. For more information
concerning the search order for resource processors, refer to “Installing Resource
Processors” on page 551.

v In an environment where an application is using its own I/O environment, that is,
an environment created by the STACK ENVIRON=CREATE service, it is the
application’s responsibility to pass this ECT between the application invoking the
IKJURPS service and the resource processor.

v If you prompt for input at the terminal, that is, invoke the GETLINE or PUTGET
services, you must do so from within the unauthorized commands and subtasks,
not from within the unauthorized resource processor. The unauthorized control
layer defers attention processing until the resource processor completes.
Therefore, if the resource processor prompts for input at the terminal and the
user presses the attention key, the user has no means to interrupt or break out of
the prompt. Note that the attention interrupt is not processed until the IKJURPS
service is returning control to the application. Such processing can provide
unexpected results for an interactive user.

Provide Return Information to the IKJEFT01 TMP Unauthorized Control
Layer

Each time an unauthorized resource processor completes, it returns control to the
unauthorized control layer. At this time, the unauthorized resource processor

Passing Control to IKJURPS

548 z/OS V1R4.0 TSO/E Programming Services

informs the unauthorized control layer whether it is either finished processing and
will no longer need to be invoked or is not finished processing and will again need
to be invoked.

After the unauthorized control layer invokes an unauthorized resource processor for
a termination request, it makes no later calls for termination.

The Unauthorized Resource Processor Parameter List
An unauthorized resource processor receives control with the parameter list shown
in Figure 191 on page 550. It uses this parameter list to communicate with:

v The unauthorized control layer:

– The unauthorized control layer tells you the type of request for which the
unauthorized resource processor was given control, which either:
- An activate or process request
- A termination (cleanup) request.

For more information, see parameter 1.

– You tell the unauthorized control layer whether resources have been obtained.
If the unauthorized resource processor obtained resources, the unauthorized
control layer later invokes the unauthorized resource processorwith a
termination (cleanup) request when the unauthorized control layer is
terminating. For more information, see parameter 7.

v The application invoking the IKJURPS service:

– The application invoking the IKJURPS service gives you installation-defined
data in a token. For more information, see parameter 2.

– You can pass the application invoking the IKJURPS service return and reason
codes to indicate the status or your processing. For more information, see
parameters 4 and 5.

v Later invocations of the same unauthorized resource processor.

TSO/E provides you with a field where you can store and retrieve user-defined
data. For more information, see parameter 3.

Receiving Control in an Unauthorized Resource Processor

Chapter 29. Using the Unauthorized Resource Processor Service IKJURPS 549

The unauthorized control layer uses register 1 to point to a list of addresses, of
which each of these addresses points to a specific parameter. The parameters are:

Parameter 1 (input)
A fullword indicating the type of request:

X'00000001' The application invoking the IKJURPS service requests that the
unauthorized resource processor either:
1. Activate its resources. This is an initial request to the

IKJURPS service.
2. Process its resources. This is a subsequent request to the

IKJURPS service.

X'00000002' The unauthorized control layer requests that the unauthorized
resource processor cleanup its resources. This is a termination
request.

Parameter 2 (input)
A fullword containing a copy of the token that the application that invoked the
IKJURPS service passes to the unauthorized resource processor.

Parameter 3 (input/output)
An 8-byte field containing user data for the unauthorized resource processor.
The unauthorized resource processor can use this parameter, for example, to
hold a count of the number of times it was invoked to distinguish the difference
between an activate request and a process request.

Register 1

Parameter List

Parm 1 Request Type Indicator

Parm 2 Token from URPS

Parm 3 User Data

Parm 4 Return Code from URP

Parm 5 Reason Code from URP

Parm 6 CPPL

Parm 7 Return Code to TMP

Parameters

Unauthorized
Control Layer

Resource
Processor

/ /

/ /

Figure 191. Parameter List Passed To An Unauthorized Resource Processor

Receiving Control in an Unauthorized Resource Processor

550 z/OS V1R4.0 TSO/E Programming Services

Parameter 4 (output)
A fullword containing a return code. The unauthorized resource processor sets
this field to communicate with the application that invoked the IKJURPS service.
The unauthorized control layer passes this value to the invoker of the IKJURPS
service in parameter 4 of its parameter list.

Parameter 5 (output)
A fullword containing a reason code. The unauthorized resource processor sets
this field to communicate with the application that invoked the IKJURPS service.
The unauthorized control layer passed this value to the invoker of the IKJURPS
service in parameter 5 of its parameter list.

Parameter 6 (input)
A fullword containing the address of a command processor parameter list
(CPPL). The unauthorized resource processor can use the fields in the CPPL
when it invokes TSO/E services that require these values. Note that this is the
same CPPL that the unauthorized control layer passes to the command that it
invokes.

This CPPL might not contain the ECT address that the invoker of the IKJURPS
service is currently using. If this ECT address is required, you need to
communicate the ECT address between the application invoking the IKJURPS
service and the unauthorized resource processor. Communicate this address
using parameter 2 above.

Parameter 7 (output)
A fullword containing the return code from the unauthorized resource processor
to the unauthorized control layer. This parameter is recognized for an activate
or process request; it is ignored for a termination request. Use this parameter to
indicate to the unauthorized control layer whether to invoke the unauthorized
resource processor for a later termination request. Specify one of the following:

Return Code Description

0 The unauthorized resource processor owns active resources.

4 The unauthorized resource processor no longer owns active resources.

The unauthorized control layer sets the high-order bit in the address of this
parameter on to indicate the end of the parameter list.

Installing Resource Processors
You must write and install whatever unauthorized resource processors you require;
they are not supplied by TSO/E nor do they have pre-determined names. You pass
the name of the resource processor in parameter 2 when your application invokes
the IKJURPS service.

You can link-edit all resource processors in a separate load library that is
exclusively for TSO/E resource processors or in an existing library that contains
other routines. Resource processors can reside in:

STEPLIB A step library is helpful for limited use and for testing the exit before
you integrate it into your system. In this case, you can easily
change the exit. However, the use of a STEPLIB is not
recommended for all of your users because of the extra search time
required to locate and invoke the exit.

LPA The link pack area makes the resource processors available to all

Receiving Control in an Unauthorized Resource Processor

Chapter 29. Using the Unauthorized Resource Processor Service IKJURPS 551

of your users. However, if you need to change the processor and
make the changes available in LPA for all of your users, you must
re-IPL your system.

LNKLST The linklist concatenation makes the resource processors available
to all of your users while maintaining the ability to easily change the
processor if required.

The search order is STEPLIB, LPA, and then LNKLST. For more information about
STEPLIB, LPA, and LNKLST, refer to z/OS MVS Initialization and Tuning Guide.

You might also consider using System Modification Program Extended (SMP/E)
when installing unauthorized resource processors. SMP/E allows you to maintain a
record of the resource processors you have installed. To use SMP/E you must
generate your own functional module ID (FMID) and be certain that is does not
duplicate any IBM-defined FMID. For more information about SMP/E, refer to
SMP/E Commands or SMP/E User’s Guide.

Environment
Unauthorized resource processors require the following environment:

State: Problem program

Key: 8

AMODE
Not restricted

RMODE
Not restricted

Sample IKJURPS Invocation and Unauthorized Resource Processor
TSO/E provides a pair of sample routines in SYS1.SAMPLIB that you can use to
pattern your application’s use of IKJURPS. The two routines are:

Routine Name Description

IKJTOURP Sample IKJURPS Invocation

This routine is a reentrant command processor written in assembler
language. It shows you how to:
1. Receive control in a command processor.
2. Use the TSO/E PUTLINE service to display a message.
3. Use the CALLTSSR macro to invoke the IKJURPS service.

IKJFRURP Sample Unauthorized Resource Processor

This routine is a reentrant unauthorized resource processor written
in assembler language. It shows you how to:
1. Receive control in an unauthorized resource processor.
2. Use the TSO/E PUTLINE service to display a message.
3. Set an appropriate return code to the unauthorized control layer

of the TSO/E TMP.

Installing Resource Processors

552 z/OS V1R4.0 TSO/E Programming Services

Appendix A. Limits for TSO/E Service Routines

Services provided by TSO/E generally impose the following limits. Violation of the
limits may produce unpredictable results. Other products such as ISPF and
considerations such as the terminals and other media to be supported by an
application may produce more restrictive limits.

Table 143. Limits

Interface Reference Description

Command buffer See IKJSCAN (Chapter 5,
“Verifying Subcommand
Names with IKJSCAN” on
page 41), IKJPARS
(Chapter 6, “Verifying
Command and Subcommand
Operands with Parse” on
page 51), I/O Service Rtns.
(Chapter 9, “Using the TSO/E
I/O Service Routines for
Terminal I/O” on page 191),
and IKJCAF (Chapter 13,
“Using the CLIST Attention
Facility” on page 325) for
more information.

A command buffer may be
from 4 to 32767 bytes in
length. The first four required
bytes contain control
information. The remaining
bytes contain command text.

Message buffer See I/O Service Rtns.
(Chapter 9, “Using the TSO/E
I/O Service Routines for
Terminal I/O” on page 191)
for more information.

A message buffer may be
from 4 to 32767 bytes in
length. The first four required
bytes contain control
information. The remaining
bytes contain message text.

Text insertion buffer See I/O Service Rtns.
(Chapter 9, “Using the TSO/E
I/O Service Routines for
Terminal I/O” on page 191)
for more information.

A text insertion buffer may be
from 4 to 32767 bytes in
length. The first four required
bytes contain control
information. The remaining
bytes contain message text.
The length is further limited
by the consideration that the
message composed by
incorporating the text from
the buffer must be no longer
than 32767 bytes in length.

Message template described
by IKJTSMSG macro.

See IKJEFF02 (Chapter 11,
“Using the TSO/E Message
Handling Routine IKJEFF02”
on page 305) for more
information.

A message template consists
of

1. From 1 to 255 parts,
counting each block of
text in the message
template as one part and
each insertion position as
one part.

2. Blocks of text from 1 to
255 bytes in length.

© Copyright IBM Corp. 1988, 2002 553

Table 143. Limits (continued)

Interface Reference Description

IKJPARS parameter control
list (PCL)

See IKJPARS (Chapter 6,
“Verifying Command and
Subcommand Operands with
Parse” on page 51) for more
information.

A PCL may be from 8 to
32767 bytes in length.

IKJPARS parameter
descriptor list (PDL)

See IKJPARS (Chapter 6,
“Verifying Command and
Subcommand Operands with
Parse” on page 51) for more
information.

A PDL may be from 8 to
32767 bytes in length.

CLIST variable name See IKJCT441 (Chapter 24,
“Using the Variable Access
Routine IKJCT441” on
page 459) for more
information.

The name of a CLIST
variable can be from 1 to 252
bytes in length.

CLIST variable value See IKJCT441 (Chapter 24,
“Using the Variable Access
Routine IKJCT441” on
page 459) for more
information.

The value of a CLIST
variable can be from 0 to
32,756 bytes in length.

REXX variable name See IKJCT441 (Chapter 24,
“Using the Variable Access
Routine IKJCT441” on
page 459) for more
information.

The name of a REXX
variable can be from 1 to 250
bytes in length.

REXX variable value See IKJCT441 (Chapter 24,
“Using the Variable Access
Routine IKJCT441” on
page 459) for more
information.

The value of a REXX
variable can be from 0 to
16,777,215 bytes in length.

Limits for TSO/E Service Routines

554 z/OS V1R4.0 TSO/E Programming Services

Appendix B. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1988, 2002 555

556 z/OS V1R4.0 TSO/E Programming Services

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2002 557

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Notices

558 z/OS V1R4.0 TSO/E Programming Services

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This document describes intended Programming Interfaces that allow the customer
to write programs to obtain the services of z/OS TSO/E.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v IBM
v IBMLink
v MVS
v MVS/DFP
v MVS/ESA
v OS/390
v RACF
v Resource Link
v SAA
v SP
v Systems Application Architecture
v System/370
v VTAM
v z/Architecture
v z/OS
v z/OS.e
v zSeries

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Notices 559

560 z/OS V1R4.0 TSO/E Programming Services

Bibliography

This section lists the books in the TSO/E library and related publications.

TSO/E Publications
TSO/E Publications

v z/OS TSO/E Administration, SA22-7780

v z/OS TSO/E CLISTs, SA22-7781

v z/OS TSO/E Command Reference, SA22-7782

v z/OS TSO/E Customization, SA22-7783

v z/OS TSO/E General Information, SA22-7784

v z/OS TSO/E Guide to SRPI, SA22-7785

v z/OS TSO/E Messages, SA22-7786

v z/OS TSO/E Primer, SA22-7787

v z/OS TSO/E Programming Guide, SA22-7788

v z/OS TSO/E Programming Services, SA22-7789

v z/OS TSO/E REXX Reference, SA22-7790

v z/OS TSO/E REXX User’s Guide, SA22-7791

v z/OS TSO/E System Programming Command Reference, SA22-7793

v z/OS TSO/E System Diagnosis: Data Areas, GA22-7792

v z/OS TSO/E User’s Guide, SA22-7794

Related Publications
z/OS MVS Publications

v z/OS MVS Planning: APPC/MVS Management, SA22-7599

v z/OS MVS Programming: Writing Transaction Programs for APPC/MVS,
SA22-7621

v z/OS MVS Initialization and Tuning Reference, SA22-7592

v z/OS MVS Programming: Authorized Assembler Services Guide, SA22-7608

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN,
SA22-7609

v z/OS MVS System Messages, Vol 1 (ABA-AOM), SA22-7631

v z/OS MVS System Messages, Vol 2 (ARC-ASA), SA22-7632

v z/OS MVS System Messages, Vol 3 (ASB-BPX), SA22-7633

v z/OS MVS System Messages, Vol 4 (CBD-DMO), SA22-7634

v z/OS MVS System Messages, Vol 5 (EDG-GFS), SA22-7635

v z/OS MVS System Messages, Vol 6 (GOS-IEA), SA22-7636

v z/OS MVS System Messages, Vol 7 (IEB-IEE), SA22-7637

v z/OS MVS System Messages, Vol 8 (IEF-IGD), SA22-7638

v z/OS MVS System Messages, Vol 9 (IGF-IWM), SA22-7639

v z/OS MVS System Messages, Vol 10 (IXC-IZP), SA22-7640

v z/OS MVS System Codes, SA22-7626

v z/OS MVS Data Areas, Vol 1 (ABEP-DALT), GA22-7581

v z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC), GA22-7582

© Copyright IBM Corp. 1988, 2002 561

v z/OS MVS Data Areas, Vol 3 (IVT-RCWK), GA22-7583

v z/OS MVS Data Areas, Vol 4 (RD-SRRA), GA22-7584

v z/OS MVS Data Areas, Vol 5 (SSAG-XTLST), GA22-7585

ISPF Publications

v z/OS ISPF Services Guide, SC34-4819

v z/OS ISPF Dialog Developer’s Guide and Reference, SC34-4821

Bibliography

562 z/OS V1R4.0 TSO/E Programming Services

Index

Numerics
31-bit addressing

general interface considerations 12

A
absolute address operand

definition 63
accessibility 555
address expression operand 66

format
EXTENDED not specified 66
EXTENDED specified 67

address operand
absolute 63
access register 64
definition 63
expression 66
floating-point register 63
forms of the address operand 63
general register 63
indirect 64
qualified 64
relative 63
symbolic 64
vector mask register 64
vector register 63

address space control (ASC) mode considerations 12
addressing mode 12

24-bit 12, 14, 16
31-bit 14, 16
changing 12
setting via BASSM or BSM 14

allocating
data set after LOGON 355
data set by ddname 367
data set by dsname 359
data set to the terminal 366
ddname to the terminal 366
dynamically (during program execution) 355
SYSOUT data set 371
utility data set 359

alternative library interface routine (IKJADTAB) 345
AMODE=24, RMODE=24 12
AMODE=31 13
AMODE=ANY, RMODE=24 12
APPC transaction programs

limitations on use of environment services 25
application invocation function (ICQAMLI0)

description 531
AR mode 12
asterisk in place of positional operand 74
attention ECB 265
attention interruption 317

attention interruption handling (STAX) 317
STAX service routine 317
used with TSO/E service facility 421

attribute control block for DAIR 375

B
balanced parentheses (PSTRING) 68
barrier element of the input stack 195, 197, 203
BLKSIZE in data control block 188
BSAM macro instruction

length of text line 188
list of 185
using for terminal I/O 185

buffer
address in register 301
GETLINE input 228
length in register 301
PUTGET input 278

buffering technique 188
building

a second level informational chain 254
GETLINE parameter block (GTPB) 226
list source descriptor (LSD) 210
PUTLINE parameter block (PTPB) 240
STACK parameter block (STPB) 208
the PUTGET parameter block (PGPB) 269

C
CALLTSSR macro instruction 39
CART

considerations for using GETMSG 535
catalog information routine (IKJEHCIR) 379

parameter list (CIRPARM) 380
chaining second-level messages 254
changing

addressing mode
via BASSM or BSM 14

character
separator 43, 54
string definition 62
types recognized by command scan 43, 54
types recognized by command scan service

routine 43, 54
CHECK macro instruction 187
CIRPARM (parameter list) 380
CLIST

Print CLIST ICQCPC10 517
Print CLIST ICQCPC15 521
printer selection CLIST ICQCPC00 499
printer support (overview) 497
space management 335

CLIST attention facility
ABEND code from the CLIST attention facility 327
CLIST attention exit 325
flow of control between a caller and IKJCAF 325
handling attention interrupts 325
introduction 325

© Copyright IBM Corp. 1988, 2002 563

CLIST attention facility (continued)
CLIST attention facility mainline routine

(IKJCAF) 325
CLIST attention facility recovery routine

(IKJCAFR) 325
restriction 325

invoking the CLIST attention facility 326
issuing the CALLTSSR macro to pass control to

IKJCAF 327
passing a parameter 326
sample code 327

parameter received by the mainline routine
(IKJCAF) 326

return code from the CLIST attention facility 327
CLIST variable

accessing 459
invoking IKJCT441 464, 465, 467, 468
listing 476
returning a value 473
returning without creating 473
updating 471

coding example
GETLINE macro 230
parse macro 111, 156
STACK specifying the terminal as the input

source 215
STAX 325
TGET macro 300
TPUT macro 300

coding examples
PUTGET macro 281
PUTGET multilevel prompt 281
PUTLINE macro 244
second level informational chaining 254
text insertion 253

coding IKJCT441 464
combining the LIST and RANGE options 140
command name syntax

checking the syntax of a command 42
requirement 42
user-written command 42

command operand
checking syntax of 52
default value 60
delimiter-dependent operand 61
determining validity of 52
positional operand 61
syntax 61
syntax validity 52
validity checking 59, 112

command output line
saving in a non-CLIST program 460

command processor 16
allocating and freeing a data set 355

command processor parameter list (CPPL)
description 16
used by IKJTSOEV 23

command scan
double-byte character set data 43, 54
output area 45
parameter list 43

command scan (continued)
passing a flag to 45
result of 45
return code 46

command scan output area (CSOA) 45
command scan output area and command buffer

settings 45
command scan parameter list (CSPL) 43
command scan service routine

character types recognized 43, 54
example 46

command scan service routine (IKJSCAN) 41
command syntax defining 76
command/program invocation platform 407, 408
concatenating

data set 362
ddnames 362

CONSOLE
GETMSG 535

CONSPROF
GETMSG 535

CONSTANT operand type 71
control block

required by dynamic allocation interface routine
(DAIR) 355

used by GETLINE service routine 230
control blocks

required by PUTGET service routine 275, 279
control flag in the GETLINE parameter block 227
control variable 460
conversational messages (PUTGET) 258
CPPL (command processor parameter list)

description 16
used by IKJTSOEV 23

create a variable 464
current source of input 195
CVT mapping macro 39

D
DAIR (dynamic allocation interface routine) 355

control block 355
definition 355
entry code 356
entry point 355
function provided by 356
IKJDAIR entry point 355
IKJDAIR load module 355
indicating requested function to 356
return code 376

DAIR attribute control block (DAIRACB) 375
DAIR parameter block (DAPB) 356

code X'00' 357
code X'04' 358
code X'08' 359
code X'0C' 362
code X'10' 363
code X'14' 363
code X'18' 364
code X'1C' 366
code X'24' 367

564 z/OS V1R4.0 TSO/E Programming Services

DAIR parameter block (DAPB) (continued)
code X'28' 370
code X'2C' 371
code X'30' 371
code X'34' 371
description of 356

DAIR parameter list (DAPL) 356
DAIRFAIL routine (IKJEFF18) 391
data definition (DD) statement 188

modifying 188
data lines

definition 243
data name 72
data name qualifier 72
data output

multiline 244
single line 243

data set
allocation 355
allocation by ddname 367
allocation by dsname 359
allocation to terminal 366
concatenating 362
deconcatenating 363
freeing 364
marking allocatable 371
marking not in use 371
name

finding 356
qualifier 363
SYSOUT

allocation of 371
used during TSO/E session 371

data set name
obtaining a list of 329
searching for 356

DBCS
See double-byte character set data

ddname
allocation by 367

deconcatenating data set 363
default service routine (IKJEHDEF) 385

parameter block (DFPB) 386
parameter list (DFPL) 385

defining command syntax 76
deleting

element from the input stack 198, 203
barrier element 198, 204

procedure element from the input stack 203
delimiter

definition 62
dependent operand 61

determining the validity of a command 52
determining the validity of a subcommand 41
device number

four-digit device support 372
DFPB (parameter block) 386
DFPL (parameter list) 385
disability 555
double-byte character set (DBCS) 161

double-byte character set data
acceptance of 42, 55
no translation to upper case 59
used in string

CHAR 74
CONSTANT 72
HEX 73
PSTRING 68
QSTRING 71
STRING 62
VALUE 63

dsname
allocation by 359

DSNAME
definition 70
format 70
operand missing 70

DSTHING
definition 70

dynamic allocation of a data set 355
function 355
reason code 377
return code 377

E
ECT (environment control table) 16
element

input stack
adding 200, 205
coding 208
deleting 195, 203
determining type 200, 205
dividing into substacks 195, 197, 203

end-of-data (EOD) processing (GETLINE) 226
end-of-file (EOF) processing 188
entering positional operand

as a list 75
entry code to DAIR 356
entry point

IKJADTAB 40
IKJCAF 40
IKJDAIR 40
IKJEFF02 40
IKJEHCIR 40
IKJEHDEF 40
IKJGETL 40
IKJPARS 40
IKJPTGT 40
IKJPUTL 40
IKJSCAN 40
IKJSTCK 40
IKJTBLS 40
IKJURPS 40

entry_name
syntax of 64

environment control table (ECT) 16
environment services

limitations for APPC multi-trans TPs 25
EODAD exit 188

Index 565

example
address expression

24-bit indirect addressing 67
mixed indirection symbols 68

buffer address in register 301
buffer length in register 301
GETLINE macro 230
IKJPARMD DSECT 78
indirect addressing

24- and 31-bit 66
24-bit 65
31-bit 65

parse service routine 107, 144
PDE formats affected by LIST and RANGE

options 140
PDL returned by parse service routine 157
register format 302
STACK macro 215
TGET macro 301, 302
TPUT macro 301

examples
message identifier stripping (PUTLINE) 250
text insertion (PUTLINE) 250

execute form
TPUT macro 286

exit
EODAD 188

expression 73
address 66

expression value
definition 66

extended address
absolute 63

extended data stream function
transmitting 3270 extended data stream function with

TPUT 287
transmitting 3270 extended data stream functions

using TGET 169
extended format PCE

bit indication of
IKJIDENT 97
IKJOPER 90
IKJPOSIT 82
IKJTERM 86

extended mode 63
EXTENDED operand of IKJPOSIT

effect on
absolute address 63
indirect address 64
relative address 63

extraction, of a message 306

F
figurative constant 72
finding data set name 356
finding data set qualifier 363
fixed record format 188
fixed-point numeric literal 71
flag field in TGET/TPUT/TPG parameter format 297,

300

floating-point numeric literal 71
floating-point register address

syntax of 63
format

PCE built by
IKJENDP 106
IKJIDENT 97
IKJKEYWD 100
IKJNAME 102
IKJOPER 89
IKJPARM 78
IKJPOSIT 81
IKJRSVWD 92
IKJSUBF 103
IKJTERM 86
IKJUNFLD 105

PUTGET input buffer 278
record 188

format only function 253
difference between text insertion processing 254

formatting
output line 250
TGET register 296
TPUT register 296

forward chain pointers 244
four-digit device support

See device number
freeing

a data set 364
GETLINE input buffer 228
PUTGET input buffer 279

full-screen mode
with the STFSMODE macro instruction 168
with the STLINENO macro instruction 170

function
format only (PUTLINE) 253
text insertion (PUTLINE) 251

G
general register 63
GET macro 187
GETLINE macro

barrier element on the stack
processing with 221, 224

coding example 230
control block used by 230
end-of-data (EOD) processing 226
execute form 221
input buffer 228
list form 219
logical line processing 226
macro instruction description 219, 221
operand 219, 221
parameter block 226
return code 229
returned record

identifying source of 224
source of input 224

GETLINE parameter block (GTPB) 226
initializing 218

566 z/OS V1R4.0 TSO/E Programming Services

GETLINE, getting a line of input 218
GETMSG 535

CART 535
considerations for using 535
displaying the retrieved message 539
examples using 539
functions of 535
invocation of 536
mask 535
output from 538
overview

CART 535
return codes from 539
service parameters 537

GNRLFAIL/VSAMFAIL routine (IKJEFF19) 395
GTDEVSIZ

macro instruction 160
return code 160

GTPB, GETLINE parameter block 194
GTSIZE

macro instruction 160
return code 161

GTTERM
macro instruction 161
return code 163

I
I/O macro

use of 194
using to invoke I/O service routine 194

I/O parameter block
modifying 192

I/O parameter list 193
building with GETLINE 230

I/O service routine 191
execute form of macro instruction

definition 192
list form of macro instruction

definition 192
macro instruction 192
macros used to invoke 194
multitasking considerations 193
parameter block

address of 194
passing control to 192
processing terminal I/O 191
using 191

I/O service routine macro instruction
GETLINE 218
STACK 192

I/O service routine macro instructions
PUTGET 259
PUTLINE 232

IBM-supplied terminal monitor program (TMP) 208
ICF (Information Center Facility)

invoking 531
ICQAMLI0 (application invocation function)

description 531
example 534
reason code 533

ICQAMLI0 (application invocation function) (continued)
return code 533
syntax and parameter 531

ICQCAL00
application 485
description 483
input table variable 486
return code 489
search input 483
search output 484
syntax and parameter 485

ICQCPC00 - printer selection CLIST
description 499
font selection panel 501
invocation parameter 501
overview 497
printer selection panel 500
return code 503

ICQCPC10 - print CLIST
description 517
overview 497

ICQCPC15 - print CLIST
description 521

ICQGCL00
description 329
example 331
output table variable 331
return code 331
syntax and parameter 330

ICQSPC00
application 335
consideration 336
description 335
function 335
return and reason code 340
syntax and parameter 336

identification (USERID)
format of 69

identifying the source of a record returned by
GETLINE 224

IKJADTAB (alternative library interface routine) 345
example 351
function 345
invocation 345
parameter list 346
return code 348

IKJCAF (CLIST attention facility mainline routine) 325
IKJCAFR (CLIST attention facility recovery

routine) 325
IKJCSPL 43
IKJCT441 variable access routine

caller’s parameter list
for accessing a variable 461

function 459
IKJDAIR

entry point to 355
IKJEFF02 (TSO/E message issuer service

routine) 305
IKJEFF18 (DAIRFAIL routine) 391
IKJEFF19 (GNRLFAIL/VSAMFAIL routine) 395
IKJEFFMT 306

Index 567

IKJEFTSI 410
return codes from 412

IKJEFTSR 413, 419
reason codes from 420

IKJEFTSR reason code 420
IKJEFTSR return code 419
IKJEFTST 422, 424

return codes from 424
IKJEHCIR (catalog information routine) 379
IKJEHDEF (default service routine) 385
IKJENDP 106
IKJIDENT 94
IKJKEYWD 99
IKJNAME 101
IKJOPER 87
IKJPARM 77
IKJPARMD 78
IKJPARS (parse service routine) 52, 117

invoking 117
IKJPOSIT 78
IKJPPL 118
IKJRLSA 107
IKJRSVWD 91
IKJSUBF 103
IKJTBLS (table look-up service) 399

example 401
function 399
invocation 399
parameter list 400
return code 401

IKJTERM 83
IKJTSMSG macro

description 314
example of CSECT containing 315

IKJTSOEV (TSO/E environment service)
coding examples 30
description 5, 21
function

initialization and termination 23
overview 22
restrictions on TSO/E service usage 24

interface considerations 14, 16
invoking

overview 27
requirements and restrictions 27

return and reason codes 28
syntax and parameters 26
when to use 22

IKJUNFLD 104
IKJURPS 541

sample routine 552
in-storage list

adding an element 200, 205
as input source 207
coding example 215

indirect address operand 64
indirection symbol

24-bit 65
31-bit 65

Information Center Facility (ICF)
See ICF (Information Center Facility)

informational
chain 254

eliminating 254
multilevel message 245
second-level message 245

inhibit prompting 273
initializing

GETLINE parameter block 218
input/output parameter block 192
PUTGET parameter block 269
PUTLINE parameter block 236
STACK parameter block 208, 209

input buffer
GETLINE 228
PUTGET 278

input line format 228, 278
input output parameter list (IOPL)

See IOPL (input output parameter list)
input parameter list for IKJEFF02

extended format 306, 311
importance of MTFMT bit 306
standard format 306

input source
changing 195
GETLINE 224
PUTGET 276
STACK 195

input to SAM terminal macro 186
input wait after prompt 278
inserting a keyword into a parameter string 60
insertion of default values 60
interface

considerations
for 31-bit addressing 12, 13

determining 13
invoking

CLIST with the TSO/E service facility 405
command with the TSO/E service facility 405
program with the TSO/E service facility 405
REXX exec with the TSO/E service facility 405
TSO/E service facility 425

invoking a REXX exec
in an assembler program 457

invoking an authorized command or program
in a COBOL program 440, 449
in a FORTRAN program 436
in a PASCAL program 447, 454
in a PL/I program 445, 452
in a VS FORTRAN program 438
in an assembler program 436, 438

invoking IKJCT441
invoking IKJCT441

coding IKJCT441 465
to return the value of a variable 465

IOPL (input output parameter list) 193
IRXEXCOM 7
IRXINIT

called by IKJTSOEV 23
creating REXX environment with 199, 204

568 z/OS V1R4.0 TSO/E Programming Services

IRXTERM 199, 204
issuing second-level message 58

J
JCL (job control language) 188
JES

internal reader, limitation 24
jobname operand 71

K
Katakana 161
keyboard 555
keyword

insertion 60
operand for parse 75, 136
PDE (parameter descriptor entry) 136, 137
subfield 75, 103

L
languages 234

specifying a language for output lines 234
length of text line processed by BSAM 188
level of a message 305
level of indirect addressing number of levels of indirect

addressing 65
levels of messages 245

multiple 245
single 245

line format
input 228, 278

line size
terminal 188

line_number
statement number operand 73

linkage convention
determining 13

linkage decision 12
list element

in-storage
adding to input stack 195, 207

list form
TPUT macro 286

LIST option of parse 75
list source descriptor (LSD) 210
listing all CLIST variables 468
listing all REXX variables 468
listing the keyword operand names 75
load module

IKJDAIR 355
locate mode of GET 187
locating data set name 356
logical line processing 220, 226
LRECL in DCB 188
LSD (list source descriptor) 210

describing in-storage list for STACK 200

M
macro instruction 83

BSAM 185
CALLTSSR 39
CHECK 187
GET 187
GETLINE 218, 221
I/O

definition 192
IKJENDP 106
IKJIDENT 94
IKJKEYWD 99
IKJNAME 101
IKJOPER 88
IKJPARM 77
IKJPOSIT 78
IKJRLSA 107
IKJRSVWD 91
IKJSUBF 103
IKJUNFLD 104
LINK 14
LOAD 14
PUT 187
PUTX 187
QSAM 185
READ 187
STACK 195
STAX 317, 421
TGET 293
TPUT 301
WRITE 187

macro instructions
PUTGET 259
PUTLINE 232

macro interface 14
See also MVS programming Considerations
CALLTSSR 39
GETLINE 192, 193
IKJEFFMT 306
IKJTSMSG 314
LINK 14
LOAD 14
parse macro 77
PUTGET 192, 193
PUTLINE 192, 193
SAM macro 185
STACK 192, 193
STAX 318
terminal control macro 159
TGET 293
TPG 291
TPUT 286

macro notation 8
marking a data set not in use 371
member name

syntax of 70
message 305

class
definition 305

formatting 192
level 305

Index 569

message (continued)
mode (definition) 305
second-level 58

message extraction 306
message handling 305

message level 305
message issuer routine (IKJEFF02) 305
message lines output 245
messages

building PUTLINE text insertion 251
chaining 254
conversational 258
formatting 253
ID stripping 250
identifier

definition 250
line processing 245

additional for PUTLINE 250
lines 245
mode (definition) 258
multilevel

definition 245, 272
writing 244

passing to PUTGET 273
passing to PUTLINE 247
prompt 259
single level 245

definition 272
stripping identifiers 250
without message identifiers (restriction) 250

method of constructing an IOPL 193
missing DSNAME 70
missing operand 56
missing positional operand 61
mode message

definition 305
mode messages

definition 274
modifying DD statement 188
module_name

syntax of 64
move mode 187
multi-trans TPs

limitations on use of environment services 25
multilevel messages

definition 245, 272
multiline data output 244
multitasking considerations using I/O service

routine 193
MVS considerations

input residency
STAX 318

MVS programming considerations 11
24-bit addressing mode 12
31-bit addressing

general interface considerations 12
addressing mode 12

24-bit 14, 16
31-bit 14, 16

addressing mode of the invoking program 12
AMODE=24, RMODE=24 12

MVS programming considerations (continued)
AMODE=31 13
AMODE=ANY, RMODE=24 12
attribute and linkage convention 13
changing addressing mode 12
input residency

above 16 MB 14
below 16 MB 14

input residency below 16 MB 12
linkage convention 12
linkage decision 12
macro interface 16

CALLTSSR 15, 16
GETLINE 15, 16
IKJTSMSG 15, 16
PUTGET 15, 16
PUTLINE 15, 16
quick reference table 15
STACK 15, 16
STAX 15
STAX macro 16
terminal control macro 15, 16
TGET 15, 16
TPG 15, 16
TPUT 15, 16

program residency 12
below 16 MB 12

residency requirement 13
restriction

on executing exclusively in 31-bit mode 13
on invoking programs with 24-bit

dependencies 13
service routine interface 13

alternative library interface routine
(IKJADTAB) 13

catalog information routine (IKJEHCIR) 13
command scan service routine (IKJSCAN) 13
DAIRFAIL (IKJEFF18) 13
default service routine (IKJEHDEF) 13
dynamic allocation interface routine

(IKJDAIR) 13
GETLINE service routine (IKJGETL) 13
GNRLFAIL/VSAMFAIL (IKJEFF19) 13
PUTGET service routine (IKJPTGT) 13
PUTLINE service routine (IKJPUTL) 13
STACK service routine (IKJSTCK) 13
table look-up service (IKJTBLS) 13
TSO/E message issuer routine (IKJEFF02) 13
TSO/E service facility (IKJEFTSR) 13
variable access routine (IKJCT441) 13

user-written command processor 13
MVS programming Considerations 14
MVS/ESA considerations

address space control (ASC) mode 12
AR mode 12
general interface considerations 12
primary mode 12

MVS/Extended Architecture considerations
interfaces and functions 13

570 z/OS V1R4.0 TSO/E Programming Services

N
name

qualified (definition) 70
unqualified (definition) 70

names directory
invoking the Information Center Facility names

directory 483
retrieving information from 483

naming the PDL (DSECT=) 78, 121
no message identifiers on second-level

messages 250, 254
no output line (PTBYPS) 260
NOEDIT

operand of TPUT 287
transmitting 3270 extended data stream

function 287
non-delimiter dependent positional operand 74
non-numeric literal 71
notation for defining a macro instruction 8
Notices 557
null line entered

in response to a prompting message 57
null PSTRING

definition 68
null quoted string (QSTRING) definition 71
null string

definition 62
number of bytes moved by TGET (buffer size) 294

O
OLD (output line descriptor) 233
OLD (Output Line Descriptor) 248
operand

address
forms of 63

in an expression 73
missing 56

operator
expression operand 73

output
multiline data 245

output line
command, saving in a non-CLIST program 460

output line descriptor (OLD) 233, 248
PUTGET 273
PUTLINE 248

output line formats for PUTGET 272
output message

building 250
no response required 232
response required 258
with the PUTLINE macro instruction 232
with the WRITE macro instruction 187

OUTPUT=0 keyword (for GET function of PUTGET
only) 260

P
parameter block

default parameter block (DFPB) 386
GETLINE (GTPB) 226
PUTGET (PGPB) 269
PUTLINE (PTPB) 236
STACK (STPB) 208

parameter control entry (PCE)
See PCE (parameter control entry)

parameter control list (PCL)
See PCL (parameter control list)

parameter descriptor entry (PDE)
See PDE (parameter descriptor entry)

parameter descriptor list (PDL)
See PDL (parameter descriptor list)

parameter format
TGET/TPUT/TPG 296

parameter list
catalog information routine parameter list

(CIRPARM) 380
command scan parameter list (CSPL) 43
DAIR parameter list (DAPL) 356
default parameter list (DFPL) 385
expansion

execute form of TPUT 299
list form of GTTERM 163
list form of TPG 300
list form of TPUT 299
standard and execute forms of TPUT 298
standard, list, execute forms of TGET 300

format for IKJEFF02
extended 311
MTFORMAT=NEW 306
MTFORMAT=OLD 306
standard 306

IKJADTAB parameter list 346
IKJTBLS parameter list 400
IOPL (input output parameter list) 193
PDL (parameter description list) 121
PPL (parse parameter list) 118

parameter string
inserting a keyword into 60

parameter syntax
command 61

parenthesized string (PSTRING) format of 68
parse acceptance of double-byte character set data

in a constant string 72
in a parenthesized string 68
in a quoted character string 73, 74
in a quoted string 71
in a self-delimiting string 62
in a value string 63
no translation to upper case 59

parse macro instruction 52, 76
coding example 111, 156
combining LIST and RANGE options 139
description 76
IKJENDP 106
IKJIDENT 94
IKJKEYWD 99
IKJNAME 101

Index 571

parse macro instruction (continued)
IKJOPER 88
IKJPARM 77
IKJPOSIT 78
IKJRLSA 107
IKJRSVWD 91
IKJSUBF 103
IKJTERM 83
IKJUNFLD 104
LIST option 137
order of coding for positional operands 78
RANGE option 138

parse parameter element (PPE)
See PPE (parse parameter element)

parse service routine (IKJPARS) 52
example of use 107, 144
insertion of a keyword 60
insertion of default values 60
issuing second-level message 58
macro instruction description 76
passing control to 117
passing control to a validity checking routine 59,

112
passing control to a verify exit 114
passing control to a verify exit routine 59
positional operand 61
PPL (parse parameter list) 118
prompt mode HELP function 58

passing a flag to command scan 45
passing control to

I/O service routine 192
parse service routine 117
validity checking routine 59, 112
verify exit 114
verify exit routine 59

passing message lines
to PUTGET 273
to PUTLINE 247

password 69
PAUSE processing 277
PCE (parameter control entry) 76

beginning the 76
built by

IKJENDP 106
IKJIDENT 97
IKJKEYWD 100
IKJNAME 102
IKJOPER 89
IKJPARM 78
IKJPOSIT 81
IKJRSVWD 92
IKJSUBF 103
IKJTERM 86
IKJUNFLD 105

PCL (parameter control list) 76
PDE (parameter descriptor entry) 120

combining list and range options 140
combining LIST and RANGE options 139
description 120
effect of LIST and RANGE options on format 137
format (general) 120

PDE (parameter descriptor entry) (continued)
keyword operand 136, 137
list option 137
positional operand 121
range option 139
type

ADDRESS parameter 124
CONSTANT 131
DSNAME or DSTHING operand 122
EXPRESSION 135
expression value operand 127
IKJIDENT parameter 136
JOBNAME operand 124
KEYWORD operand 136, 137
non-delimiter dependent operand 136
positional operand 121
RESERVED word 135
STATEMENT NUMBER 133
STRING, PSTRING, or a QSTRING

operand 121
UID2PSWD 130
USERID operand 129
VALUE operand 122
VARIABLE 134

PDL (parameter descriptor list) 76
beginning the 76
header 121
naming (DSECT=) 121

perform a list of DAIR operations 370
PGPB, PUTGET parameter block 194
PHONE CLIST 491
physical line processing 226
PLATCMD statement 408
PLATPGM statement 408
pointer

forward chain 244
to the formatted line (PUTLINE) 253
to the I/O service routine parameter block 193

positional operand 61
entered as a list or range 74, 137
missing 61
not dependent upon delimiter 74
order of coding parse macros 78

PPE (parse parameter element) 116
PPL (parse parameter list) 118
primary mode 12
primary text segment

offset of 252
Print CLIST ICQCPC10 517
Print CLIST ICQCPC15 521
print definition

displaying for user selection 500
variable 504

PRINT FUNCTION CLIST 529
print inhibit (PTBYPS) 260, 266
PRINTER LIST CLIST 527
printer selection CLIST ICQCPC00 499
printer support service

overview 497
printer definition variable 506

572 z/OS V1R4.0 TSO/E Programming Services

processing
mode 188
modes 258
physical line 226

PROFILE command 250, 277
program access to CLIST and REXX variables 459
program residency 12

below 16 MB 12
program_id

statement number operand 73
program-id

variable operand 72
prompt message

processing 278
second-level 58

prompt mode HELP function
definition of 58
importance of ECTNOQPR bit 58
making active for a subcommand 59
restriction on 58

prompting 56
inhibiting 273
input wait after 278
message 305
missing operand 56
response 56
return code 118
scanning the input buffer 41
translation to uppercase 59
types of command operands recognized 61
user at the terminal 56
using the parse service routine

example 56
protected step control block (PSCB) 16
PSCB (protected step control block) 16
PSTRING

syntax of 68
PTPB, PUTLINE parameter block 194
purging the second-level message chain 254
PUT macro instruction 187
PUTGET attention ECB 266
PUTGET buffer

freeing 279
PUTGET macro instruction

coding example 281
format 259
OUTPUT=0 274

PUTGET parameter block 269
initializing 269

PUTGET processing 274
PUTGET service routine 258

barrier elements on the stack 263, 269
coding example 281
control blocks 275, 279
description 258
input buffer format 278
input line format 278
macro instruction

execute form 263
list form 259

mode message processing 274

PUTGET service routine (continued)
no output line 276
operands 260
output line descriptor (OLD) 273
output line formats 272
parameter block (PGPB) 269
passing message lines to 273
PAUSE processing 277
prompt message processing 278
providing the GET (ATTN) function only 261
question mark processing 278
return codes 279
sources of input 259, 276
text insertion 273
TGET options (TERMGET) 263, 268
TPUT options (TERMPUT) 261, 267
types of output line descriptor 273
user abend 204 280

PUTLINE functions for message lines 245
PUTLINE macro instruction

coding example 244
format of 232

PUTLINE parameter block 241
initializing 236

PUTLINE service routine 232
building a second-level informational chain 254
coding examples of 253
control blocks 249
control flags 241
description 232
format only function 253
macro instruction

execute form 236
list form 232

message line processing 250
message processing control blocks 249
operands 232, 236
output

display when barrier elements exist on the
stack 233, 238

output line descriptor (OLD)
for multilevel message 248
for single-level message 248

output lines
format 242

parameter block 241
passing message lines to 247
processing of second-level messages 245
PUTLINE parameter block (PTPB) 240
return codes 255
stripping message identifiers 250
text insertion function 251
TPUT (TERMPUT) options 234, 238
types and formats of output lines 242

PUTLINE, putting a line out to the terminal 232
PUTX macro instruction 187

Q
QSAM

macro instruction 185

Index 573

QSAM (continued)
using for terminal I/O 185

QSTRING definition 70
qualification

variable operand 72
qualified address operand 64

format 64
qualifier

data name 72
question mark

processing by I/O service routine 192
quoted string (QSTRING)

syntax of 70

R
range

use of (general) 75
range option

how to use 138
READ macro instruction 187
read partition query structured field 291
reading a record from the terminal (the READ macro

instruction) 187
reallocating a data set

using the space management service 335
reason code

dynamic allocation 377
IKJEFTSR 420

record format supported under TSO/E 188
record returned by GETLINE

identifying the source of 226
register

access 64
floating-point 63
general 63
vector 63
vector mask 64

register form
TPUT macro 286

relationship between primary and secondary segments
(PUTLINE) 253

relative address operand 63
releasing storage allocated by parse 107
residency

input
above 16 MB 14
below 16 MB 14

input below 16 MB 12
residency requirement 13
restriction

non-delimiter dependent operands 74
on invoking programs with 24-bit dependencies 13

result of command scan 45
return code

command scan 46
DAIR 376
GETLINE 229
GTDEVSIZ 160
GTSIZE 161
GTTERM 163

return code (continued)
IKJADTAB 348
IKJEFTSR 419
IKJEHCIR 382
IKJEHDEF 388
IKJTBLS 401
LOCATE 383
parse service routine 118
RTAUTOPT 164
SPAUTOPT 165
STACK 211
STATTN 176
STAUTOCP 166
STAUTOLN 168
STAX 322
STBREAK 177
STCC 179
STCLEAR 180
STCOM 181
STFSMODE 169
STLINENO 170
STSIZE 172
STTIMEOU 182
STTMPMD 173
STTRAN 183
TCLEARQ 174
TGET 295
TPG 293
TPUT 291
validity checking 113
verify exit 116

return codes
from PUTGET 279
from PUTLINE 255

returning the value of a variable 465
REXX 2

APPC/MVS interface 2
customizing services 4
host command environments, CPI and LU62 2
programming services 4
writing execs 2

REXX variable
accessing 459
invoking IKJCT441 464, 468

coding IKJCT441 465
to return the value of a variable 467

returning a value 473
returning without creating 473
updating 471

RTAUTOPT macro instruction 164

S
SAM terminal routine 186
samples

IKJURPS 552
second-level message

definition 305
message handled by parse 58
requesting 305

574 z/OS V1R4.0 TSO/E Programming Services

second-level messages
informational messages 254
message chain 254
no message identifiers 254

secondary text segment
offset of 252

separator character 43, 54, 61
sequential access method (SAM) terminal routine

CHECK 187
GET 187
PUT 187
PUTX 187
READ 187
WRITE 187

service routine interface 13
alternative library interface routine (IKJADTAB) 13
catalog information routine (IKJEHCIR) 13, 379,

385
DAIR 355
DAIRFAIL (IKJEFF18) 13, 391
default service routine (IKJEHDEF) 13
dynamic allocation interface routine (IKJDAIR) 13
GETLINE service routine (IKJGETL) 13, 194
GNRLFAIL/VSAMFAIL (IKJEFF19) 13, 395
PUTGET service routine (IKJPTGT) 13, 194
PUTLINE service routine (IKJPUTL) 13, 194
STACK service routine (IKJSTCK) 13, 194
table look-up service (IKJTBLS) 13
TSO/E message issuer routine (IKJEFF02) 13, 306
TSO/E service facility (IKJEFTSR) 13
variable access routine (IKJCT441) 13

setting
addressing mode

via BASSM or BSM 14
shift-in character 62
shift-out character 62
shortcut keys 555
single line data 243
single-level messages 245
source data set

in storage 207
adding an element to the input stack 200, 205

source of input 207
changing 195
current 195

SPACE ENLARGER CLIST 344
space management CLIST 335
SPACE MANAGER CLIST 343
space operand

definition 71
SPAUTOPT macro instruction 165
STACK macro instruction

effects on REXX data stack 196
execute form 201
list form 196

stack parameter block (STPB) 209
STACK service routine

changing the source of input 195
coding example of macro 209
control block structure 210

in-storage list 214

STACK service routine (continued)
description 195
element code 209
input source 207
list source descriptor (LSD) 209
macro instruction

execute form 201
list form 196

parameter block 208
return code 211
specifying an in-storage list as the input source 215
used by IKJTSOEV 23

standard form
TGET macro 294
TPUT macro 286

statement number operand 73
STATTN macro instruction 175
STAUTOCP macro instruction 166
STAUTOLN macro instruction 167
STAX service routine 317

coding example of macro 324
macro instruction format 318

STBREAK macro instruction 176
STCC macro instruction 177
STCLEAR macro instruction 180
STCOM macro instruction 180
STFSMODE macro instruction 168
STLINENO macro instruction 170
STPB, STACK parameter block 194
string

definition 62
stripping message identifiers 250
STSIZE macro instruction 171
STTIMEOU macro instruction 181
STTMPMD macro instruction 172
STTRAN macro instruction 182
subcommand name

determining validity of 41
syntax validity 41

subcommand name syntax
checking the syntax of a subcommand 41

subcommand operand
syntactically valid 52

subfield associated with keyword operand 103
subfield description 103
subpool 78 16, 208
subscript

variable operand 72
substitute mode of PUT and PUTX macros 187
symbolic address

syntax of 64
syntax

notation for defining a macro instruction 8
syntax of a command operand

checking 52
SYSOUT data set

allocation of 371
SYSOUTLINE 460
system catalog

searching for data set name 356
system code 337 187

Index 575

SYSTSIN
used by IKJTSOEV 23

SYSTSPRT
used by IKJTSOEV 23

T
table look-up service (IKJTBLS) 399
TCLEARQ macro instruction 173
TERM=TS (operand of DD statement) 188
terminal

allocating a data set to 366
terminal as input source 207, 215
terminal control macro instruction 159
terminal element

adding to input stack 205
barrier element (dividing the input stack into

substacks) 195, 197, 203
coding example 215

text insertion function of PUTLINE 251
TGET

coding example 300
definition 293
execute form 294
format 294
list form 294
macro description 293
number of bytes moved 294
register form 294
return code 295
standard form 294
transmitting 3270 extended data stream functions

using TGET 169
used by GET 187
used by READ 187

TGET/TPUT parameter registers 296
TGET/TPUT/TPG

macro instruction 285, 291
TPG

code returned by 293
definition 291
execute form 291
list form 291
macro description 291
return code 293
standard form 291

TPUT
code returned by 291
coding example 300, 301
definition 285
execute form 286
list form 286
macro description 285
register form 286
return code 291
standard form 286
transmitting 3270 extended data stream with TPUT

NOEDIT 287
used by PUT and PUTX 187
used by WRITE 187

transaction programs
limitations on use of environment services 25

translated message text 254
translation to uppercase 59
TSO/E environment

establishing outside TSO/E TMP 4, 21
TSO/E environment service

limitation with internal reader 24
TSO/E environment service (IKJTSOEV)

coding examples 30
description 5, 21
function

initialization and termination 23
overview 22
restrictions on TSO/E service usage 24

interface considerations 14, 16
invoking

overview 27
requirements and restrictions 27

return and reason codes 28
syntax and parameters 26
when to use 22

TSO/E I/O environment
creating 198, 204
destroying 198, 204
resetting 198, 204

TSO/E I/O service routine 191
TSO/E message issuer routine (IKJEFF02) 305
TSO/E service facility 418

example of invocation 425
introduction 405
parameter 415

TSO/E service facility (IKJEFTSR)
IKJEFTSI 410

return codes from 412
IKJEFTSR 413, 419

reason codes from 420
return codes from 419

IKJEFTST 422
return codes from 424

initialization parameters 410
parameters 413

initialization 410
termination 423

termination parameters 422
TSO/E service routine

to the TSO/E service routines 16
use and interface 16

IKJCSOA 45
IKJCSPL 43
IKJDAIR 355
IKJENDP 106
IKJGTPB 226
IKJIDENT 94
IKJIOPL 193, 194
IKJKEYWD 99
IKJNAME 100
IKJOPER 87
IKJPARM 77
IKJPOSIT 78
IKJRLSA 107

576 z/OS V1R4.0 TSO/E Programming Services

TSO/E service routine (continued)
use and interface (continued)

IKJRSVWD 91
IKJSUBF 103
IKJUNFLD 104

TSOENV
assembler program demonstrating 34
COBOL program demonstrating 30
JCL to execute 37

TSOLNK
assembler program demonstrating 436, 438
Assembler program demonstrating 457
COBOL program demonstrating 440, 449
FORTRAN program demonstrating 436
invoking authorized commands, programs, CLISTs

and REXX execs 425
PASCAL program demonstrating 447, 454
PL/I program demonstrating 445, 452
sample program 425
using with programming languages 425
VS FORTRAN program demonstrating 438

TSVT 461
TSVT mapping macro (IKJTSVT) 39

U
UID2PSWD

definition 69
Unauthorized Resource Processor Service, see

IKJURPS 541
unidentified keyword

operand for parse 137
unidentified keyword operand

validity checking 114
update the value of a variable 464
user abends

PUTGET service routine (204) 280
user profile table (UPT) 18

address of UPT 18
displaying translated message text 254
IKJUPT mapping macro 18
TRANS keyword on PUTGET macro 261
TRANS keyword on PUTLINE macro 234
UPT keyword on PUTLINE macro 237

userid
definition and format 68

using
BSAM for terminal I/O 185
DAIR 355
parse macro instruction 76
parse service routine (IKJPARS) 52
PUTLINE format only function 253
PUTLINE text insertion function 251
QSAM for terminal I/O 185
terminal control macro instruction 159
TGET/TPUT/TPG SVC for terminal I/O 285
TSO/E I/O service routine 191

utility data set allocation 359

V
validity check parameter list 113
validity of a command operand

checking 59, 112
validity of an unidentified keyword operand

checking 114
value operand definition 62
variable

CLIST 459
control 460
print definition 504
REXX 459

variable operand 72
vector mask register 64
vector register address

syntax of 63
VEPL (verify exit parameter list) 115
verb_number

statement number operand 73
verify exit parameter list (VEPL)

See VEPL (verify exit parameter list)
VSAMFAIL routine 395

W
WRITE macro instruction 187

Index 577

578 z/OS V1R4.0 TSO/E Programming Services

Readers’ Comments — We’d Like to Hear from You

z/OS
TSO/E
Programming Services

Publication No. SA22-7789-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7789-03

SA22-7789-03

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01 and 5655-G52

Printed in U.S.A.

SA22-7789-03

	Contents
	Figures
	Tables
	About this book
	Who should use this book
	How this book is organized
	How to use this book
	Where to find more information
	Accessing licensed books on the Web
	Using LookAt to look up message explanations

	Summary of changes
	Chapter 1. Introduction
	Programming Using TSO/E
	Writing CLISTs
	Writing REXX Execs
	Writing Servers
	Writing Command Processors

	Overview of TSO/E Programming Services
	Invoking TSO/E Service Routines
	Establishing a TSO/E Environment Outside of the TSO/E TMP and Service Routines
	Checking the Syntax of Subcommand Names
	Checking the Syntax of Command and Subcommand Operands
	Communicating with the Terminal User
	Handling Attention Interruptions
	Processing Data Sets
	Analyzing Return Codes
	Searching System Lists
	Invoking Commands, CLISTs, REXX Execs and Programs
	Accessing CLIST and REXX Variables
	Retrieving Information from the Names Directory
	Displaying Printers for Selection by the User
	Invoking an Information Center Facility Application
	Retrieving System Messages Issued during a Console Session

	Coding the Macro Instructions

	Chapter 2. Considerations for Using TSO/E Services
	Determining the Version and Release of TSO/E Installed
	Programming Considerations for MVS/ESA SP
	General Interface Considerations
	Interface Considerations for the TSO/E Service Routines
	Summary of Macro Interfaces

	Interfacing with the TSO/E Service Routines
	The Command Processor Parameter List
	Services that Access Data in the CPPL

	Chapter 3. Using the TSO/E Environment Service IKJTSOEV
	Overview of the TSO/E Environment Service
	When You Should Use the TSO/E Environment Service
	Function of the TSO/E Environment Service
	TSO/E Environment Initialization — Inside IKJTSOEV
	Capabilities Available After Initialization
	Job Step Termination
	Restrictions and Limitations on the Use of TSO/E Services

	Summary of TSO/E Services Available Under IKJTSOEV
	Syntax and Parameter Descriptions
	Invoking the TSO/E Environment Service
	Requirements and Restrictions for Invoking the TSO/E Environment Service

	Return and Reason Codes from the TSO/E Environment Service
	Examples Using the TSO/E Environment Service
	COBOL
	Assembler
	JCL for COBOL and Assembler Program Invocation

	Chapter 4. Invoking TSO/E Service Routines with CALLTSSR
	When to Use the CALLTSSR Macro Instruction
	Syntax and Operands
	Example Using TSO/E Service Routines with CALLTSSR

	Chapter 5. Verifying Subcommand Names with IKJSCAN
	Functions Performed by the Command Scan Service Routine
	Syntax Requirements for Command and Subcommand Names
	Invoking the Command Scan Service Routine (IKJSCAN)
	The Command Scan Parameter List
	Passing Flags to the Command Scan Service Routine
	The Command Scan Output Area

	Output from the Command Scan Service Routine
	Return Codes from the Command Scan Service Routine
	Example Using the Command Scan Service Routine

	Chapter 6. Verifying Command and Subcommand Operands with Parse
	Overview of the Parse Service Routine (IKJPARS)
	The Parse Macro Instructions

	Character Types Accepted by the Parse Service Routine
	Treatment of Comment Character /* by the Parse Service Routine
	Acceptance of Double-Byte Character Set Data

	Services Provided by the Parse Service Routine
	Prompting the User for Missing or Required Operands
	Issuing Error Messages When Parse Does Not Complete Successfully
	Issuing Second-Level Messages
	Passing Control to Validity Checking Routines
	Passing Control to Verify Exit Routines
	Translation to Uppercase
	Insertion of Default Values
	Insertion of Keywords

	What You Need to do to Use the Parse Service Routine
	Defining Command Operand Syntax
	Positional Operands
	Keyword Operands

	Using the Parse Macro Instructions to Define Command Syntax
	Using IKJPARM to Begin the PCL and the PDL
	Using IKJPOSIT to Describe a Delimiter-Dependent Positional Operand
	Using IKJTERM to Describe a Delimiter-Dependent Positional Operand
	Using IKJOPER to Describe a Delimiter-Dependent Positional Operand
	Using IKJRSVWD to Describe a Delimiter-Dependent Positional Parameter
	Using IKJIDENT to Describe a Non-Delimiter-Dependent Positional Operand
	Using IKJKEYWD to Describe a Keyword Operand
	Using IKJNAME to List Keyword or Reserved Word Operand Names
	Using IKJSUBF to Describe a Keyword Subfield
	Using IKJUNFLD to Describe Unidentified Keyword Operands
	Using IKJENDP to End the Parameter Control List
	Using IKJRLSA to Release Virtual Storage Allocated by Parse
	Examples Using the Parse Macro Instructions

	Using Validity Checking Routines
	Passing Control to Validity Checking Routines
	Return Codes from Validity Checking Routines

	Using Verify Exit Routines
	Passing Control to Verify Exit Routines
	Return Codes from Verify Exit Routines

	Passing Control to the Parse Service Routine
	The Parse Parameter List

	Checking Return Codes from the Parse Service Routine
	Examining the PDL Returned by the Parse Service Routine
	The PDL Header
	PDEs Created for Positional Operands Described by IKJPOSIT
	PDEs Created for Positional Operands Described by IKJTERM
	The PDE Created for Expression Operands Described by IKJOPER
	The PDE Created for Reserved Word Operands Described by IKJRSVWD
	The PDE Created for Positional Operands Described by IKJIDENT
	The PDE Created for Keyword Operands Described by IKJKEYWD
	The PDE Created for Keyword Operands Described by IKJUNFLD
	How the List and Range Options Affect PDE Formats

	Examples Using the Parse Service Routine
	Example 1: Describing a PROCESS Command Syntax
	Example 2: Describing an EDIT Command Syntax
	Example 3: Describing an AT Command Syntax
	Example 4: Describing a LIST Command Syntax
	Example 5: Describing a WHEN Command Syntax

	Chapter 7. Using the Terminal Control Macro Instructions
	Functions of the Terminal Control Macro Instructions
	GTDEVSIZ — Get Device Size
	GTSIZE — Get Terminal Line Size
	GTTERM — Get Terminal Attributes
	RTAUTOPT — Restart Automatic Line Numbering or Character Prompting
	SPAUTOPT — Stop Automatic Line Numbering or Character Prompting
	STAUTOCP — Start Automatic Character Prompting
	STAUTOLN — Start Automatic Line Numbering
	STFSMODE — Set Full-Screen Mode
	STLINENO — Set Line Number
	STSIZE — Set Terminal Line Size
	STTMPMD — Set Terminal Display Manager Options
	TCLEARQ — Clear Buffers
	STATTN — Set Attention Simulation
	STBREAK — Set Break
	STCC — Specify Terminal Control Characters
	STCLEAR — Set Display Clear Character String
	STCOM — Set Inter-Terminal Communication
	STTIMEOU — Set Time Out Feature
	STTRAN — Set Character Translation

	Chapter 8. Using BSAM or QSAM for Terminal I/O
	Overview of the BSAM and QSAM Macro Instructions
	The SAM Terminal Routines
	GET
	PUT and PUTX
	READ
	WRITE
	CHECK

	Record Formats, Buffering Techniques, and Processing Modes
	Specifying Terminal Line Size
	End-of-File (EOF) for Input Processing
	Modifying DD Statements for Batch or TSO/E Processing

	Chapter 9. Using the TSO/E I/O Service Routines for Terminal I/O
	Functions of the I/O Service Routines
	Passing Control to the I/O Service Routines
	Addressing Mode Considerations
	Considerations for Using I/O Service Routines by a Multitasking Application
	The Input/Output Parameter List

	Using the I/O Service Routine Macro Instructions
	Using STACK to Change the Source of Input
	STACK Macro Effects on the REXX Data Stack
	The List Form of the STACK Macro Instruction
	The Execute Form of the STACK Macro Instruction
	The Sources of Input
	Building the STACK Parameter Block (STPB)
	Building the List Source Descriptor (LSD)
	Return Codes from STACK
	Examples Using STACK
	Example 1
	Example 2
	Example 3
	Using GETLINE to Get a Line of Input
	Sources of Input
	End of Data Processing
	Building the GETLINE Parameter Block
	Input Line Format - The Input Buffer
	Return Codes from GETLINE
	Examples Using GETLINE
	Using PUTLINE to Put a Line Out to the Terminal
	The List Form of the PUTLINE Macro Instruction
	The Execute Form of the PUTLINE Macro Instruction
	Building the PUTLINE Parameter Block
	Types and Formats of Output Lines
	Passing the Message Lines to PUTLINE
	PUTLINE Message Line Processing
	Return Codes from PUTLINE
	Using PUTGET to Put a Message Out to the Terminal and Obtain a Line of Input in Response

	Chapter 10. Using the TGET/TPUT/TPG Macro Instructions for Terminal I/O
	Overview of the TGET, TPUT and TPG Macro Instructions
	Using the TPUT Macro Instruction to Write a Line to the Terminal
	Return Codes from TPUT
	Using the TPG Macro Instruction to Write a Line Causing Immediate Response
	Return Codes from TPG

	Using the TGET Macro Instruction to Get a Line from the Terminal
	Return Codes from TGET

	Parameter Formats for TGET, TPUT, and TPG
	Register Form of TGET and TPUT
	Execute, Standard and List Forms of TPUT
	Execute and List Forms of TPG
	Standard, List and Execute Forms of TGET

	Examples Using the TGET and TPUT Macro Instructions
	Example 1: Using the Default Values for TPUT and TGET
	Example 2: Using TPUT with Buffer Address and Buffer Length in Registers
	Example 3: Using the Register Format of TGET

	Chapter 11. Using the TSO/E Message Handling Routine IKJEFF02
	Overview of Message Handling
	TSO/E Message Issuer Routine (IKJEFF02)
	Passing Control to the TSO/E Message Issuer Routine
	The Input Parameter List
	Using IKJTSMSG to Describe Message Text and Insert Locations

	Return Codes from the TSO/E Message Issuer Routine
	Example Using IKJTSMSG

	Chapter 12. Using the STAX Service Routine to Handle Attention Interrupts
	The STAX Macro Instruction
	Return Codes from the STAX Service Routine
	Example Using the STAX Macro Instruction

	Chapter 13. Using the CLIST Attention Facility
	Overview of the CLIST Attention Facility
	Invoking the CLIST Attention Facility
	Establishing the Exit that Invokes IKJCAF
	Passing Parameters to IKJCAF
	Passing Control to IKJCAF

	Returning from the CLIST Attention Facility

	Chapter 14. Obtaining a List of Data Set Names
	Operation of ICQGCL00
	Invoking ICQGCL00
	Output Table Variables
	Return Codes from ICQGCL00
	Example Using ICQGCL00

	Chapter 15. Using the Space Management CLIST ICQSPC00
	Functions of ICQSPC00
	Applications
	Considerations for Using ICQSPC00
	Invoking ICQSPC00
	Return and Reason Codes from ICQSPC00
	Examples Using ICQSPC00
	Example 1: The SPACE MANAGER CLIST
	Example 2: The SPACE ENLARGER CLIST

	Chapter 16. Using IKJADTAB to Change Alternative Library Environments
	Functions of IKJADTAB
	Passing Control to IKJADTAB
	The IKJADTAB Parameter List

	Output from IKJADTAB
	Return Codes from IKJADTAB

	Example Using IKJADTAB

	Chapter 17. Using the Dynamic Allocation Interface Routine DAIR
	Functions of the Dynamic Allocation Interface Routine
	Passing Control to DAIR
	The DAIR Parameter List (DAPL)
	The DAIR Parameter Block (DAPB)

	Return Codes from DAIR
	Reason Codes from Dynamic Allocation

	Chapter 18. Using IKJEHCIR to Retrieve System Catalog Information
	Functions of the Catalog Information Routine
	Passing Control to the Catalog Information Routine
	The Catalog Information Routine Parameter List (CIRPARM)

	Output from the Catalog Information Routine
	Return Codes from IKJEHCIR
	Return Codes from LOCATE

	Chapter 19. Constructing a Fully-Qualified Data Set Name with IKJEHDEF
	Functions of the Default Service Routine
	Passing Control to the Default Service Routine
	The Default Parameter List (DFPL)
	The Default Parameter Block (DFPB)

	Output from the Default Service Routine
	Return Codes from IKJEHDEF

	Chapter 20. Using the DAIRFAIL Routine IKJEFF18
	Functions of DAIRFAIL
	Passing Control to DAIRFAIL
	The Parameter List

	Return Codes from DAIRFAIL

	Chapter 21. Analyzing Error Conditions with GNRLFAIL/VSAMFAIL
	Functions of GNRLFAIL/VSAMFAIL
	Passing Control to GNRLFAIL/VSAMFAIL
	The Parameter List

	Return Codes from GNRLFAIL/VSAMFAIL

	Chapter 22. Using the Table Look-up Service IKJTBLS
	Functions of IKJTBLS
	Passing Control to IKJTBLS
	The IKJTBLS Parameter List
	Return Codes from IKJTBLS
	Example Using IKJTBLS

	Chapter 23. Using the TSO/E Service Facility IKJEFTSR
	Overview of the TSO/E Service Facility
	The TSO/E Service Facility Routines
	Program Authorization and Isolation

	Using the Command/Program Invocation Platform
	Creating the Platform with IKJEFTSI
	Executing Commands or Programs on the Platform with IKJEFTSR
	Terminating the Platform with IKJEFTST

	TSO/E Service Facility Initialization Routine IKJEFTSI
	Passing Control to IKJEFTSI
	IKJEFTSI Parameter List
	Output from IKJEFTSI

	TSO/E Service Facility Routine IKJEFTSR
	Passing Control to IKJEFTSR
	IKJEFTSR Parameter List
	Output from IKJEFTSR
	Considerations on Attention Interruptions with IKJEFTSR

	TSO/E Service Facility Termination Routine IKJEFTST
	Passing Control to IKJEFTST
	IKJEFTST Parameter List
	Output from IKJEFTST

	Application Program Interface to IKJEFTSR
	Call Invocations Using TSOLNK

	Examples of Invoking the TSO/E Service Facility
	Assembler Program Using IKJEFTSI
	Assembler Program Using IKJEFTSR to Invoke a Command
	Assembler Program Using IKJEFTST
	Assembler Program Using IKJEFTSI, IKJEFTSR, IKJEFTST to Invoke a Command
	FORTRAN Program Using TSOLNK to Invoke a Command (FORTRAN G1)
	FORTRAN Program Using TSOLNK to Invoke a Command (VS FORTRAN)
	COBOL Program Using TSOLNK to Invoke a Command
	Assembler Program Using IKJEFTSR to Invoke a Program
	PL/I Program Using TSOLNK to Invoke a Program
	PASCAL Program Using TSOLNK to Invoke a Program
	COBOL Program Using TSOLNK to Invoke a Program
	PL/I Program Using TSOLNK to Invoke a CLIST
	PL/I Program Calling a CLIST
	PASCAL Program Using TSOLNK to Invoke a CLIST
	Assembler Program Using IKJEFTSR to Invoke a REXX Exec

	Chapter 24. Using the Variable Access Routine IKJCT441
	Functions Provided by IKJCT441
	Considerations for Accessing REXX Variables

	Passing Control to IKJCT441
	The IKJCT441 Parameter List

	Updating or Creating a Variable Value (TSVEUPDT)
	Output from IKJCT441 on Entry Code TSVEUPDT

	Returning the Value of a Variable (TSVERETR) - Create
	Output from IKJCT441 on Entry Code TSVERETR

	Returning the Value of a Variable (TSVNOIMP) - No Create
	Output from IKJCT441 on Entry Code TSVNOIMP

	Returning all Active Variables and their Values (TSVELOC)
	Output from IKJCT441 on Entry Code TSVELOC

	Examples Using IKJCT441
	Example 1: Update or Create a Variable Value
	Example 2: Return a Variable Value - Create If Required
	Example 3: Return Variable Value - Do Not Create
	Example 4: Return All Active Variables and Their Values
	Example 5: Update or Create a List of Variables

	Chapter 25. Accessing the Information Center Facility Names Directory
	Operation of ICQCAL00
	Search Input
	Search Output

	Applications
	Invoking ICQCAL00
	Input Table Variables
	Return Codes from ICQCAL00
	Example Using ICQCAL00

	Chapter 26. Using the Printer Support CLISTs
	Overview of Using the Printer Support CLISTs
	Printer Selection CLIST, ICQCPC00
	Syntax and Parameters
	Return Codes from ICQCPC00
	Variables

	Print CLIST, ICQCPC10
	Functions
	Applications
	Considerations
	Syntax and Parameters
	Return Codes from ICQCPC10

	Print CLIST, ICQCPC15
	Functions
	Applications
	Considerations
	Syntax and Parameters
	Return Codes from ICQCPC15

	Examples Using Printer CLISTs
	Example 1: The Printer List CLIST
	Example 2: The Print Function CLIST

	Chapter 27. Invoking an Information Center Facility Application
	Operation of ICQAMLI0
	Invoking ICQAMLI0
	Output Table Variables
	Return Codes from ICQAMLI0
	Reason Codes from ICQAMLI0
	Example Using ICQAMLI0

	Chapter 28. Using the GETMSG Service
	Functions of GETMSG
	Considerations for Using GETMSG
	Multiple Applications

	Invoking GETMSG
	GETMSG Parameters
	Output from GETMSG
	Return Codes from GETMSG
	Displaying the Retrieved Message
	Example Using GETMSG

	Chapter 29. Using the Unauthorized Resource Processor Service IKJURPS
	Overview of the TSO/E Unauthorized Resource Processor Service
	Application Routine Versus the Unauthorized Resource Processor

	Passing Control to IKJURPS
	The IKJURPS Parameter List
	Invoking the IKJURPS Service
	Understanding the Environment in which IKJURPS Operates
	Interpreting the Return Information from the IKJURPS Service

	Receiving Control in an Unauthorized Resource Processor
	Process the Application's Resources
	Provide Return Information to the IKJEFT01 TMP Unauthorized Control Layer
	The Unauthorized Resource Processor Parameter List

	Installing Resource Processors
	Environment

	Sample IKJURPS Invocation and Unauthorized Resource Processor

	Appendix A. Limits for TSO/E Service Routines
	Appendix B. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	TSO/E Publications
	Related Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

